
DIGRAC: Digraph Clustering with Flow Imbalance

Yixuan He
Department of Statistics

University of Oxford
yixuan.he@stats.ox.ac.uk

Gesine Reinert
Department of Statistics
University of Oxford &

The Alan Turing Institute, London, UK
reinert@stats.ox.ac.uk

Mihai Cucuringu
Department of Statistics and Mathematical Institute

University of Oxford &
The Alan Turing Institute, London, UK
mihai.cucuringu@stats.ox.ac.uk

Abstract

Node clustering is a powerful tool in the analysis of networks. Here, we introduce
a graph neural network framework with a novel scalable Directed Mixed Path
Aggregation (DIMPA) scheme to obtain node embeddings for directed networks
in a self-supervised manner, including a novel probabilistic imbalance loss. The
method is end-to-end in combining embedding generation and clustering without
an intermediate step. In contrast to standard approaches in the literature, in this
paper, directionality is not treated as a nuisance, but rather contains the main signal.
In particular, we leverage the recently introduced cut flow imbalance measure,
which is tightly related to directionality; cut flow imbalance is optimized without
resorting to spectral methods or cluster labels. Experimental results on synthetic
data, in the form of directed stochastic block models and real-world data at different
scales, demonstrate that our method attains state-of-the-art results on directed graph
clustering, for a wide range of noise and sparsity levels and graph structures.

1 Introduction

Revealing the underlying community structure of directed networks (digraphs) is an important
problem in various application domains [30], such as detecting influential groups in social networks
[5]. Node clustering in digraphs can be a successful approach for this community detection task [35].
While most existing works on directed clustering rely on edge densities instead of direction, we argue
the latter can play a vital role in directed clustering as it can reveal latent properties of network flows.
Therefore, instead of finding relatively dense groups of nodes in digraphs which have a relative small
amount of flow between the groups, as in [17, 34, 28, 26, 8, 22], our ,main goal is to recover clusters
with strong and imbalanced flow among them, in the spirit of [12, 25], where directionality (i.e, edge
orientation) is the main signal. In contrast to standard approaches focusing on edge density, here
edge directionality is not a nuisance but the main piece of information to uncover the latent structure.
The underlying intuition is that homogeneous clusters of nodes form meta-nodes in a meta-graph,
with the meta-graph directing the flow between clusters; directed core-periphery structure is such
an example [15]. Figure 1(a) shows an example of cut imbalance between two clusters, here for an
unweighted network for simplicity: while 75% of the edges flow from the Transient cluster to the
Sink cluster, only 25% flow in the other direction. A real-world example of flow imbalance between

Preprint. Under review.

ar
X

iv
:2

10
6.

05
19

4v
1

 [
st

at
.M

L
]

 9
 J

un
 2

02
1

Transient
cluster

Sink
cluster

(a) Flow imbalance
example: most of the edges
flow from Transient to Sink.

𝐂𝐭𝐫𝐚𝐧𝐬 𝐂𝐬𝐢𝐧𝐤

𝐏𝐝𝐨𝐰𝐧 𝐏𝐮𝐩

(b) Flow on Telegram data.

0 1

3 2

4

(c) Meta-graph.

0 1 2 3 4
0
1
2
3
4

0.0

0.2

0.4

0.6

(d) Meta-graph adjacency
matrix F.

Figure 1: Visualization of cut flow imbalance and meta-graph: (a) 75% of edges flow from Transient
to Sink, while 25% of edges flow in the opposite direction; (b) flow on Telegram data
[5]: most edges flow from Ctrans to Csink; (c) & (d) are for a Directed Stochastic Block Model with a
cycle meta-graph with ambient nodes, for a total of 5 clusters. 75% of the edges flow in direction

0→ 1→ 2→ 3→ 0, while 25% flow in the opposite direction. Cluster 4 is the ambient cluster. In
(c), the directions of flow in dashed lines and flow within clusters are random. Flow in dashed lines
do not exist in the meta-graph adjacency matrix F. For (d), the lighter the color, the stronger the flow.

four clusters of the (weighted) Telegram Britain First Network [5] is given in Figure 1(b); most edges
flow from the core Transient cluster (Ctranse) to the core Sink cluster (Csink).

Competitive state-of-the-art methods proposed for node clustering in digraphs are somewhat limited
in scope – most of them mainly rely on edge density and overlook the role of directionality [17, 34,
28, 26, 8, 22], and those that lay emphasis on directionality, usually by incorporating cut imbalance
among clusters, are mainly based on spectral methods or require labeling information.

In this paper, we introduce a graph neural network (GNN) framework, denoted DIGRAC, with a
novel DIrected Mixed Path Aggregation (DIMPA) scheme, to obtain node embeddings for clustering
digraphs (potentially weighted, possibly with self-loops, but no multiple edges), with an efficient
implementation. The use of powers of adjacency matrices, instead of multi-layers as in [24], for the
purpose of neighborhood information aggregation, was sparked by a mechanism for node feature
aggregation proposed in [41], focused on undirected networks. In a self-supervised manner, a novel
probabilistic imbalance loss is proposed to act on the digraph induced by all training nodes. The
method is end-to-end in combining embedding generation and clustering without an intermediate
step. To the best of our knowledge, this is the first GNN-based method that derives node embeddings
for digraphs that directly maximizes the cut imbalance between pairs of clusters.

Experimental results on synthetic data and real-world data at different scales –namely, Telegram [5],
Blog [1], Migration [36], and WikiTalk [27], demonstrate that our method can achieve state-of-the-art
performance for a wide range of network densities and topologies. Compared to its competitors, for
synthetic data, our method achieves superior performance (with respect to the Adjusted Rand Index
(ARI) [21]); for the real-world data, our experimental results indicate that our method outperforms
them, using imbalance scores as outcome measures. We also apply our loss function to the tasks of
node classification and link direction prediction, and witness a modest average gain in accuracy on
the benchmark data sets Cora-ML and CiteSeer [4].

The applicability and impact of our work extends beyond applications where the input data is a
digraph; for example, when considering time series data as input, the digraph construction mecha-
nism can accommodate any procedure that encodes a pairwise directional association between the
corresponding time series, such as lead-lag relationships and Granger causality [40] that can facilitate
the analysis of information flow in brain networks [14].

As another use case, consider a social network where a set of fake accounts A have been created
which are likely to target another subset B of real accounts by sending them messages. Most likely,
there would be many more messages from A to B compared to from B to A, hinting that A is most
likely comprised of fake accounts. In ranking applications, where the match results (or preference
relationships between items) are encoded in a digraph, our algorithm would allow for the detection
of subsets of players where the relative strength of players in A is superior to that of players in B,
thus facilitating the extraction of partial rankings [10]. Our proposed methodology for extracting
flow-driven clusters in digraphs based on higher-order meta-graphs can facilitate tasks in time series
analysis, ranking, and anomaly detection, as it allows one to extrapolate from local pairwise (directed)
interactions to a global structure inference, in the high-dimensional low signal-to-noise ratio regime.2

Main contributions. Our main contributions are as follows. • (1) We propose a GNN for self-
supervised end-to-end node clustering on digraphs, which are possibly attributed and weighted,
explicitly taking into account cut flow imbalance. • (2) We propose a probabilistic version of the
global imbalance score aggregated from the pairwise normalized cut imbalances, to serve as a self-
supervised loss function. To the best of our knowledge, this is the first method directly maximizing
cut flow imbalance for node clustering in digraphs using GNNs. • (3) We extend our method to the
semi-supervised setting when label information is available.
Paper outline. The rest of this paper is organized as follows. Section 2 reviews existing work.
Section 3 introduces our DIGRAC method. Section 4 validates its strength through extensive
experiments at different scales, on synthetic and real data. Section 5 draws conclusions and discusses
limitations and future works. In Supplementary Information (SI), Section A expands on variants of
our model; Section B discusses implementation details; Sections C & D provide additional results.

Anonymized codes and preprocessed data are available at https://anonymous.4open.science/
r/1b728e97-cc2b-4e6a-98ea-37668813536c.

2 Related Work
Directed clustering has been explored by spectral and GNN-based methods. [39] constructs directed
clustering that hinges on symmetrizations of the adjacency matrix, but is not scalable as it requires
large matrix multiplication. [38] proposes a spectral co-clustering algorithm, called DI_SIM, for
asymmetry discovery, that relies on in-degree and out-degree. Whenever direction is the sole
information, such as in a complete network with lead-lag structure derived from time series,a purely
degree-based method cannot detect the clusters. While [44] produces two partitions of the node set,
one based on out-degree and one based on in-degree, here we produce a partition that simultaneously
takes both directions into account. The recent work in [12] seeks to uncover clusters characterized by
a strongly imbalanced flow circulating among them, based on eigenvectors of the Hermitian matrix
(A−AT) · i, where A is the (normalized) adjacency matrix and i the imaginary unit. MagNet [45]
builds upon [12, 32] and introduces a complex Hermitian matrix that encodes undirected geometric
structure in the magnitude of its entries, and directional information in their phase; however, it
assumes unweighted graphs without self-loops. [25] uncovers higher-order structural information
among clusters in digraphs, while maximizing the imbalance of the edge directions; however, its
definition of the flow ratio restricts the underlying meta-graph to a path.

[29] and [35] introduce directed graph Laplacians, but these methods are only applicable to strongly
connected digraphs, which is hardly the case in sparse networks arising in applications. [33] utilizes
convolution-like anisotropic filters based on local subgraph structures (motifs) for semi-supervised
node classification tasks in digraphs Nonetheless, it relies on pre-defined structures and fails to handle
complex networks. DGCN [43] uses first and second order proximity, constructs three Laplacians, but
the method is space and speed inefficient. DiGCN [42] simplifies DGCN, builds a directed Laplacian
based on PageRank, and aggregates information dependent on higher-order proximity.

In addition, [45, 33, 43, 42] all require known labels, which are not generally available for real data.
While [39, 38, 12, 35, 25] are not able to take advantage of node attributes or node labels. In contrast,
we propose a scalable GNN-based method which maximizes a probabilistic version of the imbalance
flow, in a self-supervised manner, and which can naturally analyze attributed weighted digraphs.

3 The DIGRAC Method
3.1 Problem definition
Denote a (possibly weighted) digraph with node attributes as G = (V, E , w,XV), with V the set of
nodes, E the set of directed edges or links, and w ∈ [0,∞)|E| the set of edge weights. G may have
self-loops, but no multiple edges. The number of nodes is n = |V|, and XV ∈ Rn×din is a matrix
whose rows encode the nodes’ attributes 1. Such a network can be represented by the attribute matrix
XV and the adjacency matrix A = (Aij)i,j∈V , with Aij = 0 if no edge exists from vi to vj ; if there
is an edge e from vi to vj , we set Aij = we, the edge weight. For a digraph, A is usually asymmetric.

Digraphs often lend themselves to interpreting weighted directed edges as flows, with a meta-graph on
clusters of vertices describing the overall flow directions; see Figure 1 for an illustration. A clustering

1If no attributes are available, one could use any feature matrix generated from A, such as stacking the
eigenvectors of the Hermitian matrix introduced in [12], to construct the feature matrix.

3

https://anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c
https://anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c

is a partition of the set of nodes intoK disjoint sets (the number of clusters) V = C0∪C1∪· · ·∪CK−1.
Intuitively, nodes within a cluster should be similar to each other with respect to flow directions,
while nodes across clusters should be dissimilar. In a self-supervised setting, only the number of
clusters K is given. In a semi-supervised setting, for each of the K clusters, a fraction of training
nodes are selected as seed nodes, for which the cluster membership labels are known before training.
The set of seed nodes is denoted as V seed ⊆ V train ⊂ V, where V train is the set of all training nodes.

For an attributed digraph G = (V, E , w,XV), a node embedding represents each node v ∈ V by
a low-dimensional vector zv ∈ Rd′ . When accounting for edge weights and node attributes, this
embedding results from a learned transformation function f(A,XV) → Z, with Z ∈ Rn×d′ a
d′-dimensional representation of the nodes, and f a learned transformation function, such as a Graph
Neural Network (GNN). The goal of semi-supervised clustering is to use the embedding to assign
each node v ∈ V to a cluster containing some known seed nodes, without knowledge of the underlying
flow meta-graph. The corresponding self-supervised clustering task does not use seed nodes.

3.2 Directed Mixed Path Aggregation (DIMPA)

Inspired by [41], in order to build node embeddings, we capture local network information by taking
a weighted average of information from neighbors within h hops, instead of using multiple layers
as in GCN [24]. To this end, we row-normalize the adjacency matrix, A, to obtain A

s
. Similar to

the regularization discussed in [24], we add a weighted self-loop to each node and normalize by
setting A

s
= (D̃s)−1Ãs, where Ãs = A + τI, and the diagonal matrix D̃s(i, i) =

∑
j Ã

s(i, j),
for a small value τ , such as 0.5.

The h-hop source matrix is given by (A
s
)h. We denote the set of up-to-h-hop source neighborhood

matrices as As,h = {I,As
, . . . , (A

s
)h}. Similarly, for aggregating information when each node

is construed as a target node of a link, we carry out the same procedure for AT . We denote the
set of up-to-h-hop target neighborhood matrices as At,h = {I,At

, . . . , (A
t
)h}, where A

t
is the

row-normalized target adjacency matrix calculated from AT .

Next, we define two feature mapping functions for source and target embeddings, respectively.
Assume that for each node in V , a vector of features is available, and summarize these features in the
input feature matrix XV . The source embedding (the superscript s stands for source) is given by

ZsV =

 ∑
M∈As,h

ωsM ·M

 ·Hs
V ∈ Rn×d, (1)

where for each M, ωsM is a learnable scalar, d is the dimension of this embedding, and Hs
V =

MLP(s,l)(XV). Here, the hyperparameter l controls the number of layers in the multilayer perceptron
(MLP) with ReLU activation; we fix l = 2 throughout. Each layer of the MLP has the same number
d of hidden units. The target embedding ZtV is defined similarly, with s replaced by t in Eq. (1).
Different parameters for the MLPs for different embeddings are possible. After these two decoupled
aggregations, we concatenate the embeddings to obtain the final node embedding as a n × (2d)
matrix ZV = CONCAT (ZsV ,Z

t
V) . The embedding vector zi for a node vi is the ith row of ZV ,

zi := (ZV)(i,:) ∈ R2d. An efficient implementation of DIMPA is shown in Algorithm 1; we omit the
subscript V for ease of notation. A complexity analysis of the algorithm is given in SI B.8.

After obtaining the embedding matrix ZV , we apply a linear layer (an affine transformation) to ZV ,
so that the resulting matrix has K columns. Next, we apply the unit softmax function to map each
row to a probability vector pi ∈ RK of length equal to the number of clusters, with entries denoting
the probabilities of each node to belong to each cluster. The resulting assignment probability matrix
is denoted as P ∈ Rn×K . Figure 2 gives an overview of our framework.

3.3 Self-supervised loss for clustering

Our self-supervised loss function is inspired by [12], aiming to cluster the nodes by maximizing
a normalized form of cut imbalance across clusters. Before introducing the loss function, we first
define probabilistic versions of cuts, imbalance flows, and probabilistic volumes.

• The probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑

i,j∈{1,...,n}

Ai,j ·Pi,k ·Pj,l = (P(:,k))
TAP(:,l),

4

𝑿𝒱 ∈ ℝ𝑛×𝑑𝑖𝑛

MLP

MLP

𝑯𝒔

𝑯𝑡

DIMPA

ഥ𝑨𝑠

ഥ𝑨𝑡
Linear Softmax Argmax

𝒁𝒱
s

𝒁𝒱

𝒁𝒱
t CONCAT

𝑨 ∈ ℝ𝑛×𝑛

h ∈ ℤ+
Embedding

Probability
Matrix

Cluster
Assignment

Network embedding etc.

ARI, predicted labels etc.

Pairwise/global cut imbalance
scores etc.

Figure 2: DIGRAC overview: from feature matrix XV and adjacency matrix A, we first compute
the row-normalized adjacency matrices A

s
and A

t
. Then, we apply two separate MLPs on XV , to

obtain hidden representations Hs and Ht. Next, we compute their decoupled embeddings using
Eq. (1), and its equivalent for target embeddings. The concatenated decoupled embeddings are the
final embeddings. For node clustering tasks, we add a linear layer followed by a unit softmax to
obtain the probability matrix P. Applying argmax on each row of P yields node cluster assignments.

Algorithm 1: Weighted Multi-Hop Neighbor Aggregation (DIMPA).

Input :(Sparse) row-normalized adjacency matrices A
s
,A

t
; initial hidden representations

Hs,Ht; hop h(h ≥ 2); lists of scalar weights
Ωs = (ωsM,M ∈ As,h),Ωt = (ωtM,M ∈ At,h).

Output :Vector representations zi for all vi ∈ V given by Z.

X̃s ← A
s
Hs; X̃t ← A

t
Ht;

Zs ← Ωs[0] ·Hs + Ωs[1] · X̃s; Zt ← Ωt[0] ·Ht + Ωt[1] · X̃t;
for i← 2 to h do

X̃s ← A
s
X̃s; X̃t ← A

t
X̃t;

Zs ← Zs + Ωs[i] · X̃s; Zt ← Zt + Ωt[i] · X̃t;
end
Z = CONCAT (Zs,Zt);

where P(:,k),P(:,l) denote the kth and lth columns of the assignment probability matrix P, respectively.

• The imbalance flow between clusters Ck and Cl is defined as

|W (Ck, Cl)−W (Cl, Ck)|, ∀k, l ∈ {0, . . . ,K − 1}.

For interpretability and ease of comparison, we normalize the imbalance flows to obtain an imbalance
score with values in [0, 1] as follows (we defer additional details to SI A.1).

• The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck) =
∑
i,j

(Ai,j + Aj,i) ·Pj,k.

Then V OL(Ck) ≥W (Ck, Cl) for all l ∈ {0, . . . ,K − 1} and

min(V OL(Ck), V OL(Cl)) ≥ max(W (Ck, Cl),W (Cl, Ck)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (2)

The imbalance term, which is used in most of our experiments, denoted CIvol_sum, is defined as

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (3)

The aim is then to find a partition which maximizes the imbalance flow, to capture groups of nodes
which would represent clusters in the meta-graph. The normalization by the volumes is carried out to
penalize partitions that put most nodes into a single cluster. The range [0, 1] follows from Eq. (2).
Additional variants are discussed in SI A.2.

To obtain a global probabilistic imbalance score, based on CIvol_sum from Eq. (3), we average over
pairwise imbalance scores of different pairs of clusters. Since the scores discussed are symmetric
and the cut difference before taking absolute value is skew-symmetric, we only need to consider
the pairs T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}. We consider a “sort" variant to select
these pairs; concretely, we choose the pairs of clusters with the largest β pairwise cut flow imbalance

5

values, where β is half of the number of nonzero entries in the off-diagonal entries of the meta-
graph adjacency matrix F (if the meta-graph is known), or can be approximated otherwise. With
T (β) = {(Ck, Cl) ∈ T : CIvol_sum(k, l) is among the top β values}, where 1 ≤ β ≤

(
K
2

)
, we set

Osort
vol_sum =

1

β

∑
(Ck,Cl)∈T (β)

CIvol_sum(k, l), and Lsort
vol_sum = 1−Osort

vol_sum, (4)

as the corresponding loss function. For example, for a “cycle" meta-graph with three clusters and no
ambient nodes, we have β = 3. When we consider a path meta-graph with three clusters and ambient
nodes, we have β = 1. Definitions of meta-graph structures are discussed in Section 4.1. In SI A.3,
additional variants for selecting pairs of clusters in T are considered, including an “std" variant based
on hypothesis testing, and a “naive" variant which includes all pairs in T . The corresponding scores
and loss functions for these variants are defined analogously.

4 Experiments
In this section, we describe the synthetic and real world data sets used in this study, and illustrate the
efficacy of our method. When ground truth is available, performance is measured by the Adjusted
Rand Index (ARI) [21] for node clustering, and by accuracy for node classification and link direction
prediction. When no ground truth labels are given, performance is measured in terms of cut imbalance.
Implementation details are provided in SI B.

In our experiments, we compare DIGRAC against the most recent related methods from the literature,
able to handle directed graphs. The ten baselines are • (1) Bibliometric and • (2) Degree-discounted
introduced in [39], • (3) DI_SIM [38], • (4) Herm and • (5) Herm_sym introduced in [12], •
(6) MagNet [45], • (7) DGCN [43], • (8) three variants of DiGCN [42]. The abbreviations of
these methods, when reported in the numerical experiments, are Bi_sym, DD_sym, DISG_LR, Herm,
Herm_sym, MagNet, DGCN, DiGCN, DiGCN_app, DiGCN_ib, respectively. DGCN is the least
efficient method in terms of speed and space complexity, followed by DiGCN_ib which involves
the so-called inception blocks (hence the suffix ib). DiGCN denotes the method without using
approximate Laplacian based on personalized PageRank, while DiGCN_app and DiGCN_ib use this
approximation. We use the same hyperparameter settings stated in these papers. Data splits for all
models are the same; methods (6), (7), (8) are trained with 80% nodes under label supervision. For
MagNet, we use q = 0.25 for the phase matrix, as this value is predominantly used in their paper.

4.1 Data sets

Synthetic data: Directed Stochastic Block Models A standard directed stochastic blockmodel
(DSBM) is often used to represent a network cluster structure, see for example [30]. Its parameters
are the number K of clusters and the edge probabilities; given the cluster assignment of the nodes, the
edge indicators are independent. The DSBMs used in our experiments also depend on a meta-graph
adjacency matrix F = (Fk,l)k,l=0,...,K−1 and a filled version of it, F̃ = (F̃k,l)k,l=0,...,K−1, and
on a noise level parameters η ≤ 0.5. The meta-graph adjacency matrix F is generated from the
given meta-graph structure, calledM. To include an ambient background, the filled meta-graph
adjacency matrix F̃ replaces every zero in F that is not part of the imbalance structure by 0.5.The
filled meta-graph thus creates a number of ambient nodes which correspond to entries which are not
part ofM and thus are not part of a meaningful cluster; this set of ambient nodes is also called the
ambient cluster. First, we provide examples of structures of F without any ambient nodes, where 1
denotes the indicator function.
• (1) “cycle": Fk,l = (1− η)1(l = ((k+ 1) mod K)) + η1(l = ((k−1) mod K)) + 1

21(l = k).

• (2) “path": Fk,l = (1− η)1(l = k + 1) + η1(l = k − 1) + 1
21(l = k).

• (3) “complete": assign diagonal entries 1
2 . For each pair (k, l) with k < l, let Fk,l be η and 1− η

with equal probability, then assign Fl,k = 1− Fk,l.

• (4) “star", following [16]: select the center node as ω = bK−12 c and set Fk,l = (1 − η)1(k =
ω, l odd) + η1(k = ω, l even) + (1− η)1(l = ω, k odd) + η1(l = ω, l even).

When ambient nodes are present, the construction involves two steps, with the first step the same as the
above, but with the following changes: For “cycle" meta-graph structure, Fk,l = (1−η)1(l = ((k+1)
mod (K − 1))) + η1(l = ((k − 1) mod (K − 1))) + 1

21(l = k). The second step is to assign 0
(0.5, resp.) to the last row and the last column of F (F̃, resp.).

6

In our experiments, we choose the number of clusters, the (approximate) ratio, ρ, between the largest
and the smallest cluster size, and the number, n, of nodes. To tackle the hardest clustering task, all
pairs of nodes within a cluster and all pairs of nodes between clusters have the same edge probability,
p. Note that forM =“cycle", even the expected in-degree and out-degree of all nodes are identical.

Our DSBM, which we denote by DSBM (M,1(ambient), n,K, p, ρ, η), is built similarly to [12] but
with possibly unequal cluster sizes: • (1) Assign cluster sizes n0 ≤ n1 ≤ · · · ≤ nK−1 with size ratio
ρ ∈ [0, 1] , as follows. If ρ = 1 then the first K − 1 clusters have the same size bn/Kc and the last
cluster has size n−(K−1)bn/Kc. If ρ > 1, we set ρ0 = ρ

1
K−1 . Solving

∑K−1
i=0 ρi0n0 = n and taking

integer value gives n0 =
⌊
n(1− ρ0)/(1− ρK0)

⌋
. Further, set ni = bρ0ni−1c, for i = 1, · · · ,K − 2

if K ≥ 3, and nK−1 = n−
∑K−2
i=0 ni. Then the ratio of the size of the largest to the smallest cluster

is approximately ρK−10 = ρ. • (2) Assign each node randomly to one of K clusters, so that each
cluster has the allocated size. • (3) For node vi, vj ∈ Ck, independently sample an edge from node vi
to node vj with probability p · F̃k,k. • (4) For each pair of different clusters Ck, Cl with k 6= l, for
each node vi ∈ Ck, and each node vj ∈ Cl, independently sample an edge from node vi to node vj
with probability p · F̃k,l. The parameter settings in our experiments are p ∈ {0.001, 0.01, 0.02, 0.1},
ρ ∈ {1, 1.5}, K ∈ {3, 5, 10}, 1(ambient) ∈ {T, F} (True and False), n ∈ {1000, 5000, 30000}, and
we also vary the direction flip probability η from 0 to 0.45, with a 0.05 step size.

Figures 1(c-d) display a “cycle" meta-graph structure with ambient nodes (in cluster 4). The majority
(75%) of edges flow in the form 0→ 1→ 2→ 3→ 0, while 25% flow from the opposite direction.
Figure 1(d) illustrate the meta-graph adjacency matrix corresponding to F shown in Figure 1(c).

Real data We perform experiments on six real-world directed network data sets, namely Telegram
[5], Blog [1], Migration [36], WikiTalk [27], Cora-ML, and CiteSeer [4], with more details provided
in SI B.3. We use the first four data sets on node clustering tasks, and the rest for application to node
classification and link direction prediction. We set the number of clusters K to be 4, 2, 10, 10, 7, 6,
respectively, and values of β to be 5, 1, 9, 10, 11, 9, respectively.

4.2 Experimental results

Training set-up and hyperparameter selection As training setup, we use 10% of all nodes from
each cluster as test nodes, 10% as validation nodes to select the model, and the remaining 80% as
training nodes. In each setting, unless otherwise stated, we carry out 10 experiments with different
data splits. Error bars are given by one standard error. Without node attributes, the matrix XV
for DIGRAC is taken as the stacked eigenvectors corresponding to the largest K eigenvalues of
the random-walk symmetrized Hermitian matrix used in the comparison method Herm_rw. The
imbalance loss function acts on the subgraph induced by the training nodes.

Hyperparameter selection is done via greedy search, with more details in SI B.4. Figure 3(a) compares
the performance of DIGRAC on DSBM with n = 1000 nodes, K = 5 clusters, ρ = 1, p = 0.02
without ambient nodes, under different hyperparameter settings. We remark that hop h = 2 should
be chosen in order to reduce complexity, as increasing h does not lead to increased performance.
Therefore, our default setting is hop h = 2, d = 32, τ = 0.5.

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

AR
I

2
3
4

(a) Vary the hop h in
DIMPA.

0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

AR
I

CE
CI
LICE

(b) Vary loss for DiGCN:
CE, CI or LICE.

0.0 0.1
0.0

0.1

0.2

0.3

0.4

AR
I

sort
std
naive

(c) Vary selection methods
of imbalance pairs.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

AR
I

0
0.1
0.5
1

(d) Vary seed ratio in a
semi-supervised setting.

Figure 3: Hyperparemter analysis (a) and ablation study (b-d) on a “cycle" DSBM with n = 1000
nodes, K = 5 clusters, ρ = 1, and p = 0.02, without ambient nodes.

Node clustering results on synthetic data Figure 4 compares the numerical performance of
DIGRAC with other methods on synthetic data. For this figure we generate 5 DSBM networks under
each parameter setting and use 10 different data splits for each network, then average over the 50 runs.
Error bars are given by one standard error. Additional implementation details are available in SI B.

7

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

0.5

AR
I

DSBM N=1000.p=0.02.K=10. =1.ambient=True.F style=complete.

Bi_sym
DD_sym
DISG_LR
Herm
Herm_rw
MagNet
DiGCN
DGCN
DiGCN_app
DiGCN_ib
DIGRAC

(a) DSBM(“complete", T,
n = 1000,K = 10, p =

0.02, ρ = 1)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

DSBM N=1000.p=0.02.K=3. =1.5.ambient=False.F style=cyclic.

(b) DSBM(“cycle", F,
n = 1000,K = 3, p =

0.02, ρ = 1.5)

0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

AR
I

DSBM N=1000.p=0.02.K=5. =1.ambient=False.F style=path.

(c) DSBM(“path", F,
n = 1000,K = 5, p =

0.02, ρ = 1)

0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

AR
I

DSBM N=1000.p=0.02.K=5. =1.ambient=False.F style=star.

(d) DSBM(“star", F,
n = 1000,K = 5, p =

0.02, ρ = 1)

0.0 0.1 0.2 0.3 0.4
0.0
0.2
0.4
0.6
0.8
1.0
1.2

AR
I

DSBM N=1000.p=0.1.K=3. =1.ambient=False.F style=complete.

(e) DSBM(“complete", F,
n = 1000,K = 3, p =

0.1, ρ = 1)

0.0 0.1 0.2 0.3 0.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2

AR
I

DSBM N=1000.p=0.1.K=5. =1.5.ambient=True.F style=complete.

(f) DSBM(“complete", T,
n = 1000,K = 5, p =

0.1, ρ = 1.5)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

AR
I

DSBM N=5000.p=0.01.K=5. =1.5.ambient=True.F style=cyclic.

(g) DSBM(“cycle", T,
n = 5000,K = 5, p =

0.01, ρ = 1.5)

0.0 0.1 0.2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AR
I

DSBM N=30000.p=0.001.K=5. =1.ambient=False.F style=cyclic.

(h) DSBM(“cycle", F,
n = 30000,K = 5, p =

0.001, ρ = 1)
Figure 4: Node clustering test ARI comparison on synthetic data. Dashed lines highlight DIGRAC’s
performance. Error bars are given by one standard error.

Table 1: Performance comparison on real data sets. The best is marked in bold red and the second
best is marked in underline blue. The objectives are defined in Section 3.3.

Metric Data set Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum

Telegram 0.21±0.0 0.21±0.0 0.21±0.01 0.2±0.01 0.14±0.0 0.32±0.01
Blog 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration 0.03±0.0 0.01±0.0 0.01±0.0 0.07±0.0 0.01±0.0 0.04±0.0
WikiTalk N/A N/A 0.18±0.03 0.15±0.02 0.0±0.0 0.24±0.05

Onaive
vol_sum

Telegram 0.26±0.0 0.26±0.0 0.26±0.01 0.25±0.02 0.23±0.0 0.27±0.01
Blog 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration 0.01±0.0 0.0±0.0 0.0±0.0 0.02±0.0 0.0±0.0 0.03±0.01
WikiTalk N/A N/A 0.1±0.02 0.04±0.0 0.0±0.0 0.12±0.01

We conclude that DIGRAC attains state-of-the-art results on a wide range of network densities and
noise levels, on different network sizes, and with different meta-graph structures, whether or not there
exist ambient nodes. DIGRAC outperforms its competitors by a large margin especially when there
exist ambient nodes, which validates its strength of extracting the main directional signal planted in a
larger graph. Additional results are reported in SI C, from which similar conclusions can be drawn.

Node clustering results on real data For our four real data sets, the node in- and out-degrees may
not be identical across clusters. Moreover, as these data sets do not contain node attributes, DIGRAC
considers the eigenvectors corresponding to the largest K eigenvectors of the Hermitian matrix from
[12] to construct an input feature matrix. Table 1 reveals that DIGRAC provides competitive global
imbalance scores in both objectives discussed and across all real data sets, and outperforms all other
methods in 7 out of 8 instances, on the four data sets and two objective functions, and only once it
places second, after Herm. The N/A entries in the table are caused by memory error. The experiments
indicated that edge directionality can contain an important signal that DIGRAC is able to capture. A
comprehensive numerical comparison is available in SI D, revealing similar conclusions.

Application to node classification and link direction prediction As a secondary use case for our
imbalance loss function, we compare performance on node classification and link direction prediction
on two benchmark data sets. For node classification, we use the same data splits and input features
as [42], 20 training nodes in each class, 500 validation nodes in total at random, and the rest as test
nodes. We compare the GNN baselines with their respective variants employing as loss the sum of
cross entropy loss (baseline) and Lsort

vol_sum; we call this sum the Loss Imbalance Cross Entropy (LICE).
The imbalance loss is applied to the subgraph induced by training nodes, while the cross-entropy loss
is applied to all training nodes. For this task, we compare performance on DiGCN and DiGCN_ib.

8

Table 2: Node classification (top) and link direction prediction (bottom) test accuracy (%) on real
data sets. Ending “+LI" indicates using the sum of cross-entropy loss and Lsort

vol_sum as the loss (LICE).

Task Data set DiGCN DiGCN+LI Avg. gain DiGCN_ib DiGCN_ib+LI Avg. gain

node Cora-ML 37.55± 5.17 38.89± 5.20 1.34 74.59± 2.84 75.14± 2.89 0.55
classification CiteSeer 31.89± 3.87 32.06± 3.43 0.17 37.33± 9.14 39.60± 8.14 2.28

Task Data set DGCN DGCN+LI Avg. gain DiGCN_app DiGCN_app+LI Avg. gain

link direction Cora-ML 81.97± 4.70 83.77± 1.01 1.80 75.27± 9.22 80.89± 3.59 5.62
prediction CiteSeer 81.04± 10.39 84.49± 1.73 3.45 71.59± 10.88 77.28± 2.11 5.69

Link direction prediction corresponds to a binary classification problem for edges (forward and
backward direction), assuming absence of edges in both directions. We use 80% of all edges to train,
15% to test, and 5% for validation. We compare the performance of using only cross-entropy loss to
using LICE as loss in DGCN and DiGCN_app for link direction prediction. For both tasks, we use
the same hyperparameter settings as above, without further tuning of hyperparameters. We use the
given features for node classification, and in-out degrees as features for link direction prediction.

The upper part of Table 2 shows that flow imbalance could aid node classification even when Lsort
vol_sum

is applied to the subgraph induced by only a small subset of all nodes, for DiGCN and DiGCN_ib.
As shown in the bottom of Table 2, by applying LICE to the observed network (with only training
edges), DGCN and DiGCN_app achieve on average higher test accuracy in link direction prediction
on both data sets, which indicates that with some further tuning, the imbalance loss function could be
a valuable addition to link direction prediction. Details and more results are discussed in SI D.5.

4.3 Ablation study

Figure 3(b) compares the performance of DiGCN replacing the loss function by Lsort
vol_sum from Eq. (4),

indicated by “CI”, or LICE, sum of supervised and self-supervised loss, on a DSBM(“cycle", T,
n = 1000,K = 5, p = 0.02, ρ = 1) model. We conclude that replacing the supervised loss function
with Lsort

vol_sum leads to comparable results, and that adding Lsort
vol_sum to the loss could be beneficial.

Figure 3(c) compares the test ARI performance using three variants of loss functions on the same
digraph. The current choice “sort" performs best among these variants, indicating a benefit in only
considering top pairs of individual imbalance scores. More details on loss functions, comparison with
other variants, and evaluation on additional metrics are discussed in SI A, with similar conclusions.

As illustrated in Figure 3(d), again on the same digraph, we also experiment on adding seeds, with
the seed ratio defined as the ratio of the number of seed nodes to the number of training nodes. A
supervised loss, following [41], is then applied to these seeds; SI B.5 further elaborates on this end.
In conclusion, seed nodes with a supervised loss function enhance performance, from which we infer
that our model can further boost its performance when additional label information is available.

5 Conclusion, limitations and future work
DIGRAC provides an end-to-end pipeline to create node embeddings and perform directed clustering,
with or without available additional node features or cluster labels. We illustrate DIGRAC on
publicly available data often used as benchmarks, and without any personally identifiable information.
DIGRAC could potentially have societal impact, for example, in detecting clusters of fake accounts
in social networks. We do not envision our work to have any negative societal impact. Further
work will include additional experiments in the semi-supervised setting, when there exist seed nodes
with known cluster labels, or when additional information is available in the form of must-link and
cannot-link constraints, popular in the constrained clustering literature [3, 9]. Another future direction
pertains to extending our framework to also detect the number of clusters [37, 8], instead of specifying
it a-priori, as this is typically not available in real world applications. The current framework requires
additional preliminary analysis on how many pairwise imbalance scores to consider, such as by
inspecting the (initial or fitted) meta-graph adjacency matrix. It would be interesting to build a more
powerful framework that can automatically detect the value β used in the current model, to select the
subset of influential pairs of imbalances.

Further research directions will address the performance in the sparse regime, where spectral methods
are known to underperform, and various regularizations have been proven to be effective both on
the theoretical and experimental fronts; for example, see regularization in the sparse regime for the

9

undirected settings [6, 2, 13]. Finally, adapting our pipeline for directed clustering in extremely
large networks, possibly combined with sampling methods or mini-batch [19], is a direction worth
exploring, rendering DIGRAC applicable to large scale industrial applications.

Acknowledgements. YH acknowledges the support of a Clarendon scholarship from the University
of Oxford. GR is funded in part by by EPSRC grants EP/T018445/1 and EP/R018472/1. MC
acknowledges support from the EPSRC grant EP/N510129/1 at The Alan Turing Institute.

References
[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 US election:

divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pages
36–43, 2005.

[2] Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina. Pseudo-likelihood methods
for community detection in large sparse networks. The Annals of Statistics, 41(4):2097–2122,
2013.

[3] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Advances in Algorithms,
Theory, and Applications. CRC Press, 2008.

[4] Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian embedding of graphs: Un-
supervised inductive learning via ranking. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2017.

[5] Alexandre Bovet and Peter Grindrod. The Activity of the Far Right on Tele-
gram. https://www.researchgate.net/publication/346968575_The_Activity_
of_the_Far_Right_on_Telegram_v21, 2020.

[6] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with
general degrees in the extended planted partition model. In 25th Annual Conference on Learning
Theory, volume 23 of Proceedings of Machine Learning Research, pages 35.1–35.23, Edinburgh,
Scotland, 2012. JMLR Workshop and Conference Proceedings.

[7] Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein’s method.
Springer Science & Business Media, 2010.

[8] Yilin Chen and Jack W Baker. Community detection in spatial correlation graphs: Application
to non-stationary ground motion modeling. Computers and Geosciences, 2021.

[9] M. Cucuringu, I. Koutis, S. Chawla, G. Miller, and R. Peng. Scalable Constrained Clustering:
A Generalized Spectral Method. Artificial Intelligence and Statistics Conference (AISTATS)
2016, 2016.

[10] Mihai Cucuringu. Sync-rank: Robust ranking, constrained ranking and rank aggregation via
eigenvector and SDP synchronization. IEEE Transactions on Network Science and Engineering,
3(1):58–79, 2016.

[11] Mihai Cucuringu, Vincent Blondel, and Paul Van Dooren. Extracting spatial information from
networks with low-order eigenvectors. Phys. Rev. E, 87:032803, Mar 2013.

[12] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices for clustering directed
graphs: insights and applications. In International Conference on Artificial Intelligence and
Statistics, pages 983–992. PMLR, 2020.

[13] Mihai Cucuringu, Apoorv Vikram Singh, Déborah Sulem, and Hemant Tyagi. Regularized
spectral methods for clustering signed networks. arXiv:2011.01737, 2020.

[14] Mukeshwar Dhamala, Govindan Rangarajan, and Mingzhou Ding. Analyzing information flow
in brain networks with nonparametric Granger causality. NeuroImage, 41(2):354–362, 2008.

[15] Andrew Elliott, Angus Chiu, Marya Bazzi, Gesine Reinert, and Mihai Cucuringu.
Core–periphery structure in directed networks. Proceedings of the Royal Society A,
476(2241):20190783, 2020.

10

https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21
https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21

[16] Andrew Elliott, Paul Reidy Milton Martinez Luaces, Mihai Cucuringu, and Gesine Reinert.
Anomaly detection in networks using spectral methods and network comparison approaches.
arXiv preprint arXiv:1901.00402, 2019.

[17] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[18] Gero Greiner and Riko Jacob. The I/O Complexity of Sparse Matrix Dense Matrix Multiplica-
tion", booktitle="LATIN 2010: Theoretical Informatics. pages 143–156, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[19] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017.

[20] Adam P Harrison and Dileepan Joseph. High performance rearrangement and multiplication
routines for sparse tensor arithmetic. SIAM Journal on Scientific Computing, 40(2):C258–C281,
2018.

[21] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–
218, 1985.

[22] Caiyan Jia, Yafang Li, Matthew B Carson, Xiaoyang Wang, and Jian Yu. Node attribute-
enhanced community detection in complex networks. Scientific Reports, 7(1):1–15, 2017.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[25] Steinar Laenen and He Sun. Higher-order spectral clustering of directed graphs. Advances in
Neural Information Processing Systems, 2020.

[26] Elizabeth A Leicht and Mark EJ Newman. Community structure in directed networks. Physical
Review Letters, 100(11):118703, 2008.

[27] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1361–1370, 2010.

[28] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical properties
of community structure in large social and information networks. In Proceedings of the 17th
International Conference on World Wide Web, pages 695–704, 2008.

[29] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based
graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.

[30] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detection in
directed networks: A survey. Physics reports, 533(4):95–142, 2013.

[31] Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija,
Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. Graph traversal with tensor functionals: A
meta-algorithm for scalable learning. In International Conference on Learning Representations,
2021.

[32] Bojan Mohar. A new kind of Hermitian matrices for digraphs. Linear Algebra and its Applica-
tions, 584:343–352, 2020.

[33] Federico Monti, Karl Otness, and Michael M. Bronstein. Motifnet: A motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pages
225–228, 2018.

[34] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

11

[35] William R. Palmer and Tian Zheng. Spectral clustering for directed networks. In Rosa M.
Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-
Pardo, editors, Complex Networks & Their Applications IX, pages 87–99, Cham, 2021. Springer
International Publishing.

[36] Marc J Perry. State-to-state Migration Flows, 1995 to 2000. US Department of Commerce,
Economics and Statistics Administration, US, 2003.

[37] Maria A Riolo, George T Cantwell, Gesine Reinert, and Mark EJ Newman. Efficient method for
estimating the number of communities in a network. Physical Review E, 96(3):032310, 2017.

[38] Karl Rohe, Tai Qin, and Bin Yu. Co-clustering directed graphs to discover asymmetries and
directional communities. Proceedings of the National Academy of Sciences, 113(45):12679–
12684, 2016.

[39] Venu Satuluri and Srinivasan Parthasarathy. Symmetrizations for clustering directed graphs. In
Proceedings of the 14th International Conference on Extending Database Technology, pages
343–354, 2011.

[40] Ali Shojaie and Emily B Fox. Granger causality: A review and recent advances. arXiv preprint
arXiv:2105.02675, 2021.

[41] Yu Tian, Long Zhao, Xi Peng, and Dimitris N Metaxas. Rethinking kernel methods for node
representation learning on graphs. Advances in Neural Information Processing Systems, 32,
2019.

[42] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. Advances in Neural Information Processing Systems,
33, 2020.

[43] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020.

[44] Jingnan Zhang, Xin He, and Junhui Wang. Directed community detection with network
embedding. Journal of the American Statistical Association, pages 1–11, 2021.

[45] Xitong Zhang, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. MagNet: A Magnetic
Neural Network for Directed Graphs. arXiv preprint arXiv:2102.11391, 2021.

12

A Loss and objectives

A.1 Additional details on probabilistic cut and volume

Recall that the probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑

i,j∈{1,...,n}

Ai,j ·Pi,k ·Pj,l = (P(:,k))
TAP(:,l),

where P(:,k),P(:,l) denote the kth and lth columns of the assignment probability matrix P, respectively.
The imbalance flow between clusters Ck and Cl is defined as

|W (Ck, Cl)−W (Cl, Ck)|,

for k, l ∈ {0, . . . ,K − 1}. The loss functions proposed in the main paper can be understood in terms
of a probabilistic notion of degrees, as follows. We define the probabilistic out-degree of node vi with
respect to cluster k by d̃(out)

i,k =
∑n
j=1 Ai,j · Pj,k = (AP(:,k))i, where subscript i refers to the ith

entry of the vector AP(:,k). Similarly, we define the probabilistic in-degree of node vi with respect to
cluster k by d̃(in)

i,k = (ATP(:,k))i, where AT is the transpose of A. The probabilistic degree of node
vi with respect to cluster k is d̃i,k = d̃(in)

i,k + d̃(out)
i,k = ((AT + A)P(:,k))i =

∑n
j=1(Ai,j+Aj,i) ·Pj,k.

For comparisons and ease of interpretation, it is advantageous to normalize the imbalance flow
between clusters; for this purpose, we introduce the probabilistic volume of a cluster, as follows.
The probabilistic out-volume for cluster Ck is defined as V OL(out)(Ck) =

∑
i,jAj,i · Pj,k, and

the probabilistic in-volume for cluster Ck is defined as V OL(in)(Ck)(ATP(:,k))i, where AT is the
transpose of A. These volumes can be viewed as sum of probabilistic out-degrees and in-degrees,
respectively; for example, V OL(in)(Ck) =

∑n
i=1 d̃

(in)
i,k . Then, it holds true that

V OL(out)(Ck) =
∑
i,j

Ai,j ·Pi,k ≥
∑
i,j

Ai,j ·Pi,k ·Pj,l = W (Ck, Cl), (5)

since entries in P are probabilities, which are in [0, 1], and all entries of A are nonnegative. Similarly,
V OL(in)(Ck) ≥W (Cl, Ck).

The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck) =
∑
i,j

(Ai,j + Aj,i) ·Pj,k.

Then, it holds true that V OL(Ck) ≥W (Ck, Cl) for all l ∈ {0, . . . ,K − 1} and

min(V OL(Ck), V OL(Cl)) ≥ max(W (Ck, Cl),W (Cl, Ck)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (6)

When there exists a strong imbalance, then |W (Ck, Cl)−W (Cl, Ck)| ≈ max(W (Ck, Cl),W (Cl, Ck)).
As an extreme case, if Pj,l = 1 for all nonnegative terms in the summations in Eq. (5), and
V OL(in)(Ck) = 0, then |W (Ck, Cl)−W (Cl, Ck)| = V OL(Ck).

A.2 Variants of normalization

Recall that the imbalance term involved in most of our experiments, named CIvol_sum, is defined as

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (7)

An alternative, which does not take volumes into account, is given by

CIplain(k, l) =

∣∣∣∣W (Ck, Cl)−W (Cl, Ck)

W (Ck, Cl) +W (Cl, Ck)

∣∣∣∣ = 2

∣∣∣∣ W (Ck, Cl)
W (Ck, Cl)−W (Cl, Ck)

− 1

2

∣∣∣∣ ∈ [0, 1]. (8)

We call this cut flow imbalance CIplain as it does not penalize extremely unbalanced cluster sizes.

To achieve balanced cluster sizes and still constrain each imbalance term to be in [0, 1], one solution is
to multiply the imbalance flow value by the minimum of V OL(Ck) and V OL(Cl), and then divide by

13

max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′))), where T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}.
The reason for using T is that CIplain(k, l) is symmetric with respect to k and l, and CIplain(k, l) = 0
whenever k = l. Note that the maximum of the minimum here equals the second largest volume
among clusters. We then obtain CIvol_min as

CIvol_min(k, l) = CIplain(k, l)× min(V OL(Ck), V OL(Cl))
max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′)))

. (9)

Another potential choice, denoted CIvol_max, whose normalization follows from the same reasoning
as CIvol_sum, is given by

CIvol_max(k, l) =
|W (Ck, Cl)−W (Cl, Ck)|

max(V OL(Ck), V OL(Cl))
∈ [0, 1]. (10)

A.3 Variants of choosing the pairwise imbalance scores

We consider three variants for choosing the cluster pairs.
• (1) The “sort" variant picks the largest β pairwise cut imbalance values, where β is half of the
number of nonzero entries in the off-diagonal entries of the meta-graph adjacency matrix F, if the
meta-graph is known or can be approximated. For example, when we have a “cycle" meta-graph
with three clusters and no ambient nodes, then β = 3. When we have a “path" meta-graph with three
clusters and ambient nodes, then β = 1.
• (2) The “naive" variant considers all possible

(
K
2

)
pairwise cut imbalance values.

• (3) The “std" variant only considers pairwise cut imbalance values that are 3 standard deviations
away from the imbalance values; the standard deviation is calculated under the null hypothesis that
the between-cluster relationship has no direction preference, i.e. Fk,l = Fl,k, as follows.

Suppose two clusters have only noisy links between them (no edge in the meta-graph F). Suppose
also that the underlying network is fixed in terms of the number of nodes and where edges exist; the
only randomness stems from the direction of an edge. Then, for each edge between these two clusters,
say, clusters Ck and Cl, the edge direction is random, i.e. the edge is from Ck to Cl with probability
0.5, and Cl to Ck with probability 0.5 also. Let Ek,l denote the set of edges between Ck and Cl if Ek,l
is not empty, then for every edge e ∈ Ek,l, define a Rademacher random variable Xe by

Xe =

{
1 if the edge is from Ck to Cl,
−1, otherwise.

(11)

Then (Xe + 1)/2 ∼ Ber(0.5) is a Bernoulli(0.5) random variable with mean 2× 0.5− 1 = 0 and
variance 22 × 0.5 × (1 − 0.5) = 1. In the case of unweighted edges, the total number of edges
between Ck and Cl is |Ek,l| = W (Ck, Cl)+W (Cl, Ck), and that the sum ofXe terms is

∑
e∈Ek,l Xe =

W (Ck, Cl) −W (Cl, Ck). In the case of weighted edges, with symmetric edge weights wi,j = wj,i
given and only edge direction random, it holds that W (Ck, Cl)−W (Cl, Ck) =

∑
e∈Ek,l Xewe.

Let us assume that the edge indicators are independent and that
∑
e∈Ek,l w2

e > 0. Under the null

hypothesis that there is no meta-graph edge between Ck and Cl, the random variable
∑

e∈Ek,l Xewe√∑
e∈Ek,l w2

e

has mean 0 and variance 1. Assuming that the weights are bounded above and that
∑
e∈Ek,l w2

e is
bounded away from 0 with increasing network size, we can employ the Central Limit Theorem for
sums of independent random variables, see for example Theorem 3.4 in [7]. Then, under the null
hypothesis, approximately 99.7 % of the observations would fall within 3 standard deviations from 0.
While this calculation makes many assumptions and ignores reciprocal edges, the resulting threshold
is still a useful guideline for restricting attention to pairwise imbalance values which are very likely
to capture a true signal.

A.4 Selection of the loss function

Table 3 provides naming conventions of all the twelve pairs of variants of objectives and loss functions
used in this paper. We select the loss functions for DIGRAC based on two representative models,
and compare the performance of different loss functions. We use d = 32, hidden units, h = 2 hops,
and no seed nodes. Figures 5(a) and 6 compare twelve choices of loss combinations on a DSBM

14

Table 3: Naming conventions for objectives and loss functions

Selection variant / CI CIvol_sum CIvol_min CIvol_max CIplain

sort Osort
vol_sum,Lsort

vol_sum Osort
vol_min,Lsort

vol_min Osort
vol_max,Lsort

vol_max Osort
plain,Lsort

plain
std Ostd

vol_sum,Lstd
vol_sum Ostd

vol_min,Lstd
vol_min Ostd

vol_max,Lstd
vol_max Ostd

plain,Lstd
plain

naive Onaive
vol_sum,Lnaive

vol_sum Onaive
vol_min,Lnaive

vol_min Onaive
vol_max,Lnaive

vol_max Onaive
plain ,Lnaive

plain

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

vol_min,sort
vol_sum,sort
vol_max,sort
plain,sort
vol_min,std
vol_sum,std
vol_max,std
plain,std
vol_min,naive
vol_sum,naive
vol_max,naive
plain,naive

(a) DSBM(“complete", F,
n = 1000,K = 5, p = 0.02, ρ = 1)

0.0 0.1
0.0

0.1

0.2

0.3

0.4

0.5

AR
I

(b) DSBM(“cycle", F,
n = 1000,K = 5, p = 0.02, ρ = 1)

Figure 5: ARI comparison of loss functions on DSBM with 1000 nodes, 5 blocks, ρ = 1, p = 0.02
without ambient nodes, of cycle (left) and complete (right) meta-graph structures, respectively. The
first component of the legend is the choice of pairwise imbalance, and the second component is the
variant of selecting pairs. The naming conventions for the abbreviations in the legend are provided in
Table 3.

with n = 1000 nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient nodes, with a complete
meta-graph structure. The subscript indicates the choice of pairwise imbalance, and the superscript
indicates the variant of selecting pairs. Figures 5(b) and 7 are based on a DSBM with n = 1000
nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient nodes, with a cycle meta-graph structure.

These figures indicate that the “sort" variant generally provides the best test ARI performance and
the best overall global imbalance scores, among which using normalizations CIvol_sum and CIvol_max

perform the best. Lsort
vol_min appears to behave worse than Lsort

vol_sum and Lsort
vol_max, even when using the

“sort" variant to select pairwise imbalance scores. One possible explanation is that Lsort
vol_min does not

penalize extreme volume sizes, and that it takes minimum as well as maximum which, as functions
of the data, are not as smooth as taking a summation. Throughout our experiments in the main text,
we hence use the loss function Lsort

vol_sum.

B Implementation details

B.1 Code

To fully reproduce our results, anonymized code and preprocessed data are available at https:
//anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c.

B.2 Hardware

Experiments were conducted on a compute node with 8 Nvidia RTX 8000, 48 Intel Xeon Silver
4116 CPUs and 1000GB RAM, a compute node with 4 NVIDIA GeForce RTX 2080, 32 Intel Xeon
E5-2690 v3 CPUs and 64GB RAM, a compute node with 2 NVIDIA Tesla K80, 16 Intel Xeon

15

https://anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c
https://anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c

0.00

0.05

0.10

0.15

0.20

so
rt

vo
l_s

um

0.00

0.25

0.50

0.75

1.00

so
rt

vo
l_m

in

0.00

0.05

0.10

0.15

0.20

so
rt

vo
l_m

ax

0.00

0.25

0.50

0.75

1.00

so
rt

pl
ai

n

0.00

0.05

0.10

0.15

0.20

st
d

vo
l_s

um

0.00

0.25

0.50

0.75

1.00

st
d

vo
l_m

in

0.00

0.05

0.10

0.15

0.20

st
d

vo
l_m

ax

0.00

0.25

0.50

0.75

1.00

st
d

pl
ai

n

0.0

0.1

0.2

na
iv

e
vo

l_s
um

0.0 0.1 0.2 0.3 0.4
0.00

0.25

0.50

0.75

1.00

na
iv

e
vo

l_m
in

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

na
iv

e
vo

l_m
ax

0.0 0.1 0.2 0.3 0.4
0.00

0.25

0.50

0.75

1.00

na
iv

e
pl

ai
n

Figure 6: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the complete meta-graph structure. The legend is the
same as Figure 5(a).

0.00

0.05

0.10

0.15

so
rt

vo
l_s

um

0.0

0.2

0.4

0.6

so
rt

vo
l_m

in

0.00

0.05

0.10

0.15

so
rt

vo
l_m

ax

0.0

0.2

0.4

0.6

0.8

so
rt

pl
ai

n

0.00

0.05

0.10

0.15

st
d

vo
l_s

um

0.0

0.2

0.4

0.6

st
d

vo
l_m

in

0.00

0.05

0.10

0.15

st
d

vo
l_m

ax

0.0

0.2

0.4

0.6

0.8

st
d

pl
ai

n

0.00

0.05

0.10

na
iv

e
vo

l_s
um

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

na
iv

e
vo

l_m
in

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

na
iv

e
vo

l_m
ax

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

na
iv

e
pl

ai
n

Figure 7: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the cyclic meta-graph structure. The legend is the same
as Figure 5(a).

16

E5-2690 CPUs and 252GB RAM, and an Intel 2.90GHz i7-10700 processor with 8 cores and 16
threads.

With this setup, all experiments for spectral methods, MagNet, DiGCN and DIGRAC can be com-
pleted within two days, including repeated experiments, to obtain averages over multiple runs. DGCN
and DiGCN_ib have much longer run time (especially DGCN, which is space-consuming, and we
cannot run many experiments in parallel), with a total of three days for both of them to finish.

B.3 Data

The results comparing DIGRAC with other methods on synthetic data are averaged over 50 runs, five
synthetic networks under the same setting, each with 10 different data splits. For synthetic data, 10%
of all nodes are selected as test nodes for each cluster (the actual number is the ceiling of the total
number of nodes times 0.1, to avoid falling below 10% of test nodes), 10% are selected as validation
nodes (for model selection and early-stopping; again, we consider the ceiling for the actual number),
while the remaining roughly 80% are selected as training nodes (the actual number can never be
higher than 80% due to using the ceiling for both the test and validation splits).

For real-world data sets, we extract the largest weakly connected component for experiments, as our
framework could be applied to different weakly connected components, if the digraph is disconnected.
When “ground-truth" is given, test results are averaged over 10 different data splits on one network.
When no labels are available, results are averaged over 10 different data splits.

Averaged results are reported with error bars representing one standard deviation in the figures, and
plus/minus one standard deviation in the tables.

For real-world data sets, we choose the number K of clusters in the meta-graph and the number β of
edges between clusters in the meta-graph as follows. As they are needed as input for DIGRAC, we
resort to Herm_rw [12] as an initial view of the network clustering. When a suitable meta-graph is
suggested in a previous publication, then we use that choice. Otherwise, the number K of clusters
is determined using the clustering from Herm_rw. First, we pick a range of K, and for each K, we
calculate the global imbalance scores and plot the predicted meta-graph flow matrix F′ based on the
clustering from Herm_rw. Its entries are defined as

F′(k, l) = 1(W (Ck, Cl) +W (Cl, Ck) > 0)× W (Ck, Cl)
W (Ck, Cl) +W (Cl, Ck)

. (12)

These entries can be viewed as predicted probabilities of edge directions. Then, we choose K from
this range so that the predicted meta-graph flow matrix has the highest imbalance scores and strong
imbalance in the predicted meta-graph flow matrix.

The choice of β is as follows. We plot the ranked pairs of CIplain values from Herm_rw and select the
β which is at least as large as K− 2, to allow the meta-graph to be connected, and which corresponds
to a large drop in the plot. Figures 14 (d) and 15 (d), respectively, give two examples.

When “ground-truth" labels are provided, as for example for Cora-ML and CiteSeer, we plot the
ranked pairs of CIplain values based on the labels, as for example provided in Figures 8. In these
examples, with K = 7 (K = 6, respectively), we choose β = 11 (β = 9, respectively) for Cora-ML
(CiteSeer, respectively).

Here we provide a brief description for each of the data sets; Table 4 gives the number, n, of nodes,
the number, |E|, of directed edges, the number |Er|, of reciprocal edges (self-loops are counted once
and for u 6= v, a reciprocal edge u→ v, v → u is counted twice) as well as their percentage among
all edges, for the real-world networks, illustrating the variability in network size and density (defined
as |E|/[n(n− 1)]).
• Telegram [5] is a pairwise influence network between n = 245 Telegram channels with |E| = 8, 912
directed edges. It is found in [5] that this network reveals a core-periphery structure in the sense of
[15]. Following [5] we assume K = 4 clusters, and the core-periphery structures gives β = 5.
• Blog [1] records |E| = 19, 024 directed edges between n = 1, 212 political blogs from the 2004
US presidential election. In [1] it is found that there is an underlying structure with K = 2 clusters
corresponding to the Republican and Democratic parties. Hence we choose K = 2 and β = 1.
• Migration [36] reports the number of people that migrated between pairs of counties in the US
during 1995-2000. It involves n = 3, 075 countries and |E| = 721, 432 directed edges after obtaining

17

0 5 10 15 20
Rank

0.0

0.2

0.4

0.6

CI
pl

ai
n r

an
ke

d
pa

irs

(a) Cora-ML.

3 6 9 12 15
Rank

0.0

0.2

0.4

0.6

CI
pl

ai
n r

an
ke

d
pa

irs

(b) CiteSeer.

Figure 8: Ranked pairs of CIplain values based on the labels of Cora-ML and CiteSeer. We choose
β = 11 for Cora-ML and β = 0 for CiteSeer.

the largest weakly connected component. We choose K = 10 and β = 9, following [12].
• WikiTalk [27] contains all users and discussion from the inception of Wikipedia until Jan. 2008.
The n = 2, 388, 953 nodes in the network represent Wikipedia users and a directed edge from node
vi to node vj denotes that user i edited at least once a talk page of user j. There are |E| = 5, 018, 445
edges. We choose K = 10 clusters among candidates {2, 3, 5, 6, 8, 10}, and β = 10.
• Cora-ML and CiteSeer are citation networks [4] with class labels (7 and 6 classes, respectively).
Inspecting Figures 8, we use β = 11 and β = 9, respectively.

Table 4: Summary statistics for the real-world networks.

data set n |E| density weighted |Er| |Er|
|E| (%)

Telegram 245 8,912 1.28 · 10−2 True 1,572 17.64
Blog 1,222 19,024 1.49 · 10−1 True 4,617 24.27
Migration 3,075 721,432 7.63 · 10−2 True 351,100 48.67
WikiTalk 2,388,953 5,018,445 8.79 · 10−7 False 723,526 14.42
Cora-ML 2995 8416 9.39 · 10−4 False 516 6.13
CiteSeer 3312 4715 4.30e · 10−4 False 234 4.96

As input features, after obtaining eigenvectors from Hermitian matrices constructed as in [12], we
standardize each column vector so that it has mean zero and variance one. We use these features for
all GNN methods except MagNet, since MagNet has its own way of generating random features of
dimension one.

B.4 Hyperparameters

We conduct hyperparmeter selection via a greedy search. To explain the details, consider for example
the following synthetic data setting: DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02,
without ambient nodes under different hyperparameter settings. By default, we use the loss function
Lsort

vol_sum, d = 32 hidden units, hop h = 2, and no seed nodes. Instead of a grid search, we tune
hyperparameters according to what performs the best in the default setting of the respective GNN
method. The procedure starts with a random setting. For the next iteration, the hyperparameters are
set to the current best setting (based on the last iteration), independently. For example, if we start with
a = 1, b = 2, c = 3, and we find that under this default setting, the best a (when fixing b = 2, c = 3)
is 2 and the best b (when fixing a = 1, c = 3) is 3, and the best c is 3 (when fixing a = 1, b = 2),
then for the next iteration, we set a = 2, b = 3, c = 3. If two settings give similar results, we choose
the simpler setting, for example, the smaller hop size. When we reach a local optimum, we stop
searching. Indeed, just a few iterations (less than five) were required for us to find the current setting,
as DIGRAC tends to be robust to most hyperparameters.

Figure 9, 10 and 11 are plots corresponding to the same setting but for three different meta-graph
structures, namely the complete meta-graph structure, the cycle structure but with ambient nodes, and
the complete structure with ambient nodes, respectively.

18

In theory, more hidden units give better expressive power. To reduce complexity, we use 32 hidden
units throughout, which seems to have desirable performance. We observe that for low-noise
regimes, more hidden units actually hurt performance. We can draw a similar conclusion about the
hyperparameter selection. In terms of τ, DIGRAC seems to be robust to different choices. Therefore,
we use τ = 0.5 throughout.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

8
16
32
64

(a) Vary d.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

2
3
4

(b) Vary the hop h.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

0
0.1
0.5
1

(c) Vary τ.

Figure 9: Hyperparameter analysis on different hyperparameter settings on the complete DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 without ambient nodes.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

AR
I

8
16
32
64

(a) Vary d.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

AR
I

2
3
4

(b) Vary the hop h.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

AR
I

0
0.1
0.5
1

(c) Vary τ.

Figure 10: Hyperparameter analysis on different hyperparameter settings on the complete DSBM
with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

AR
I

8
16
32
64

(a) Vary d.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

AR
I

2
3
4

(b) Vary the hop h.

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

AR
I

0
0.1
0.5
1

(c) Vary τ.

Figure 11: Hyperparameter analysis on different hyperparameter settings on the cycle DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

B.5 Use of seed nodes in a semi-supervised manner

B.5.1 Supervised loss

For seed nodes in V seed, similar to the loss function in [41], we use as a supervised loss function the
sum of a cross-entropy loss and a triplet loss. The cross-entropy loss is given by

LCE = − 1

|V seed|
∑

vi∈V seed

K∑
k=1

1(vi ∈ Ck) log ((pi)k) , (13)

19

where 1 is the indicator function, Ck denotes the kth cluster, and (pi)k denotes the kth entry of
probability vector (pi). With the function L : R2 → R given by L(x, y) = [x − y]+ (where the
subscript + indicates taking the maximum of the expression value and 0), the triplet loss is defined as

Ltriplet =
1

|S|
∑

(vi,vj ,vk)∈S

L(CS(zi, zj),CS(zi, zk), (14)

where S ⊆ V seed × V seed × V seed is a set of node triplets: vi is an anchor seed node, and vj is a seed
node from the same cluster as the anchor, while vk is from a different cluster; and CS(zi, zj) is the
cosine similarity of the embeddings of nodes vi and vj . We choose cosine similarity so as to avoid
sensitivity to the magnitude of the embeddings. The triplet loss is designed so that, given two seed
nodes from the same cluster and one seed node from a different cluster, the respective embeddings of
the pairs from different clusters should be farther away than the embedding of the pair within the
same cluster.

We then consider the weighted sum LCE + γtLtriplet as the supervised part of the loss function for
DIGRAC, for some parameter γt > 0. The parameter γt arises as follows. The cosine similarity
between two randomly picked vectors in d dimensions is bounded by

√
ln(d)/d with high probability.

In our experiments d = 32, and
√

ln(2d)/(2d) ≈ 0.25. In contrast, for fairly uniform clustering, the
cross-entropy loss grows like log n, which in our experiments ranges between 3 and 17. Thus some
balancing of the contribution is required. Following [41], we choose γt = 0.1 in our experiments.

B.5.2 Overall objective function

By combining Eq. (13), Eq. (14), and Eq. (4), our objective function for semi-supervised training
with known seed nodes minimizes

L = Lsort
vol_sum + γs(LCE + γtLtriplet), (15)

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss within the supervised
part, respectively. We set γs = 50 as we want our model to perform well on seed nodes. The weights
could be tuned depending on how important each term is perceived to be.

B.6 Training

For all synthetic data, we train DIGRAC with a maximum of 1000 epochs, and stop training when no
gain in validation performance is achieved for 200 epochs (early-stopping). For real-world data, no
“ground-truth" labels are available; we use all nodes to train and stop training when the training loss
does not decrease for 200 epochs, or when we reach the maximum number of epochs, 1000.

For the two-layer MLP, we do not have a bias term for each layer, and we use Rectified Linear Unit
(ReLU) followed by a dropout layer with 0.5 dropout probability between the two layers, following
[41]. We use Adam [23] as the optimizer and `2 regularization with weight decay 5 · 10−4 to avoid
overfitting. We use as learning rate 0.01 throughout.

B.7 Implementation details for the comparison methods

In our experiments, we compare DIGRAC against five spectral methods and five GNN-based
supervised methods on synthetic data, and spectral methods on real data. The reason we are not able
to compare DIGRAC with the above GNNs on these data sets is due to the fact that these data sets
do not have labels, which are required by the other GNN methods. We use the same hyperparameter
settings stated in these papers. Data splits for all models are the same; the comparison GNNs are
trained with 80% nodes under label supervision.

For MagNet, we use q = 0.25 for the phase matrix as in [45], where q = 0.25 was used for two
out of their three synthetic data sets, and q = 0.1 for their third data set. Code for MagNet, with
a sparse implementation, is included in our anonymized repository, with the original version from
https://github.com/matthew-hirn/magnet. We use the code from https://github.com/
flyingtango/DiGCN/blob/main/code/digcn.py to obtain the log of probability matrix P for
the methods DiGCN and DiGCN_app. The only difference between these two methods is whether or
not to use approximate Laplacian based on personalized PageRank. The “adj_type" options for them
correspond to “or" and “appr", respectively.

20

https://github.com/matthew-hirn/magnet
https://github.com/flyingtango/DiGCN/blob/main/code/digcn.py
https://github.com/flyingtango/DiGCN/blob/main/code/digcn.py

For DiGCN_ib, we use the code from https://github.com/flyingtango/DiGCN/blob/main/
code/digcn_ib.py with option “adj_type" equals “ib". As a recommended option in [42], we use
three layers for DiGCN_ib and two layers for DiGCN and DiGCN_app. All other settings are the
same as in the original paper [42].

B.8 Complexity analysis

To avoid computationally expensive and space unfriendly matrix operations, as described in Eq. (1),
DIGRAC uses an efficient sparsity-aware implementation, described in Algorithm 1 in the main
text, without explicitly calculating the sets of powers As,h and At,h. The algorithm also takes sparse
matrices as input, and never explicitly computes a multiplication of two n× n matrices. Therefore,
for input feature dimension and hidden dimension d � n, time and space complexity of DIMPA
(and implicitly of DIGRAC) is O(|E|dh+ 2ndK) and O(2|E|+ 4nd+ nK), respectively [20, 18].
For large-scale networks, DIMPA is amenable to a minibatch version using neighborhood sampling,
similar to the minibatch forward propagation algorithm in [19, 31].

C More results on synthetic data

C.1 An additional meta-graph structure

Recall that the Directed Stochastic Block Models used in our experiments depend on a meta-graph
adjacency matrix F and a filled version of it, F̃, for some number of clusters, K, and noise level
η ≤ 0.5. The meta-graph adjacency matrix F is generated from some meta-graph structure, called
M. Based onM, the filled meta-graph F̃ replaces every zero in F that is not part of the imbalance
structure with 0.5, independently of the choice of η. It is the filled meta-graph F̃ which we feed
into the DSBM generation process.The filled meta-graph creates a number of ambient nodes which
correspond to entries which are not part of the imbalance structure and thus are not part of a
meaningful cluster; the set of ambient nodes is also called the ambient cluster.

Here, we introduce an additional meta-graph structure, called “multipartite", following [16]. First,
when there are no ambient nodes: we divide the index set into three sets; setting i1 = bK9 c, i2 =

b 3K9 c+ i1, let

Fk,l = (1− η)1(k < i1, i1 ≤ l < i2) + η1(i1 ≤ k < i2, l ≥ i2)

+(1− η)1(k ≥ i2, i1 ≤ l < i2) + η1(i1 ≤ k < i2, l < i1).

When we have ambient nodes, the construction involves two steps, with the first step the same as the
above but with the following changes: divide the indices into three sets, with set boundaries given by
i1 = bK−19 c, i2 = b 3(K−1)9 c+ i1. The second step is to assign 0 (respectively, 0.5) to the last row
and the last column of F (respectively, F̃).

C.2 Additional comparison plots and analysis

Figure 12 compares the numerical performance of DIGRAC with other methods on four more
settings of synthetic data, namely, a cycle structure with three clusters, a complete structure with ten
clusters, a multipartite structure with ten clusters, and a star structure with five clusters. Considering
the results in Section 5 and Figure 12, we remark that DIGRAC gives state-of-the-art results on
a wide range of network densities and noise levels, on different scales of the networks, and with
different meta-graph structures, whether or not ambient nodes exist.

Note that the multipartite, the cycle and the star settings correspond to the intuition behind [42]
which assumes that nodes are similar if their set of kth-order neighbourhoods are similar; here
the second-order neighbourhoods are similar by design. For networks with underlying meta-graph
structure “star", “cycle" or “multipartite", clusters could be determined by grouping nodes that share
similar in-neighbors and out-neighbors together, which aligns well with the second-order proximity
used in DGCN and DiGCN_ib from [43]. Therefore, these methods are naturally well-suited for
dealing with the such synthetic data. We also note that although DIGRAC does not explicitly use
second-order proximity, it can achieve comparable performance with DGCN and DiGCN_ib. This
indicates DIGRAC’s flexibility to adapt to directed networks with different underlying topologies,

21

https://github.com/flyingtango/DiGCN/blob/main/code/digcn_ib.py
https://github.com/flyingtango/DiGCN/blob/main/code/digcn_ib.py

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

DSBM N=1000.p=0.1.K=3. =1.ambient=False.F style=cyclic.

Bi_sym
DD_sym
DISG_LR
Herm
Herm_rw
MagNet
DiGCN
DGCN
DiGCN_app
DiGCN_ib
DIGRAC

(a) DSBM(“cycle", F,
n = 1000,K = 3, p = 0.1, ρ = 1)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

DSBM N=1000.p=0.1.K=10. =1.ambient=True.F style=complete.

(b) DSBM(“complete", T,
n = 1000,K = 10, p = 0.1, ρ = 1)

0.0 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

AR
I

DSBM N=1000.p=0.1.K=10. =1.ambient=True.F style=multipartite.

(c) DSBM(“multipartite", T,
n = 1000,K = 10, p = 0.1, ρ = 1)

0.0 0.1 0.2 0.3 0.4
0.0
0.1
0.2
0.3
0.4
0.5
0.6

AR
I

DSBM N=5000.p=0.02.K=5. =1.ambient=False.F style=star.

(d) DSBM(“star", F,
n = 5000,K = 5, p = 0.02, ρ = 1)

Figure 12: Node clustering test ARI comparison on four additional synthetic data sets. Dashed lines
highlight DIGRAC’s performance. Error bars are given by one standard error. Abbreviations for all
the methods are given in Section 4 in the main text.

without explicitly utilizing higher-order proximity. On the other hand, DiGCN_ib is fully supervised,
and takes much more space and time to implement, than DIGRAC. This is partially due to the use of
the so-called inception blocks in DiGCN_ib, where multi-scale directed structure features are encoded
and fused with a fusion function. As stated in [42], the worst space complexity is O(k′n2), where k′
is the order of proximity to consider (we use k′ = 2 throughout). The eigenvalue decomposition in the
preprocessing step is O(n3). We also remark that the approximate Laplacian based on personalized
PageRank, when no inception blocks are used, performs no better than the simpler implementation
without the approximation. We conclude that overall DIGRAC is a fast method for general directed
clustering when directionality is the main signal, which performs as well as custom-tailored methods
when the proximity neighborhood heuristic holds, while outperforming all tested methods on the
complete meta-graph, where the proximity neighborhood heuristic does not hold.

D Additional results on real-world data

D.1 Extended result tables

Tables 5, 6, 7 and 8 provide a detailed comparison of DIGRAC with spectral methods. Since no
labeling information is available and all of the other competing GNN methods require labels, we do
not compare DIGRAC with them on these real data sets.

In Tables 5, 6, 7 and 8, we report 12 combinations of global imbalance scores by data set. The naming
convention of these imbalance scores is provided in Table 3. To assess how balanced our recovered
clusters are in terms of sizes, we also report the size ratio, which is defined as the size of the largest
predicted cluster to the smallest one, and the standard deviation of sizes, size std, in order to show

22

how varied the sizes of predicted clusters are. For a relatively balanced clustering, we expect the
latter two terms to be small.

Table 5: Performance comparison on Telegram. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06
size ratio 242 242.00 242.00 242.00 53.00 3.09
size std 104.36 104.36 104.36 104.36 63.46 26.39

Table 6: Performance comparison on Blog. The best is marked in bold red and the second best is
marked in underline blue.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
size ratio 8.70 2.45 6.10 11.93 44.26 1.86
size std 485.00 256.20 439.00 516.50 584.00 183.20

Tables 5, 6, 7 and 8 reveal that DIGRAC provides competitive global imbalance scores in all of the
12 objectives introduced, and across all the real data sets, usually outperforming all the other methods.
Note that Bi_sym and DD_sym are not able to generate results for WikiTalk, as large n× n matrix
multiplication with its transpose causes memory issue, when n = 2, 388, 953. Small values of the
size ratio and size standard deviation suggest that the normalization in the loss function penalizes tiny
clusters, and that DIGRAC tends to predict balanced cluster sizes.

23

Table 7: Performance comparison on Migration. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.03±0.00 0.01±0.00 0.01±0.00 0.07±0.00 0.01±0.00 0.04±0.00
Osort

vol_min 0.20±0.01 0.12±0.02 0.14±0.00 0.21±0.01 0.05±0.02 0.18±0.02
Osort

vol_max 0.03±0.00 0.01±0.00 0.01±0.00 0.06±0.00 0.00±0.00 0.04±0.00
Osort

plain 0.46±0.00 0.29±0.02 0.26±0.00 0.62±0.02 0.40±0.00 0.32±0.11
Ostd

vol_sum 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Ostd

vol_min 0.09±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.03
Ostd

vol_max 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Ostd

plain 0.23±0.00 0.14±0.01 0.12±0.00 0.32±0.01 0.25±0.01 0.21±0.03
Onaive

vol_sum 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Onaive

vol_min 0.08±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.04
Onaive

vol_max 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Onaive

plain 0.22±0.00 0.13±0.01 0.11±0.00 0.31±0.01 0.22±0.00 0.21±0.03
size ratio 3043.80 722.62 25.78 3059.20 415.88 203.23
size std 912.10 861.28 409.90 917.23 844.75 342.38

Table 8: Performance comparison on WikiTalk. The best is marked in bold red and the second best is
marked in underline blue.

Metric/Method DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06
size ratio 1190162.25 2217434.50 250.48 71765.14
size std 713813.72 660060.33 657941.88 643220.37

24

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
Bi_sym
DD_sym
DISG_LR
Herm
Herm_rw

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

1 2 3 4 5 6
rank

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

1 2 3 4 5 6
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 13: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Telegram data set. Lines are used to highlight DIGRAC’s performance.

D.2 Ranked pairwise imbalance scores

We also plot the ranked pairwise imbalance scores for all data sets except Blog, which has only one
possible pairwise imbalance score. Figures 13, 14 and 15 illustrate that DIGRAC is able to provide
comparable or higher pairwise imbalance scores for the leading pairs, especially on CIvol_min pairs.
We also observe that except for CIplain, DIGRAC has a less rapid drop in pairwise imbalance scores
after the first leading pair compared to Herm and Herm_rw, which can have a few pairs with higher
imbalance scores than DIGRAC.

25

0.0

0.5

1.0

1.5

2.0

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
Bi_sym
DD_sym
DISG_LR
Herm
Herm_rw

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

0 10 20 30 40
rank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

0 10 20 30 40
rank

0.0

0.2

0.4

0.6

0.8

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 14: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Migration data set. Lines are used to highlight DIGRAC’s performance.

0

1

2

3

4

5

6

7

8

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
DISG_LR
Herm
Herm_rw

0

1

2

3

4

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

0 10 20 30 40
rank

0

1

2

3

4

5

6

7

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

0 10 20 30 40
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 15: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on WikiTalk data set. Lines are used to highlight DIGRAC’s performance.

26

D.3 Predicted meta-graph flow matrix plots

For each data set, we plot the predicted meta-graph flow matrix F′ defined in Eq. (12).

0 1

0

1

0.2

0.4

0.6

0.8

(a) Blog

0 1 2 3
0
1
2
3 0.25

0.50

0.75

(b) Telegram

0 2 4 6 8
0
2
4
6
8 0.4

0.6

(c) Migration

0 2 4 6 8
0
2
4
6
8

0.00

0.25

0.50

0.75

1.00

(d) WikiTalk

Figure 16: Predicted meta-graph flow matrix from DIGRAC of four real-world data sets.

From Figure 16, we conclude that DIGRAC is able to recover a directed flow imbalance between
clusters in all of the selected data sets. Figure 16a shows a clear cut imbalance between two clusters,
possibly corresponding to the Republican and Democratic parties. Figure 16b plots imbalance flows
in the real data set Telegram, where cluster 3 is a core-transient cluster, cluster 0 is a core-sink cluster,
cluster 2 is a periphery-upstream cluster, while cluster 1 is a periphery-downstream cluster [15, 5].
For WikiTalk, illustrated in Figure 16d, the lower-triangular part entries are typically source nodes for
edges, while the upper-triangular part are target nodes.

We also note that DIGRAC would not necessarily predict the same number of clusters as assumed,
so that we do not need to specify the exact number of clusters before training DIGRAC; specifying
the maximum number of possible clusters suffices.

D.4 Migration plots

We compare DIGRAC to five spectral methods for recovering clusters for the US migration data set,
and plot the recovered clusters on a map. Note that all methods, except DIGRAC, recover either
clusters which are trivially small in size or contain one very large dominant cluster (as in (a), (b)
(d) and to some extent, also (e)). The DISG_LR clustering provides clear geographic boundaries,
but was not able to recover the imbalance among clusters. Other spectral methods generally have a
dominant cluster containing most of the nodes, whereas DIGRAC has more balanced cluster sizes.

When employing methods that symmetrize the adjacency matrix (as in (a) and (b)), the migration
flows between counties in different states will be lost in the process. Furthermore, the visualization in
Figure (c) shows that clusters align particularly well with the political and administrative boundaries
of the US states, as previously observed in [11]. This outcome is not deemed too insightful, as
it trivially reveals the fact there there is significant intra-state and inter-state migration, and does
not uncover any of the information on latent migration patterns between far-away states, and more
generally, between regions which are not necessarily geographically cohesive.

27

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l

(a) Bi_sym

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l

(b) DD_sym

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l
(c) Herm

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l

(d) Herm_rw

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l

(e) DISG_LR

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l

(f) DIGRAC

Figure 17: US migration predicted clusters, along with the geographic locations of the counties.

D.5 Application to node classification and link direction prediction: details and additional
results

Here we provide more details on the effect of LICE - adding our loss function Lsort
vol_sum to the cross

entropy loss in MagNet, DGCN, DiGCN, DiGCN_app, and DiGCN_ib. For a fair comparison
of the methods, hyperparameters are not tuned; hence the methods may not achieve their optimal
performance on the data sets. For Cora-ML and CiteSeer [4], we discover that their “ground-truth"
labels do not give strong cut flow imbalance between classes, as shown in Figures 18b and 18d. Hence,
as an imbalance-driven method, DIGRAC could not achieve leading performance in classification
accuracy, as indicated in the first row of Table 10 and that of Table 11. Note that we train DIGRAC
in a semi-supervised manner, applying cross-entropy loss and triplet loss on all training nodes, i.e.,
treating all training nodes as seed nodes. Details of the semi-supervised settings are discussed in
appendix B.5. We use cross-entropy loss for all the comparing GNNs as the loss function.

As for link direction prediction, for each of the training, validation and test edges, the ratio of the
two classes (forward and backward direction) is 1:1. We also provide the results for a more general
link prediction task, a three-class classification problem (no link, forward and backward direction),
assuming absence of bidirectional edges (such edges are rare in these two data sets, see Table 4). In
this task, for each of the training, validation and test edges, the ratio of the three classes (no link,
forward and backward direction) is 2:1:1. The result comparison table on the two methods mentioned
in Table 2 of the main text, is given in Table 9, with similar conclusions as in the main text. Each
of the methods applies cross-entropy loss to all training edges as a baseline variant. The comparing
variant, ending with “+LI", uses LICE as the loss function, adding self-supervised imbalance loss
Lsort

vol_sum to the observed network (with all nodes in the network and all the training edges).

28

Table 9: Link prediction (three-class classification) test accuracy (%) on real data sets.

Data set DGCN DGCN+LI Avg. gain (%) DiGCN_app DiGCN_app+LI Avg. gain (%)

Cora-ML 68.58± 2.13 70.05± 0.78 1.47 62.27± 6.25 63.64± 4.54 1.37
CiteSeer 61.94± 3.87 63.32± 3.01 1.38 56.57± 1.55 56.86± 1.33 0.29

Node classification class probabilities are obtained via the same procedure as in the node clustering
task. For each of both link prediction tasks, we concatenate the embeddings of each ordered node
pair, then apply a linear layer followed by a unit softmax function to output the class probabilities
from the first node to the second node in the ordered pair. For both tasks, we use 10 different data
splits and average the results. Results are reported plus/minus one standard error.

Table 10: Performance comparison on Cora-ML. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method MagNet DGCN DiGCN DiGCN_app DiGCN_ib DIGRAC

test accuracy(%) 64.29± 2.69 76.34± 6.03 37.55± 5.17 78.31±1.45 74.59± 2.84 71.13± 4.80
test ARI 0.35±0.04 0.54±0.08 0.06±0.01 0.56±0.03 0.50±0.05 0.44±0.08
Osort

vol_sum 0.03±0.01 0.01±0.00 0.09±0.02 0.01±0.00 0.01±0.00 0.03±0.01
Osort

vol_min 0.21±0.03 0.27±0.06 0.42±0.10 0.20±0.04 0.22±0.05 0.40±0.07
Osort

vol_max 0.02±0.01 0.01±0.00 0.06±0.02 0.01±0.00 0.01±0.00 0.02±0.01
Osort

plain 0.31±0.04 0.49±0.08 0.82±0.10 0.33±0.06 0.40±0.08 0.60±0.10
Ostd

vol_sum 0.03±0.01 0.02±0.01 0.09±0.03 0.02±0.01 0.02±0.01 0.03±0.01
Ostd

vol_min 0.27±0.03 0.26±0.10 0.42±0.11 0.29±0.12 0.27±0.04 0.41±0.08
Ostd

vol_max 0.03±0.01 0.01±0.01 0.07±0.02 0.02±0.00 0.02±0.00 0.03±0.01
Ostd

plain 0.37±0.04 0.41±0.08 0.77±0.10 0.43±0.09 0.45±0.08 0.58±0.08
Onaive

vol_sum 0.02±0.00 0.01±0.00 0.05±0.01 0.01±0.00 0.01±0.00 0.02±0.00
Onaive

vol_min 0.14±0.02 0.18±0.04 0.28±0.06 0.13±0.02 0.15±0.03 0.26±0.05
Onaive

vol_max 0.01±0.00 0.01±0.00 0.04±0.01 0.01±0.00 0.01±0.00 0.01±0.00
Onaive

plain 0.20±0.03 0.34±0.07 0.60±0.07 0.22±0.04 0.27±0.05 0.40±0.07
size ratio 3.00 33.90 27.04 3.62 3.84 2.94
size std 150.83 204.99 535.45 167.50 163.82 132.88

Table 11: Performance comparison on CiteSeer. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method MagNet DGCN DiGCN DiGCN_app DiGCN_ib DIGRAC

test accuracy(%) 52.77± 7.11 50.93± 4.27 31.89± 3.87 60.95±1.97 37.33± 9.14 54.68± 2.24
test ARI 0.23±0.07 0.23±0.04 0.04±0.01 0.32±0.02 0.10±0.05 0.24±0.03
Osort

vol_sum 0.05±0.03 0.01±0.00 0.09±0.02 0.01±0.00 0.02±0.00 0.03±0.01
Osort

vol_min 0.30±0.12 0.10±0.04 0.34±0.09 0.15±0.03 0.12±0.04 0.34±0.09
Osort

vol_max 0.04±0.03 0.01±0.00 0.06±0.02 0.01±0.00 0.01±0.00 0.03±0.01
Osort

plain 0.43±0.15 0.42±0.11 0.82±0.10 0.27±0.05 0.45±0.13 0.55±0.13
Ostd

vol_sum 0.06±0.02 0.02±0.01 0.12±0.02 0.02±0.01 0.03±0.01 0.04±0.01
Ostd

vol_min 0.33±0.09 0.18±0.12 0.43±0.09 0.27±0.10 0.20±0.07 0.36±0.09
Ostd

vol_max 0.05±0.02 0.01±0.01 0.08±0.01 0.02±0.01 0.02±0.01 0.03±0.01
Ostd

plain 0.48±0.08 0.38±0.12 0.86±0.05 0.39±0.10 0.42±0.07 0.58±0.08
Onaive

vol_sum 0.04±0.02 0.01±0.00 0.07±0.01 0.01±0.00 0.01±0.00 0.02±0.01
Onaive

vol_min 0.21±0.08 0.08±0.02 0.27±0.05 0.10±0.02 0.09±0.03 0.25±0.07
Onaive

vol_max 0.03±0.02 0.00±0.00 0.05±0.01 0.01±0.00 0.01±0.00 0.02±0.01
Onaive

plain 0.31±0.11 0.33±0.09 0.72±0.05 0.19±0.04 0.33±0.09 0.40±0.10
size ratio 2.01 45.98 78.22 3.03 236.04 2.68
size std 121.60 396.29 615.75 175.07 495.90 160.99

29

Figure 18 displays the fitted flow matrices for both data sets. We can see that DIGRAC constructs
clusters with higher cut flow imbalance than “ground-truth" labels. The ranked pairwise imbalance

0 1 2 3 4 5 6
0
1
2
3
4
5
6 0.2

0.4

0.6

0.8

(a) Cora-ML by DIGRAC.

0 1 2 3 4 5 6
0
1
2
3
4
5
6

0.2

0.4

0.6

0.8

(b) Cora-ML by labels.

0 1 2 3 4 5
0
1
2
3
4
5 0.2

0.4

0.6

0.8

(c) CiteSeer by DIGRAC.

0 1 2 3 4 5
0
1
2
3
4
5

0.4

0.6

(d) CiteSeer by labels.

Figure 18: Predicted meta-graph flow matrices from DIGRAC and “ground-truth" labels on Cora-ML
and CiteSeer.

scores are shown in Figures 19 and 20, where DIGRAC attains an overall leading performance.

Tables 12 and 13 provide the results when GNNs are trained on LICE loss and DIGRAC is trained
on only self-supervised loss but not cross-entropy loss. The NA entries for test accuracy of DIGRAC
in Tables 12 and 13 arise because accuracy is not a permutation-invariant measure with respect to
label indexing. Instead, we provide another row, test ARI, to compare the performance. Comparing
Tables 10, 11, 12, and 13, we conclude that changing the loss from cross entropy to LICE on the few
training nodes in a semi-supervised manner, there is a modest gain in imbalance scores in MagNet on
both data sets, and in DiGCN on CiteSeer. We also observe slight test accuracy improvements for
DiGCN and DiGCN_ib on Cora-ML, and for all GNNs except MagNet on CiteSeer, when replacing
the cross-entropy loss with LICE. Note that the gain would be expected to be only marginal, since the
imbalance loss is applied only to the induced subgraph of the training nodes (a small portion of all
nodes). DIGRAC, on the other hand, achieves on average a larger amount of imbalance gain when
switching the loss from semi-supervised to self-supervised. This also indicates the large influence of
labels used during training.

Table 12: Performance comparison on Cora-ML when comparing GNNs use LICE as loss and
DIGRAC uses only self-supervised imbalance loss. The best is marked in bold red and the second
best is marked in underline blue.

Metric/Method MagNet DGCN DiGCN DiGCN_app DiGCN_ib DIGRAC

test accuracy(%) 62.50±2.17 75.35±3.89 38.89±5.20 77.22±1.93 75.14±2.89 NA
test ARI 0.32±0.03 0.54±0.05 0.06±0.02 0.54±0.04 0.51±0.05 0.02±0.01
Osort

vol_sum 0.03±0.01 0.01±0.00 0.09±0.02 0.01±0.00 0.01±0.00 0.08±0.02
Osort

vol_min 0.24±0.08 0.25±0.05 0.41±0.10 0.23±0.03 0.27±0.06 0.28±0.09
Osort

vol_max 0.03±0.01 0.01±0.00 0.07±0.02 0.01±0.00 0.01±0.00 0.06±0.01
Osort

plain 0.36±0.10 0.45±0.11 0.83±0.06 0.34±0.04 0.43±0.09 0.93±0.05
Ostd

vol_sum 0.04±0.01 0.02±0.01 0.09±0.02 0.02±0.00 0.02±0.01 0.08±0.01
Ostd

vol_min 0.26±0.06 0.25±0.07 0.40±0.10 0.29±0.08 0.28±0.08 0.24±0.06
Ostd

vol_max 0.03±0.01 0.02±0.01 0.07±0.02 0.02±0.00 0.02±0.01 0.06±0.01
Ostd

plain 0.38±0.06 0.39±0.09 0.77±0.06 0.41±0.09 0.48±0.10 0.80±0.04
Onaive

vol_sum 0.02±0.01 0.01±0.00 0.05±0.01 0.01±0.00 0.01±0.00 0.06±0.01
Onaive

vol_min 0.15±0.06 0.18±0.03 0.26±0.06 0.15±0.01 0.18±0.04 0.18±0.07
Onaive

vol_max 0.02±0.01 0.01±0.00 0.04±0.01 0.01±0.00 0.01±0.00 0.04±0.01
Onaive

plain 0.23±0.07 0.32±0.08 0.58±0.05 0.23±0.03 0.28±0.06 0.77±0.09
size ratio 3.14 8.71 33.39 3.37 3.48 103.39
size std 154.48 196.24 516.89 154.43 164.40 435.63

For Cora-ML and CiteSeer, the ranked pairs imbalance scores for these loss functions are shown
in Figures 21 and 22; DIGRAC again attains an overall satisfactory performance. Compared with
Figures 19 and 20, when removing the supervised loss and only keeping the self-supervised imbalance
loss, DIGRAC seems to perform better in terms of imbalance scores.

30

0.0

0.2

0.4

0.6

0.8

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
MagNet
DGCN
DiGCN
DiGCN_app
DiGCN_ib

0.0

0.2

0.4

0.6

0.8

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

0 5 10 15 20
rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

0 5 10 15 20
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 19: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on Cora-ML data set. Lines are used to highlight DIGRAC’s performance.

0.0

0.5

1.0

1.5

2.0

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
MagNet
DGCN
DiGCN
DiGCN_app
DiGCN_ib

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

2.5 5.0 7.5 10.0 12.5 15.0
rank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

2.5 5.0 7.5 10.0 12.5 15.0
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 20: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on CiteSeer data set. Lines are used to highlight DIGRAC’s performance.

31

0.0

0.5

1.0

1.5

2.0

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
MagNet
DGCN
DiGCN
DiGCN_app
DiGCN_ib

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

0 5 10 15 20
rank

0.0

0.5

1.0

1.5

2.0

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

0 5 10 15 20
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 21: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on Cora-ML data set, where comparing GNNs use LICE as loss and DIGRAC only
uses self-supervised imbalance loss. Lines are used to highlight DIGRAC’s performance.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CI
vo

l_s
um

 ra
nk

ed
 p

ai
rs

DIGRAC
MagNet
DGCN
DiGCN
DiGCN_app
DiGCN_ib

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

CI
vo

l_m
in

 ra
nk

ed
 p

ai
rs

2.5 5.0 7.5 10.0 12.5 15.0
rank

0.0

0.5

1.0

1.5

2.0

CI
vo

l_m
ax

 ra
nk

ed
 p

ai
rs

2.5 5.0 7.5 10.0 12.5 15.0
rank

0.0

0.2

0.4

0.6

0.8

1.0

CI
pl

ai
n r

an
ke

d
pa

irs

Figure 22: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on CiteSeer data set, where comparing GNNs use LICE as loss and DIGRAC only
uses self-supervised imbalance loss. Lines are used to highlight DIGRAC’s performance.

32

Table 13: Performance comparison on CiteSeer when comparing GNNs use LICE as loss and
DIGRAC uses only self-supervised imbalance loss. The best is marked in bold red and the second
best is marked in underline blue.

Metric/Method MagNet DGCN DiGCN DiGCN_app DiGCN_ib DIGRAC

test accuracy(%) 48.73±8.98 53.16±4.60 32.06±3.43 61.72±1.50 39.60±8.14 NA
test ARI 0.19±0.08 0.23±0.03 0.04±0.01 0.32±0.02 0.11±0.06 0.03±0.01
Osort

vol_sum 0.07±0.03 0.01±0.00 0.10±0.03 0.01±0.00 0.01±0.00 0.11±0.03
Osort

vol_min 0.33±0.12 0.12±0.04 0.32±0.12 0.14±0.03 0.11±0.05 0.38±0.15
Osort

vol_max 0.06±0.03 0.01±0.00 0.08±0.03 0.01±0.00 0.01±0.00 0.09±0.02
Osort

plain 0.47±0.14 0.36±0.08 0.80±0.17 0.25±0.05 0.48±0.12 0.89±0.09
Ostd

vol_sum 0.07±0.02 0.01±0.01 0.14±0.04 0.01±0.01 0.03±0.01 0.10±0.02
Ostd

vol_min 0.34±0.08 0.13±0.09 0.41±0.10 0.20±0.10 0.20±0.09 0.35±0.12
Ostd

vol_max 0.06±0.02 0.01±0.01 0.10±0.03 0.01±0.01 0.02±0.01 0.08±0.02
Ostd

plain 0.50±0.09 0.34±0.10 0.89±0.07 0.34±0.17 0.44±0.13 0.84±0.08
Onaive

vol_sum 0.05±0.02 0.01±0.00 0.08±0.03 0.01±0.00 0.01±0.00 0.08±0.02
Onaive

vol_min 0.23±0.09 0.10±0.04 0.25±0.09 0.10±0.02 0.08±0.03 0.28±0.11
Onaive

vol_max 0.04±0.02 0.00±0.00 0.06±0.02 0.01±0.00 0.01±0.00 0.06±0.02
Onaive

plain 0.33±0.10 0.30±0.07 0.69±0.04 0.18±0.03 0.35±0.10 0.73±0.07
size ratio 2.12 184.72 48.29 2.84 79.12 222.24
size std 129.43 370.57 585.07 164.54 446.87 407.21

33

	1 Introduction
	2 Related Work
	3 The DIGRAC Method
	3.1 Problem definition
	3.2 Directed Mixed Path Aggregation (DIMPA)
	3.3 Self-supervised loss for clustering

	4 Experiments
	4.1 Data sets
	4.2 Experimental results
	4.3 Ablation study

	5 Conclusion, limitations and future work
	A Loss and objectives
	A.1 Additional details on probabilistic cut and volume
	A.2 Variants of normalization
	A.3 Variants of choosing the pairwise imbalance scores
	A.4 Selection of the loss function

	B Implementation details
	B.1 Code
	B.2 Hardware
	B.3 Data
	B.4 Hyperparameters
	B.5 Use of seed nodes in a semi-supervised manner
	B.5.1 Supervised loss
	B.5.2 Overall objective function

	B.6 Training
	B.7 Implementation details for the comparison methods
	B.8 Complexity analysis

	C More results on synthetic data
	C.1 An additional meta-graph structure
	C.2 Additional comparison plots and analysis

	D Additional results on real-world data
	D.1 Extended result tables
	D.2 Ranked pairwise imbalance scores
	D.3 Predicted meta-graph flow matrix plots
	D.4 Migration plots
	D.5 Application to node classification and link direction prediction: details and additional results

