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ABSTRACT
We consider the problem of embedding unweighted, directed

k-nearest neighbor graphs in low-dimensional Euclidean

space. The k-nearest neighbors of each vertex provide or-

dinal information on the distances between points, but not the

distances themselves. Relying only on such ordinal informa-

tion, we recover the coordinates of the points up to arbitrary

similarity transformations (rigid transformations and scal-

ing). We make existing approaches scalable by using an

instance of a local-to-global algorithm based on group syn-

chronization, recently proposed in the literature in the context

of sensor network localization, which we augment with a

scale synchronization step. We show our approach compares

favorably to the recently proposed Local Ordinal Embedding

(LOE) algorithm even in the case of smaller sized problems,

and also demonstrate its scalability on large graphs. The

above divide-and-conquer paradigm can be of independent

interest to the machine learning community when tackling

geometric embeddings problems.

Index Terms— k-nearest-neighbor graphs, ordinal con-

straints, graph embeddings, eigenvector synchronization

1. INTRODUCTION

Embedding unweighted k-nearest neighbor (kNN) graphs is

a special case of ordinal or non-metric embedding, where one

seeks a spatial embedding of n points {�xi}ni=1 in R
d such that

∀(i1, j1, i2, j2) ∈ C, ‖�xi1 − �xj1‖2 < ‖�xi2 − �xj2‖2, (1)

where C denotes the set of ordinal constraints. Ordinal con-

straints are sometimes also specified as triplets [1]. In the

case of unweighted kNN graph embedding, C = C(G) ={
(a, b, a, c)

∣∣ab ∈ E(G), ac �∈ E(G)
}
, where E(G) is the set

of directed edges in the kNN graph G.

Graph-based methods are of utmost importance in several

modern machine learning methods with applications such as

clustering, dimensionality reduction, and ranking. Many such

methods rely on weighted graphs, with weights often based

on similarity functions, i.e., wij = S(xi, xj). From a practi-

cal standpoint, storing unweighted kNN graphs instead would

allow for a very sparse representation of the data. If one

could recover the source data {xi}ni=1 from unweighted kNN

graphs, such a computationally efficient sparser representa-

tion would incur no information loss. Because of the extreme

sparsity of the representation, this is generally a hard problem.

Just recently, a method for recovering data distributions from

unweighted kNN graphs was introduced in [2]. Another mo-

tivation for this problem comes from an instance of the pop-

ular sensor network localization problem, where each sensor

is able to transmit only limited connectivity information to

a central location (ID names of its k nearest neighbors), but

transmits neither the distance measurements nor a complete

list of all its neighbors within a given fixed radius.

The original work on this problem dates back to Shepard

[3] and Kruskal [4, 5], and lately has been studied intensively

in the machine learning literature [1, 6, 7]. In this work, we

compare against and extend the recent Local Ordinal Embed-

ding method [8], which enjoys several favorable comparisons

with other modern methods. Our key ingredient is a modi-

fied version of the As-Synchronized-As-Possible (ASAP) al-

gorithm introduced in [9], which makes existing embedding

methods scalable via a divide-and-conquer, non-iterative lo-

cal to global approach, which reduces computational com-

plexity, allows for massive parallelization of large problems,

and increases robustness to noise. The ASAP algorithm intro-

duced in [9], on which we rely in the present paper, renders

our approach to reconstruct kNN graphs scalable to graphs

with thousands or even tens of thousands of nodes, and is an

example of a local-to-global approach that integrates local or-

dinal information into a global embedding calculation.

We detail in Section 3.1 the exact approach used to de-

compose the initial kNN graph into many overlapping sub-

graphs, that we shall refer to as patches from now on. Each

resulting patch is then separately embedded in a coordinate

system of its own using an ordinal embedding algorithm, such

as the recent Local Ordinal Embedding (LOE) algorithm [8].

In the hypothetical scenario when LOE recovers the actual

ground truth coordinates of each patch, such local coordinates

agree with the global coordinates up to scaling and some un-

known rigid motion (such as rotation, reflection and transla-

tion), in other words, up to a similarity transformation. How-

ever, in most practical instances, it is unreasonable to expect

that the LOE algorithm will recover the exact coordinates

only from ordinal data. On a related note, we point out the re-

cent work of Kleindessner and von Luxburg [10], who settled

a long-known conjecture claiming that, given knowledge of

all ordinal constraints of the form ||xi−xj || < ||xk−xl|| be-
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tween an unknown set of points x1, . . . , xn ∈ R (for finite n),

it is possible to approximately recover the ground truth coor-

dinates of the points up to similarity transformations. Further-

more, the same authors show that the above statement holds

even when we only have local information such as the dis-

tance comparisons between points in small neighborhoods of

the graphs, thus giving hope for a local-to-global approach, in

the spirit of the one we propose in the present paper.

Our contributions are: 1. We present a local-to-global ap-

proach, which is scalable to very large graphs, and can be

computed efficiently and robustly in a distributed manner. 2.
We extend the ASAP framework to the setting of ordinal em-

beddings, by augmenting it with a scale synchronization step.

The rest of the paper is organized as follows. Section 2 is

a summary of existing methods for related embedding prob-

lems. Section 3 details the pipeline of the ASAP framework,

including the scale synchronization step in Section 3.2. Sec-

tion 4 shows the results of several experiments and compares

to the existing LOE algorithm. We conclude in Section 5.

2. RELATED WORK
2.1. Multidimensional Scaling
Broadly speaking, multidimensional scaling (MDS) refers

to a number of related problems and methods. In Classical

Multidimensional Scaling (CMDS) [11], one is given all Eu-

clidean Squared-Distance measurements Δij = ‖�xi − �xj‖22
on a set of points X = {�xi}ni=1 and wishes to approximate

the points, assuming that they approximately lie in a low-

dimensional space d � n. Note that the solution for the

coordinates is unique only up to rigid transformations, and

that solutions do not exist for all possible inputs Δ.

One can generalize CMDS to incorporate additional non-

negative weights Wij on each distance, useful when some

distances are missing, or most distances are noisy, but some

are known. The optimization involves minimizing an energy

known in the literature as stress [12]. One approach to min-

imize stress is to iteratively minimize a majorizing function

of two variables. A further generalization of MDS is non-

metric MDS, or Ordinal Embedding, in which the input D
is assumed to be an increasing function applied to distance

measurements [3]. This may be the case if D represents dis-

similarity between points, as opposed to measured distances.

The problem can again be expressed with stress functionals

and is usually solved with isotonic regresion [5].

2.2. Local Ordinal Embedding
Terada and von Luxburg [8] have recently proposed an al-

gorithm for ordinal embedding and kNN embedding specif-

ically, called Local Ordinal Embedding (LOE), which mini-

mizes a soft objective function that penalizes violated ordinal

constraints, with a scale parameter δ > 0 included

min
X∈Rd×n

∑
i<j,k<l,(i,j,k,l)∈C

max [0, Dij(X) + δ −Dkl(X)]
2
. (2)

An advantage of this energy in contrast to ones that normal-

ize by the variance of X (to guarantee nondegeneracy) is its

relatively simple dependence on X , making the above energy

easier to minimize. The authors of [8] introduce algorithms

to minimizing the above energy, based on majorization mini-

mization or the (BFGS) approximation of Newton’s method.

3. ASAP & SCALE SYNCHRONIZATION FOR
ORDINAL EMBEDDINGS

In this section we detail the steps of the ASAP algorithm,

central to the divide-and-conquer algorithm we propose for

the ordinal embedding problem. Note that the difference be-

tween the original ASAP algorithm introduced in [9] and our

approach lies in the decomposition method from Section 3.1

and the scale synchronization step from Section 3.2. The

ASAP approach starts by decomposing the given graph G into

overlapping subgraphs (referred to as patches), which are then

embedded via the method of choice (in our case LOE). To ev-

ery local patch embedding, there corresponds a scaling and

an element of the Euclidean group Euc(d) of d-dimensional

rigid transformations, and our goal is to estimate the scalings

and group elements that will properly align all the patches in a

globally consistent framework. The local optimal alignments

between pairs of overlapping patches yield noisy measure-

ments for the ratios of the above unknown group elements.

Finding group elements from noisy measurements of their ra-

tios is also known as the group synchronization problem. for

which Singer [13] introduced spectral and semidefinite pro-

gramming (SDP) relaxations over the group SO(2) of planar

rotations, which is a building block for the ASAP algorithm

[9]. Table 1 gives an overview of the steps of our approach.

The inputs are an ordinal graph (we consider kNN graphs)

G = (V,E), where edge ij ∈ E and non-edge il �∈ E in-

dicates that dij ≤ dil, the max patch size parameter MPS,

the target dimension d, and a base-case ordinal embedding

method OrdEmbed : G �→ X ∈ R
d×n for embedding each

patch, such as LOE.

3.1. Break up the kNN graph into patches and embed

The first step we use in breaking the kNN graph into patches is

to apply normalized spectral clustering [14] to a symmetrized

version of the graph. Normalized spectral clustering parti-

tions the nodes of a graph into N � n clusters by performing

k-means on the embedding given by the top N eigenvectors

of the random-walk normalized graph Laplacian. It is shown

[14] that normalized spectral clustering minimizes a relax-

ation of the normalized graph cut problem. Next, we enlarge

the clusters by adding the graph-neighbors of each node, so

that the resulting patches have significant overlap, a prereq-

uisite for the ASAP synchronization algorithm. The higher

the overlap between the patches, the more robust the pairwise

group ratio estimates would be, thus leading overall to a more

accurate final global solution. Finally, we use an iterative pro-

cedure to remove nodes from the graph relying on tools from

rigidity theory, which we omit due to space considerations.



INPUT G = (V,E), |V | = n, |E| = m, MPS, d, OrdEmbed(·)
Choose Patches 1. Break G into N overlapping globally rigid patches P1, . . . , PN following the steps in Sec. 3.1.

Embed Patches 2. Embed each patch Pi separately based on the ordinal constraints of the corresponding subgraph of G using

OrdEmbed(·).
Step 1 1. If a pair of patches (Pi, Pj) have enough nodes in common, let Λij be the median of the ratios of distances

realized in the embedding of Pi and their corresponding distances in Pj as in (3); otherwise set Λij = 0.

Scale 2. Compute the eigenvector vΛ1 corresponding to the largest eigenvalue of the sparse matrix Λ.

3. Scale each patch Pi by vΛ1 (i), for i = 1, . . . , n

Step 2 1. Align all pairs of patches (Pi, Pj) that have enough nodes in common.

Rotate & Reflect 2. Estimate their relative rotation and possibly reflection Hij ∈ O(d) ⊂ R
d×d.

3. Build a sparse dN × dN symmetric matrix H = (Hij) where entry ij is itself a matrix in O(d).
4. Define H = D−1H , where D is a diagonal matrix with

D1+d(i−1),1+d(i−1) = . . . = Ddi,di = deg(i), i = 1, . . . , N , where deg(i) is the node degree of patch Pi.

5. Compute the top d eigenvectors vHi of H satisfying HvHi = λH
i vHi , i = 1, . . . , d.

6. Estimate the global reflection and rotation of patch Pi by the orthogonal matrix ĥi that is closest to H̃i in

Frobenius norm, where H̃i is the submatrix corresponding to the ith patch in the dN × d matrix formed by

the top d eigenvectors [vH1 . . . vHd ].

7. Update the embedding of patch Pi by applying the above orthogonal transformation ĥi

Step 3 Translate Solve m× n overdetermined system of linear equations (5) for optimal translation in each dimension.

OUTPUT Estimated coordinates x̂1, . . . , x̂n

Table 1. Overview of the modified ASAP algorithm that incorporates the scale synchronization step.

3.2. Scale Synchronization
Before applying the original ASAP algorithm to the embed-

ded patches, we introduce an additional step that further im-

proves our approach and is independent of the dimension d.

In the graph realization problem which motivated ASAP, one

is given a graph G = (V,E) and non-negative distance mea-

surement dij associated with each edge ij ∈ E(G), and is

asked to compute a realization of G in R
d. The distances are

readily available to the user and thus the local embedding of

each patch is on the same scale as the ground truth. How-

ever, in the kNN embedding problem, distances are unknown

and the scale of one patch relative to another must be approx-

imated. Any ordinal embedding approach has no way of re-

lating the scaling of the local patch to the global scale. To this

end, we augment the ASAP algorithm with a step where we

synchronize local scaling information to recover an estimate

for the global scaling of each patch, thus overall synchroniz-

ing over the group of similarity transformations.

We accomplish this as follows. Given a set of patches,

{Pi}Ni=1, we can create a patch graph in which two patches

are connected if and only if they have at least d + 1 nodes in

common. We then construct a matrix Λ ∈ R
N×N as

Λij =

⎧⎪⎪⎨
⎪⎪⎩

median

{
D

Pi
a,b

D
Pj
a,b

}
a �=b∈Pi∩Pj

if Pi ∼ Pj , i ≤ j,

1/Λji if Pi ∼ Pj , i > j,

0 otherwise,

(3)

where DPi

a,b is the distance between nodes a and b as realized

in the embedded patch Pi. The matrix Λ approximates the

relative scales between patches. If all distances in all patches

were recovered correctly up to scale, and all patches had suf-

ficient overlap with each other, then each row of Λ would be a

scalar multiple of the others and each column of Λ would be

scalar multiple of the others, thus rendering Λ a rank-1 ma-

trix. For the noisy case, in order to get a consistent estimate

of global scaling, we compute the best rank-1 approximation

of Λ, given by its leading eigenvector v
(Λ)
1 . We use this ap-

proximation of global scaling to rescale the embedded patches

before running ASAP. Note that the connectivity of the patch

graph and the non-negativity of Λ guarantee, via the Perron-

Frobenius Theorem, that all entries of v
(Λ)
1 are positive.

3.3. Optimal Rotation, Reflection and Translation
After applying the optimal scaling to each patch embedding,

we use the original ASAP algorithm to integrate all patches in

a global framework, as illustrated in the pipeline in Figure 1.

We estimate, for each patch Pi, an element of the Euclidean

group Euc(d) = O(d) ×Rd which, when applied to that patch

embedding Pi, aligns all patches as best as possible in a sin-

gle coordinate system. In doing so, we start by estimating,

for each pair of overlapping patches Pi and Pj , their opti-

mal relative rotation and reflection, i.e., an element Hij of the

orthogonal group O(d) that best aligns Pj with Pi. When-

ever the patch embeddings perfectly match the ground truth,

Hij = OiO
−1
j . We refer the reader to [9] for several methods

on aligning pairs of patches and computing their relative re-

flections and rotations Hi,j . Finding group elements {Oi}Ni=1

from noisy measurements Hij of their ratios is also known

as the group synchronization problem. Since this problem is

NP-hard, we rely on the spectral relaxation [13] of

min
O1,...,ON∈O(d)

∑
Pi∼Pj

‖OiO
−1
j −Hij‖2F . (4)

for synchronization over O(2), and estimate a consistent

global rotation of each patch from the top d eigenvectors of

the graph Connection Laplacian, as in Step 2.4 in Table 1.



Fig. 1. ASAP and scale synchronization pipeline.

We estimate the optimal translation of each patch by solving,

in a least squares sense, d overdetermined linear systems

xi − xj = x
(k)
i − x

(k)
j , (i, j) ∈ Ek, k = 1, . . . , N, (5)

where xi, respectively x
(k)
i , denote the unknown location of

node i we are solving for, respectively, the known location of

node i in the embedding of patch Pk. We refer the reader to

[9] for a description of computing the optimal translations.

3.4. Extension to higher dimensions
Although we present experiments here on 2D and 3D data,

the ASAP approach extends naturally to higher dimensions.

In the 3D case, ASAP has been recently used as a scalable

robust approach to the molecule problem in structural biol-

ogy [15]. For the d-dimensional general case, one can extend

ASAP by first using the same approach for scaling synchro-

nization from Section 3.2, then synchronizing over O(d), and

finally estimating the optimal translations over Rd by solv-

ing d overdetermined systems of linear equations via least-

squares. The LOE approach that can be used to obtain the

local patch embeddings required by ASAP, has a natural ex-

tension to the d-dimensional case, thus rendering the entire

pipeline amenable to dealing with higher-dimensional data.

4. EXPERIMENTS
Our experiments compare embeddings of points drawn from

two different 2D synthetic densities: piecewise constant half-

planes (PC), piecewise constant squares (PCS), each with

n = {500, 5000} points, as well as points drawn uniformly

from a 3D donut shape (Donut) with n = 500, and the actual

2D coordinates of n = 1101 cities in the US (US cities). For

a given set of data points, we use its kNN adjacency matrix

as input to each ordinal embedding method. We test Lapla-

cian Eigenmaps [16], the LOE BFGS and LOE MM methods

[8], and ASAP with LOE BFGS used for the patch embed-

dings. As LOE was already compared with several methods

in [8], attaining better performance than LOE may suggest

better performance than a number of relevant methods includ-

ing Kamada and Kawai [17], and Fruchterman and Reingold

[18]. We remark that our approach deals with a different in-

put than that of the t-SNE method in [19], which is generally

used for embeddings of high dimensional data where some of

the constraints are deliberately violated, which is not neces-

sarily the case in our setting. We evaluate the methods based

on (wall-clock) runtime and A-error (EA) defined as the per-

centage of edge disagreements between the kNN adjacency

matrix of the proposed embeddeding X̃ and the ground truth

error(X̃,X) : EA def
=

1

n2

n∑
i,j=1

∣∣∣(Ak
X̃

)
ij
− (

Ak
X

)
ij

∣∣∣ , (6)

where Ak
X ∈ {0, 1}n×n denotes the adjacency matrix of the

corresponding kNN graph. We set varying limits on the num-

ber of LOE iterations {5, 10, 50, 100, 300, 500}, and we use

varying maximum patch sizes (MPS) for ASAP . The LOE

and ASAP methods give, for each distribution and values n
and k, an error-runtime Pareto curve (with low values in both

coordinates being best). In Table 2, we establish some short-

hand notation for the methods and parameters used in this sec-

tion. It is worth mentioning that while LOE BFGS and LOE

MM are iterative methods which should converge to the best

estimate of the solution as the number of iterations increases,

ASAP is not iterative and the results of ASAP LOE with a

given MPS, do not inform the results of ASAP LOE with an-

other MPS. This aspect, combined with the randomized k-

means spectral clustering used to choose patches means that

we do not generally expect the recovery errors of ASAP LOE

to be monotonically decreasing with MPS or time (as higher

MPS generally leads to longer computational time).

Recovery Method

LE Laplacian Eigenmaps embedding

LOE MM Local Ordinal Embedding using ma-

jorization minimization

LOE BFGS Local Ordinal Embedding using BFGS

ASAP LOE ASAP & LOE BFGS patch embeddings

Parameters

sparse k k = �2 log(n)�
dense k k = �√n log(n)�
MPS maximum patch size (for ASAP)

Iter. number of iterations (of LOE)

Table 2. Notation for plotting experimental results.

First, to illustrate the importance of the scale synchroniza-

tion introduced in Section 3.2, we compare in Figure 2 ASAP

synchronized embeddings with and without this step. Clearly,

this step significantly improves the recovered solutions.

We show A-error versus runtime for recovering n =
{500, 5000} points sampled from the PC and PCS distribu-

tions for the sparse, respectively dense, regime in Figure 3,

respectively Figure 4. Even for lower values of n, we find that

ASAP LOE is often either faster than or better-performing

than LOE BFGS, or both. This seems to be especially true

in the sparse k domain. This is partly due to the massively

parallel embedding step in ASAP, which can take advantage

of multiple cores as the problem scales.



Ground Truth
PC n=1000

ASAP LOE MPS400 
PC n=1000 dense k

ASAP LOE no scale MPS400
PC n=1000 dense k

Fig. 2. Left: Ground truth, n = 1000, k = 14. Middle:

ASAP LOE with scale synchronization: EA = 0.007. Right:

ASAP LOE without scale synchronization: EA = 0.038.
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Fig. 3. A-error EA vs. time, n = {500, 5000}, k sparse, ◦
ASAP LOE, × LOE BFGS, � LE , � LOE MM

To further illustrate how the methods perform, we plot the

embeddings of n = 1000 point sampled from the 2D den-

sities in Figure 5. In each case, the ASAP LOE with MPS

400 takes less time to run and yields smaller A-error errors

than the LOE BFGS with 100 maximum iterations. We only

run LOE MM for n = 500 because of difficulties we had

when trying to get the provided R implementation to run on

our Linux-based remote computing resource. We ran into no

problems with the LOE BFGS implementation. The com-

puters used have 12 CPU cores which are Intel(R) Xeon(R)

X5650 @ 2.67GHz, and have 48GB ram. The R implemen-

tation of LOE does not (as far as the authors are aware) take

advantage of multiple cores, and runs a single process on a

single core. In contrast, our ASAP Matlab implementation

uses the Multicore package to divide up the local embedding

problems among the available cores.

In Table 3 we show the A-error EA vs runtime for ASAP

LOE on a data set of n = 50, 000 points and k = 22. While

this size is completely prohibitive for LOE BFGS, ASAP

LOE produces good results in less than 4 hours.

To demonstrate that this approach is not limited to the 2D

case, nor does it only perform well on synthetic data, we plot

in Figure 6 the embeddings for points sampled from a 3D

donut shape, and actual coordinates of n = 1101 US cities. In
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Fig. 4. A-error EA vs. time, n = {500, 5000}, k dense, ◦
ASAP LOE, × LOE BFGS, � LE , � LOE MM

LOE BFGS 100 Iter. 
PC n=1000 dense k ASAP LOE MPS400 

PC n=1000 dense k
Ground Truth

PC n=1000

LOE BFGS 100 Iter. 
PCS n=1000 dense k

ASAP LOE MPS400 
PCS n=1000 dense k

Ground Truth
PCS n=1000

Fig. 5. Embeddings for the PC (top) and PCS (bottom) data

sets with n = 1000, and k dense. Column 1: LOE BFGS

Iter.=100. Column 2: ASAP LOE with MPS = 400 (with

each ASAP result obtained is less time than the corresponding

LOE result). Column 3: ground truth.

both cases, ASAP LOE with MPS 300 runs faster and yields

smaller A-error than LOE BFGS with 500 maximum itera-

tions, the latter of which produces twisted or folded results.

5. SUMMARY AND DISCUSSION
We have demonstrated that the computational efficiency of

LOE for the kNN embedding problem can be significantly

improved, while maintaining and often improving accuracy

in a distributed setting. Our application of the divide-and-

conquer ASAP method renders the problem significantly

more tractable, distributing the embedding steps, and using

fast spectral methods to combine them. We expect that such

MPS 100 300 500

PCS EA 5.1× 10−4 5.6× 10−4 1.9× 10−4

PC EA 5.8× 10−4 4.7× 10−4 3.0× 10−4

Table 3. Recovery results for n = 50, 000 for ASAP LOE.



LOE BFGS 500 Iter.
donut n=500 k=25

LOE BFGS 500 Iter.
UScities n=1101 k=50 LOE BFGS 500 Iter.

UScities n=1101 k=150

ASAP LOE MPS300
donut n=500 k=25

ASAP LOE MPS300
UScities n=1101 k=50

ASAP LOE MPS300
UScities n=1101 k=150

Ground Truth
donut n=500 Ground Truth

UScities n=1101

Fig. 6. Embeddings of Donut (3D) and US Cities (2D) data

sets. Row 1: LOE BFGS Iter.=500. Row 2: ASAP LOE

MPS=300 (with each ASAP result obtained in less time than

the corresponding LOE result). Row 3: Ground truth.

improvements will make it possible to use kNN embeddings

in a broader range of settings, and that the ASAP framework

will be of independent interest to the machine learning com-

munity for tackling large geometric embedding problems.

We refer the reader to [20] for an extended version of our

work, that includes additional experiments, a linear program-

ming formulation for kNN embeddings, and an approach

for the density estimation problem based on Total-Variation

Maximum Penalized Likelihood Estimation.
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