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Networks often possess mesoscale structures, and studying them can yield insights into both structure and
function. It is most common to study community structure, but numerous other types of mesoscale structures
also exist. In this paper, we examine core-periphery structures based on both density and transport. In such
structures, core network components are well-connected both among themselves and to peripheral components,
which are not well-connected to anything. We examine core-periphery structures in a wide range of examples
of transportation, social, and financial networks—including road networks in large urban areas, a rabbit warren,
a dolphin social network, a European interbank network, and a migration network between counties in the
United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for
characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges,
and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties
of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate
the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the
correlations between different measures of coreness can be very different for different types of networks.
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I. INTRODUCTION

Studies of networks [1] initially focused on local char-
acteristics or macroscopic distributions (of individual nodes
and edges), but it is now common to consider “mesoscale”
structures such as communities [2]. Indeed, there are numerous
notions of community structure in networks. For example, one
can define a network’s community structure based on a hard
or soft partitioning of the network into sets of nodes that are
connected more densely among themselves than to nodes in
other sets [3], and one can also examine community structure
by partitioning the network into sets of edges [4]. One can also
determine community structure by taking the perspective of a
dynamical system (e.g., a Markov process) on a network [5–7].
See Ref. [2] for myriad other notions of community structure,
which have yielded insights on numerous systems in biology
[8,9], political science [10,11], sociology [12,13], and many
other areas.

Although community structure is the most widely studied
mesoscale structure by far, numerous other types exist. These
include notions of role similarity [14] and many types of block
models [15]. Perhaps the most prominent block structure aside
from community structure is core-periphery structure [16–20],
in which connections between core nodes and other core nodes
are dense, connections between core nodes and peripheral
nodes are also dense (but possibly less dense than core-core
connections), and peripheral nodes are sparsely connected
to other nodes. Core-periphery structure provides a useful
complement for community structure [19–21]. Its origins lie
in the study of social networks (e.g., in international relations)
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[16,22], although notions such as “nestedness” in ecology also
attempt to determine core network components [23]. As with
community structure, there are numerous possible ways to
examine core-periphery structure. A few different notions of
core-periphery structure have been developed [20], although
there are far fewer of these than there are notions of community
structure [2].

In this paper, we contrast two different notions of core-
periphery structure—the block-model perspective that we
discussed above and a recently developed notion that is
appropriate for transportation networks (and which need not
satisfy the density properties of the block-model notion) [24]—
by calculating them for several different types of empirical and
computer-generated networks. Due to the rich variety of types
of networks across various areas and disciplines, a wealth
of different mesoscale features are possible [25]. We expect a
block-model notion of core-periphery structure to be appropri-
ate for social networks, whereas it can be desirable to develop
transport-based notions of core-periphery structure for road
networks and other transportation networks. However, this
intuition does not imply that application-blind notions cannot
be useful (e.g., a recently developed block-model notion of
core-periphery structure was helpful for analyzing the London
metropolitan transportation system [19]), but it is often desir-
able for network notions to be driven by applications for further
development. This is also the case for community structure
[2,25], where measures of modularity [26], conductance [27],
information cost [5], and partition density (for communities
of edges) [4] are all useful. Core-periphery structure depends
on context and application, and it is important to compare
different notions of core network components when consider-
ing core agents in a social network, core banks in a financial
system, core streets and intersections in a road network, and
so on.
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We focus on two different ways of characterizing core-
periphery structures in networks: we examine density-
based (or “structural”) coreness using intuition from social
networks—in which core agents either have high degree (or
strength, in the case of weighted networks), are neighbors
of nodes with high degree (or strength), or satisfy both
properties—and we examine transport-based coreness by
modifying notions of betweenness centrality [24]. To contrast
these different types of core-periphery structure, we compute
statistical properties of coreness measures applied to empirical
networks, their correlations to each other, and their correlations
to other properties of networks. With these calculations, we
obtain interesting insights on several social, financial, and
transportation networks. An additional contribution of this
paper is our extension of the transport-based method in
Ref. [24] to allow the assignment of a coreness measure to
edges (rather than just nodes). Such a generalization is clearly
important for transportation networks, for which one might
want (or even need) to focus on edges rather than nodes.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the methods that we employ in this paper
for studying density-based and transport-based core-periphery
structure. We examine some social and financial networks in
Sec. III and several transportation networks in Sec. IV. To
illustrate the effects of spatial embedding on transportation
networks, we develop a generative model of roadlike networks
in Sec. IV. We conclude in Sec. V.

II. CORE-PERIPHERY STRUCTURE IN NETWORKS

A. Density-based core-periphery structure

Conventional definitions of core-periphery organization
rely on connection densities among different sets of nodes
(in the form of block models) or on structural properties
such as node degree and strength. One approach to studying
core-periphery structure relies on finding a group of core
nodes or assigning coreness values to nodes by optimizing
an objective function [16–19]. The method introduced in
Ref. [19], which generalizes the basic (and best known)
formulation in [16], is particularly flexible. For example, one
can detect distinct cores in a network, and one can consider
either discrete or continuous measures of coreness. This notion
was used recently to examine the roles of brain regions for
learning a simple motor task in functional brain networks [28].

In the method of Ref. [19], one seeks to calculate a centrality
measure of coreness called a “core score” (CS) using the
adjacency-matrix elements {Wij }, where i,j ∈ {1, . . . ,N}, the
network has N nodes, and the value Wij indicates the weight of
the connection between nodes i and j . For directed networks
(see the discussion below), we use Wij to denote the weight of
the connection from node i to node j . When Wij = 0, there is
no edge between i and j . We insert the core-matrix elements
{Cij } into the core quality

R(α,β) =
∑
i,j

WijCij (α,β), (1)

where the parameter α ∈ [0,1] determines the sharpness of the
core-periphery division and β ∈ [0,1] determines the fraction
of core nodes. We decompose the core-matrix elements into a

product form, Cij (α,β) = Ci(α,β)Cj (α,β), where

Ci(α,β) =
{

i(1−α)
2�βN� , i � �βN�,
(i−�βN�)(1−α)

2(N−�βN�) + 1+α
2 , i > �βN� (2)

are the elements of a core vector. Reference [19] also discusses
the use of alternative “transition functions” to the one in
Eq. (2).

We wish to determine the core-vector elements in (2) so
that the core quality in Eq. (1) is maximized. This yields a CS
for node i of

CS(i) = Z
∑
(α,β)

Ci(α,β)R(α,β), (3)

where the normalization factor Z is determined so that
the maximum value of CS over the entire set of nodes
is 1. In practice, we perform the optimization using some
computational heuristic and some sample of points in the
parameter space with coordinates (α,β) ∈ [0,1] × [0,1]. As
in Ref. [19], we use simulated annealing [29] (with the same
cooling schedule as in that paper). This adds stochasticity
to the method. The core-quality landscape tends to be less
sensitive to α than it is to β, so one can reduce the number
of α values for computationally expensive situations if it is
necessary. For all examples in this paper, we use the sampling
resolutions �α = �β = 0.01 and thus consider 1012 evenly
spaced points in the (α,β) plane.

For directed networks, one can still technically compute
CS values because Eq. (1) is still valid when the matrix W
is asymmetric, so that is what we will do in the present
paper. However, it seems strange to produce only one set
of core scores rather than two sets of them (just like one
wishes to compute both in-degrees and out-degrees in a
directed network), and the i → j and j → i interactions
are confounded in Eq. (1) because Wij and Wji appear on
equal footing. (The transport-based notions of core-periphery
structure that we will discuss in Sec. II B apply naturally to
both directed and undirected networks; this follows the spirit of
directed flow on networks.) It is both interesting and desirable
to investigate density-based notions (e.g., via block models)
of core-periphery structure for directed networks, but we will
not pursue that in this paper. Such notions would allow one to
distinguish between core sources and core sinks.

B. Transport-based core-periphery structures

Notions of betweenness centrality (BC) are useful for
characterizing transportation properties of networks [1,30,31],
and ideas based on short paths have been used to examine
core-periphery structure [18,24,32].

In our discussion of transport-based core-periphery struc-
tures, we will draw on a notion that was introduced in
Ref. [24] and was inspired by geodesic node betweenness
centrality. In this paper, we will also define an analogous
notion for core and peripheral edges. The basic idea is that
core network components (e.g., nodes or edges) are used
more frequently for transportation, as quantified by a BC or
a similar diagnostic, than peripheral components. To amplify
the usage of connections from arbitrary parts of a network to
core parts, we consider “backup paths”, which are the shortest
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paths that remain after some part or parts of a network have
been removed.

We consider networks that can be either weighted or
unweighted and either directed or undirected. Let the set of
edges be denoted by E = {(j,k)| where node j is connected
to node k}. The “path score” (PS) for node i is a notion of
centrality and is defined by [24]

PS(i) = 1

|E|
∑

(j,k)∈E

∑
{pjk}

σjik[E \ (j,k)], (4)

where σjik[E \ (j,k)] = 1/|{pjk}| if node i is in the set {pjk}
that consists of “optimal backup paths” from node j to node
k, where we stress that the edge (j,k) is removed from E, and
σjik[E \ (j,k)] = 0 otherwise.

Just as betweenness centralities can be defined for edges
[33] (as well as other network components) in addition to
nodes, it is useful to calculate a PS for edges. We define the
path score PS(l) of edge l similarly to the node PS from Eq. (4),
except that we replace the node i with the edge l. That is,
σjlk = 1/|{pjk}| if l is a part of one of the optimal backup paths
from node j to node k; otherwise, σjlk = 0. Calculating a value
of coreness for edges is particularly relevant for networks in
which edges are fundamentally important physical, logical, or
social entities [4].

A PS for a network component quantifies its importance
by examining centrality scores after other components have
been removed. The importance of edges in road networks
has been studied previously using the different (and much
more computationally demanding) task of quantifying the
importance of a removed edge by calculating BCs both before
and after its removal [34]. Backup paths have also been studied
in the context of percolation [35].

The notion of a PS is deterministic whenever it is based
on a deterministic notion of betweenness. (Recall that the
use of simulated annealing as a computational heuristic to
calculate CSs is a source of stochasticity for the formulation of
core-periphery structure in Sec. II A.) Even when there exists
more than one optimal backup path (which, in practice, occurs
mostly for unweighted networks), all of the optimal paths {pjk}
contribute equally to the PS. One can, of course, incorporate
stochasticity by constructing a PS based on a stochastic notion
of centrality (e.g., random-walk node betweenness [36]).

In the present paper, we calculate PS values based on
shortest paths (i.e., “geodesic PS values”) as well as PS values
based on greedy-spatial-navigation (GSN) paths, which are
constructed from local directional information and correspond
to a more realistic form of navigation than geodesic paths
for spatially embedded networks [37]. We use the acronym
PS to indicate a path score that is determined via shortest
paths and GSNP for a path score that is determined via
a GSN path, which we define as follows [38]. Consider
a network with N nodes that is embedded in Rd , and
suppose that the coordinates of the nodes are {r1, . . . ,rN } =
{[x1(1),x2(1), . . . ,xd (1)], . . . ,[x1(N ),x2(N ), . . . ,xd (N )]}. As-
sume that an agent stands at a node i and wishes to travel
to node t . Let vi,j = rj − ri be the vector from node i to
node j , and let θj = cos−1[vi,t · vi,j /(|vi,t ||vi,j |)] be the angle
between vi,t and vi,j . A greedy navigator considers the set
�(i) of neighbors of i and it moves to the neighbor j ∈ �(i)

that has the smallest θj , where ties are broken by taking a
neighbor uniformly at random among the neighbors with the
smallest angle. If all neighbors j ∈ �(i) have been visited,
then the navigator goes back to the node that it left to reach i.
This procedure is repeated until node t is reached (which will
happen eventually if G is connected or, more generally, if i

and j belong to the same component).
It is important at this stage to comment about weight versus

“distance” in weighted networks. In a weighted network, a
larger weight represents a closer or stronger relation. If we are
given such a network (with weight-matrix elements Wij ), we
construct a distance matrix whose elements are Dij = 1/Wij

for nonzero Wij and Dij = 0 when Wij = 0. We then use the
distance matrix to determine the length of a path and in all
of our calculations of PSs, GSNPs, and BCs. Alternatively,
we might start with a set of network distances or Euclidean
distances, and then we can use that information directly. In
this paper, we will consider transportation networks that are
embedded in R2 and R3. In contrast to CSs, we can calculate
PSs for directed networks very naturally simply by restricting
ourselves to directed paths.

III. SOCIAL AND FINANCIAL NETWORKS

We now examine some social and financial networks, as it
is often argued that such networks possess a core-periphery
structure. Indeed, the intuition behind density-based core-
periphery structure was developed from studies of social
networks [16,19,22].

As discussed in Sec. II B, we highlight an important point
for weighted networks. In such networks, each edge has a
value associated with it. We consider data associated with
such values that come in one of two forms. In one form, we
have a matrix entry Wij for which a larger value indicates a
closer (or stronger) relationship between nodes i and j (where
i �= j ). In this case, we have a weighted adjacency matrix
W whose elements are Wij . In the second form, we have a
matrix entry Dij for which a larger value indicates a more
distant (literally, in the case of transportation networks) or
weaker relationship between nodes i and j (where i �= j ).
In this case, the elements Dij yield a distance matrix D, and
we calculate weighted adjacency matrix elements using the
formula Wij = 1/Dij (for i �= j ) and Dij = 0 when Wij = 0.

A. Dolphin social network

As a small example to set the stage, we consider the
(unweighted and undirected) social network between 62
bottlenose dolphins (Tursiops spp.) in a community living near
Doubtful Sound, New Zealand [39,40]. In Fig. 1, we color this
network using the CS values of nodes and the geodesic PS
values of nodes and edges. Geodesic node betweenness was
used previously to examine important dolphins in this network,
and examining coreness measures allows one to build on such
insights. The five dolphins with the largest geodesic BC values
are (in order) SN100, Beescratch, SN9, SN4, and DN63 [41];
the five dolphins with the largest CS values are (in order) Grin,
SN4, Scabs, Topless, and Trigger; and the five dolphins with
the largest PS values are (in order) SN4, Topless, Grin, Scabs,
and Gallatin. Some dolphins seem to be important according
to all of these measures, but other names change.
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(a) (b)

FIG. 1. (Color online) The dolphin social network, for which we color (a) the nodes using CS values and (b) the nodes and edges using,
respectively, node and edge PS values. The same color bar in (b) applies to both node and edge PS values. We show the dolphins’ names
in (a). In both panels, we position the nodes using a Kamada-Kawai force-directed graph drawing algorithm [42], for which we used the
“graphviz_layout” function in the NetworkX package for PYTHON [43].

As shown in Table I, the two coreness measures (CS and
PS) are correlated with each other much more strongly than
either of them is correlated with BC. The coreness measures
that we employ can be used to further investigate the dolphins’
social roles (some of which have been described previously
[39,41,45]). For instance, dolphins that exhibit side flopping
(SF) or upside-down lobtailing (ULT) behaviors [45] have a
wide range of coreness values, so such behaviors do not seem
to relate to whether a dolphin is a core node. As SF and ULT
behaviors are known to play communication roles [46], this
might illustrate that communication is necessary throughout
the social hierarchy of dolphins rather than only occurring in
specific levels of it.

We also identify the edges with the largest PS values. In
order, these edges1 correspond to the dolphin pairs [Topless,

1For examples like this one, we are using brackets rather than
parentheses to indicate the edges because it is easier to read.

Trigger], [Feather, Gallatin], [Stripes, SN4], [SN4, Scabs],
and [Kringel, Oscar]. The edges with the largest geodesic BC
values are (in order) [Beescratch, SN100], [SN9, DN63], [Jet,
Beescratch], [SN100, SN4], and [SN89, SN100]. As shown in
Fig. 1, “bridge” edges such as [Beescratch, SN100] or [SN9,
DN63] that connect two large communities have the largest
BC values. Naturally, these edges are not core edges. Indeed,
as shown in Table I, geodesic edge PS and geodesic edge BC
are negatively correlated.

B. Interbank network

It has been argued that many financial systems exhibit
core-periphery structures [47,48], but few scholars have
complemented such claims with quantitative calculations
of such structures. A couple of notable exceptions include
Refs. [49,50], which used a method based on that in Ref. [16].
In this section, we examine core-periphery structure in an
interbank credit exposure network. The nodes are banks, and
a weighted and directed edge indicates an exposure from a

TABLE I. Pearson and Spearman correlation coefficients between various pairs of core and centrality values (CS, PS, and BC) for some
social and financial networks. We calculated these correlations using the SciPy package in PYTHON [44]. In parentheses, we give two-tailed
p-values with the null hypothesis of absence of correlation. We use the † symbol when all BC values are the same; in this case, it is not
meaningful to compute the correlations.

Network Correlation CS vs PS CS vs BC PS vs BC PS vs BC
(nodes) (nodes) (nodes) (edges)

Dolphin [39] Pearson 0.811 0.426 0.452 −0.249
(1.26 × 10−15) (5.64 × 10−4) (2.28 × 10−4) (1.54 × 10−3)

Spearman 0.835 0.704 0.715 −0.418
(3.16 × 10−17) (1.79 × 10−10) (6.88 × 10−11) (4.19 × 10−8)

Stock [58] Pearson 0.222 † † †
(4.61 × 10−7) † † †

Spearman 0.130 † † †
(3.53 × 10−3) † † †
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(a) (b)

FIG. 2. (Color online) The maximum relatedness subnetwork (MRS) [55] of a European interbank network. We color the nodes and edges
based on (a) CS and (b) ln(PS + 10−6) computed using the original (much denser) network. (We use a logarithm for visualization because of
the heterogeneity of the PS values.) In (a), we identify the directions of edges using thick stubs to indicate arrowheads [56]. We also give the
banks’ codes in (a). The corresponding bank identities are listed in Ref. [53]. Different font colors represent different countries. In both panels,
we position the nodes using a Kamada-Kawai force-directed graph drawing algorithm [42], for which we used the “graphviz_layout” function
in the NetworkX package for PYTHON [43].

lending bank to a borrowing bank. The magnitude of (credit)
exposure indicates the extent to which the lender is exposed to
the risk of loss in the event of the borrower’s default [51]. We
use data from the European Banking Authority [52] report
on interbank exposures. It considered 90 medium-to-large
European banks [53,54]. In principle, there is a directed and
weighted edge W real

b′b between the lending bank b and the
borrowing bank b′. However, data is only available for the
country c of a bank b. This yields a matrix with components

Ecb =
∑

b′∈C(c)

W real
b′b ,

where the set C(c) consists of the banks that belong to country
c. Therefore, we assume that each Ecb value is distributed
equally among all banks b′ �= b in country c (i.e., except for
the lending bank). This yields an approximate weight between
b′ and b of

Wb′b = Ecb∣∣C(c) \ {b}∣∣ ,
and the associated distance-matrix element is Db′b = 1/Wb′b.
(We only consider node pairs with Ecb �= 0 as edges, so
Wb′b �= 0.) Of course, one can distribute Ebc in other ways,
but we choose to use the equal-distribution scheme in the
absence of additional information. One obtains a different
network with other choices, which can (of course) affect
core-periphery structures. Our choice in this paper corresponds
to the one that the European Banking Authority made for
their risk analysis [52,53]. We use this example to illustrate
core-periphery structures in financial systems [47–50].

The interbank credit exposure network is dense, so it is
hard to visualize the core scores directly. Therefore, after
calculating the CS and PS values from the original network,

we visualize the values overlaid on its maximum relatedness
subnetwork (MRS) [55]. An MRS is a subnetwork that is
constructed as follows: for each node, we examine the weight
of each of its edges and keep only the single directed edge
with maximum weight. (When there are ties, we keep all of
the edges with the maximum weight.) In Fig. 2, we show the
CS values of the original weighted network (with adjacency
matrix elements Wb′b) and the node PS values (with optimal
paths that minimize the sum of the reciprocals of the weights)
of the interbank network. Only a few very large PS values
dominate the system. In order, these are HSBC Holdings plc
(UK: GB089), Dexia (Belgium: BE004), BNP Paribas (France:
FR013), Deutsche Bank (Germany: DE017), and Banco Bilbao
Vizcaya Argentaria (Spain: ES060).

In addition to the core-periphery structure, the MRS
visualization illustrates that a bank’s country is crucial for
the organization of its “backbone” structure. The banks are
well-clustered according to their countries, and a few banks
play the role of “broker” banks across different countries. The
broker banks include the Nordic cluster (with Swedish, Danish,
Norwegian, and Finnish banks), the Germany-UK-Ireland
cluster, and the France-Belgium-Netherlands-Luxembourg-
Hungary-Poland cluster. In contrast to the dolphin social
network that we examined in Sec. III A, the CS and geodesic
node PS values are less or comparably correlated to each other
than either quantity is to geodesic BC (see Tables I and II).
However, the banks’ tier-1 capital [57] is similarly correlated
to each of the CS, PS, and BC values (see Table II).

C. Stock-market correlation network

As a second example of a financial network, we consider
a complete, undirected, weighted stock-market network that
consists of Standard and Poor (S&P) 500 constituents along

032810-5



SANG HOON LEE, MIHAI CUCURINGU, AND MASON A. PORTER PHYSICAL REVIEW E 89, 032810 (2014)

TABLE II. Pearson and Spearman correlation values between various core and centrality values (CS, PS, and BC) for several social and
financial networks. In parentheses, we give two-tailed p-values with the null hypothesis of absence of correlation. For the interbank network, we
also show the correlation between the measures and the banks’ tier-1 capital (which corresponds to their “size” [53,57]). For the US migration
network, we also show correlations between population of counties (which corresponds to their size) versus other measures. When we write
that a p-value is 0.0, it means that this value is smaller than the minimum (approximately 2.23 × 10−308) of the floating-point variables in
PYTHON. We use the same SciPy package in PYTHON [44] as in Table I.

Network Correlation CS vs PS CS vs BC PS vs BC PS vs BC Size vs CS Size vs PS Size vs BC
(nodes) (nodes) (nodes) (edges) (nodes) (nodes) (nodes)

Interbank [53] Pearson 0.430 0.410 0.929 0.885 0.533 0.605 0.685
(2.39 × 10−5) (6.09 × 10−5) (6.98 × 10−40) (0.0) (6.33 × 10−8) (2.65 × 10−10) (9.44 × 10−14)

Spearman 0.499 0.502 0.873 0.689 0.667 0.610 0.611
(5.47 × 10−7) (4.70 × 10−7) (3.02 × 10−29) (0.0) (6.97 × 10−13) (1.75 × 10−10) (1.56 × 10−10)

US migration Pearson 0.537 0.515 0.840 0.860 0.408 0.479 0.241
W [64] (5.11 × 10−229) (2.27 × 10−208) (0.0) (0.0) (9.73 × 10−124) (9.13 × 10−176) (9.48 × 10−42)

Spearman 0.579 0.510 0.893 0.898 0.667 0.557 0.328
(2.28 × 10−274) (1.72 × 10−203) (0.0) (0.0) (0.0) (1.42 × 10−250) (5.27 × 10−78)

US migration Pearson 0.196 0.183 0.988 0.962 0.444 0.828 0.800
Wraw [64] (6.10 × 10−28) (1.52 × 10−24) (0.0) (8.42 × 10−5) (1.18 × 10−148) (0.0) (0.0)

Spearman 0.698 0.621 0.942 0.832 0.977 0.710 0.635
(0.0) (0.0) (0.0) (5.77 × 10−106) (0.0) (0.0) (0.0)

with some index exchange-traded funds (ETFs). A weighted
edge exists between every pair of nodes based on the pairwise
similarities of their times series. We downloaded the (time-
dependent) prices of S&P 500 constituents and index ETFs
from the Yahoo! Finance website [58]. Our selection criterion
was that an index or ETF time series should contain at least
1000 time points of daily prices (4 September 2009–26 August
2013). This yields a data set that consists of time series for 9
ETFs corresponding to the sector divisions listed in Ref. [59],
their component companies (of which there are 478 in total),
and 17 large-cap blend equities ETFs in Ref. [60]. For each of
the 504 total time series, we calculate the daily log return:
ln{[closing price (t)]/[opening price (t)]} on day t [61]. To
obtain the edge weights Wij and distances Dij = 1/Wij in
our network, we calculate the Pearson correlation coefficient
rij (which we subsequently shift) between each pair of daily
log return series. Specifically, Wij = (1 + rij )/2 (for i �= j ),
where Wij is the weight of the edge between nodes i and j [62];
additionally, Wij = 0 for i = j . This yields a network that is
complete (except for self-edges), weighted, and undirected.
As for the interbank credit exposure network in Sec. III B,
we use the edge weights for calculating CS values and their
reciprocals for calculating PS and BC values.

Because an ETF is designed as a safe “virtual stock” that
is a combination of individual stocks, we expect ETFs to be
correlated significantly with each other because they follow the
market at large without as many wild fluctuations as individual
stocks might exhibit. Naturally, they should also be correlated
with their own constituents. We thus expect to observe a
clear separation between core (ETF) and peripheral (individual
stock) nodes. As expected, the core nodes based on both CS
and geodesic PS values are occupied by ETFs (see Table III),
although the correlation between CS and PS values is not very
strong (see Table I). Note that even the weighted version of
geodesic BC is exactly the same for all of the nodes (and
edges), so it is impossible to classify nodes or edges based on
BC values. This occurs because the (strict) triangle inequality

Dij < Dik + Dkj is satisfied for every triplet of nodes (i,j,k) in
this fully connected network, so no indirect path (i → k → j )
can ever be shorter than a direct path (i → j ). Therefore,
this system illustrates that although BC values tend not to
be very illuminating when a complete or almost complete
network’s edge weights are rather homogeneous, measuring
node and edge coreness can still make it possible to quantify
the importances of nodes and edges.

D. United States migration network

We now consider the United States (US) migration network
between 3075 counties in the mainland (i.e., excluding
Alaska and Hawaii) during 1995–2000 [63–65]. We construct
weighted, directed adjacency matrices using two types of flow
measures: the raw values W raw

ij that represent the population
that migrated from county i to county j and the normalized
values Wij = W raw

ij /
√

PiPj for the directed flow between the
two counties, where Pi is the total population of county i. In
Fig. 3, we show the CS and geodesic PS values (with optimal
paths that minimize the sum of the reciprocals of the weights)
of the counties on a map of the US. The five counties with
the largest CS values for the normalized adjacency matrix W
are (in order) Bexar in Texas, Cobb in Georgia, Orange in
Florida, Buffalo in Nebraska, and Boulder in Colorado. The
five counties with the largest CS values for Wraw are (in order)
Los Angeles in California, Orange in California, San Diego
in California, Santa Clara in California, and Dallas in Texas.
There is a clear difference between our results for raw flow
and normalized flow.

The five counties with the largest geodesic PS values for W
are (in order) New York in New York, Chesapeake in Virginia,
Washington D.C., Arlington in Virginia, and Fulton in Georgia.
The five counties with the largest geodesic PS values for Wraw

are (in order) Los Angeles in California, Cook in Illinois, New
York in New York, Maricopa in Arizona, and Harris in Texas.
We highlight the effect of county populations by comparing
them with the CS and geodesic PS values. As shown in Table II,
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TABLE III. Top core nodes in the S&P 500 and exchange-traded funds (ETFs) correlation network. We show the rank ordering based on
both CS and PS values, and we mark ETFs with a ‡ symbol.

Rank CS (value) PS (value)

1 Vanguard Large-Cap Index Fund‡ (1.000) Guggenheim S&P 500 Equal Weight‡ (3.42 × 10−1)
2 Guggenheim S&P 500 Equal Weight‡ (0.999) iShares Russell 1000 Index Fund‡ (9.52 × 10−2)
3 iShares Russell 1000 Index Fund‡ (0.992) Vanguard Large-Cap Index Fund‡ (8.90 × 10−2)
4 iShares Core S&P 500 ETF‡ (0.990) iShares Core S&P 500 ETF‡ (8.82 × 10−2)
5 SPDR S&P 500 ETF‡ (0.982) Consumer Discret Select Sector SPDR‡ (7.72 × 10−2)
6 iShares S&P 100 Index Fund‡ (0.979) Financial Select Sector SPDR‡ (4.80 × 10−2)
7 iShares Morningstar Large Core Index Fund‡ (0.978) Energy Select Sector SPDR‡ (3.91 × 10−2)
8 First Trust Large Cap Core AlphaDEX Fund‡ (0.978) SPDR S&P 500 ETF‡ (3.77 × 10−2)
9 Vanguard Mega Cap ETF‡ (0.971) Utilities Select Sector SPDR‡ (3.35 × 10−2)

10 RevenueShares Large Cap Fund‡ (0.968) Industrial Select Sector SPDR‡ (3.00 × 10−2)
11 Consumer Discret Select Sector SPDR‡ (0.967) Health Care Select Sector SPDR‡ (2.50 × 10−2)
12 Industrial Select Sector SPDR‡ (0.963) Consumer Staples Select Sector SPDR‡ (2.46 × 10−2)
13 Financial Select Sector SPDR‡ (0.961) Technology Select Sector SPDR‡ (2.33 × 10−2)
14 Guggenheim Russell Top 50 ETF‡ (0.957) Technology Select Sector SPDR‡ (2.08 × 10−2)
15 PowerShares Value Line Timeliness Select Portfolio‡ (0.955) iShares S&P 100 Index Fund‡ (1.60 × 10−2)
16 Technology Select Sector SPDR‡ (0.951) iShares Morningstar Large Core Index Fund‡ (2.43 × 10−3)
17 Technology Select Sector SPDR‡ (0.950) Vanguard Mega Cap ETF‡ (2.11 × 10−3)
18 iShares KLD Select Social Index Fund‡ (0.947) Guggenheim Russell Top 50 ETF‡ (2.06 × 10−3)
19 Energy Select Sector SPDR‡ (0.947) First Trust Large Cap Core AlphaDEX Fund‡ (2.00 × 10−3)
20 Invesco Ltd. (0.932) Vornado Realty Trust (9.86 × 10−4)

the correlation between CS and PS is much stronger for W
than that for Wraw, so our two coreness values are more
consistent with each other for the normalized flow than for
the raw flow. We also observe a correlation between coreness
and county population for both W and Wraw. (The correlation
values are larger for the latter; this is understandable, given
the normalization by populations for the former.) Therefore,
even after the normalization of the flow by the populations of
source and target counties, more populous counties also tend

to be core counties (see Table II). As shown in Table IV, the
different choices of flow and coreness measures yield rather
different results when aggregated at the state level (although
Washington D.C. has the top coreness value in every case).

It is useful to compare our observations to the intrastate
versus interstate migration patterns that were discussed in
Ref. [63], which reported that the top 14 states with maximum
“ratio degree” (i.e., the ratio of incoming flux to outgoing flux)
are (in order) Virginia, Michigan, Georgia, Indiana, Texas,

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-14

-12

-10

-8

-6

-4

-2

 0

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

-14

-12

-10

-8

-6

-4

-2
(a) (b)

(c) (d)

FIG. 3. (Color online) Core values for (a,b) normalized flow W and (c,d) raw flow Wraw for migration between US counties. We color the
counties according to their (a,c) CS values and (b,d) ln(PS + 10−6). We use the logarithm because of the heterogeneity in the PS values. We
also indicate the state boundaries.
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TABLE IV. Top ten US states with highest mean core scores (averaged over their component counties) for each combination of flow and
coreness measure. We calculate CS values and geodesic PS values for each county using both the normalized flow network W and raw flow
network Wraw; this yields four rank orderings. (We rounded all values to three significant digits.)

W W Wraw Wraw

Rank CS (value) PS (value) CS (value) PS (value)

1 Washington D.C. (0.498) Washington D.C. (1.77 × 10−1) Washington D.C. (0.883) Washington D.C. (3.22 × 10−2)
2 Arizona (0.466) Delaware (5.30 × 10−2) New Jersey (0.854) California (1.00 × 10−2)
3 New Jersey (0.466) Rhode Island (3.10 × 10−2) Connecticut (0.852) Arizona (7.90 × 10−3)
4 Florida (0.466) Connecticut (2.09 × 10−2) Delaware (0.825) Massachusetts (4.56 × 10−3)
5 Connecticut (0.465) New Hampshire (1.64 × 10−2) Massachusetts (0.809) New York (3.72 × 10−3)
6 California (0.465) Massachusetts (1.23 × 10−2) Rhode Island (0.794) Illinois (3.46 × 10−3)
7 Wyoming (0.465) Arizona (1.13 × 10−2) California (0.789) Connecticut (2.76 × 10−3)
8 Delaware (0.463) Vermont (1.13 × 10−2) Arizona (0.765) Delaware (2.68 × 10−3)
9 Oregon (0.463) Nevada (1.02 × 10−2) New York (0.764) Florida (2.33 × 10−3)

10 Maryland (0.462) Maine (1.00 × 10−2) New Hampshire (0.762) Washington (2.21 × 10−3)

Maine, New York, Missouri, Colorado, Louisiana, Mississippi,
California, Ohio, and Wisconsin. Again, as discussed in
Sec. II A, transportation-based coreness measures can help
to characterize the importance of directed flow (which is pop-
ulation flow in this case). Future work on directed versions of
density-based coreness will be necessary to use those methods
to help characterize core-source states versus core-sink states.

IV. TRANSPORTATION NETWORKS

One expects many transportation networks to include core-
periphery structures [19]. For example, metropolitan systems
include both core and peripheral stations [66] and airline flight
networks include high-traffic (i.e., hub) and low-traffic airports
[67]. In this section, we examine core-periphery structure in
several transportation networks.

A. Rabbit warren as a three-dimensional road network

The structure of animal burrows is an important subject in
zoology and animal behavior [68,69], and it is natural to view
such structures through the lens of network science. In this
paper, we consider a European rabbit (Oryctolagus cuniculus)
warren located in Bicton Gardens, Exeter, Devon, United
Kingdom that was excavated [70] for the purpose of making a
documentary series that was broadcast recently by the British
Broadcasting Company (BBC) [71]. We use a simplified
network [72] that was generated from the detailed original
three-dimensional (3D) warren structure in PLY (Polygon File
Format) by a researcher working with the BBC documentary
team [73].

This network has 115 weighted, undirected edges that
represent tunnel segments and 108 nodes that represent
branching points or chambers, and we made this simplified
network data public at [72]. For the purpose of this paper, the
weight of an edge is given by the reciprocal of the Euclidean
distance between the two nodes that it connects, but one
could use other information (such as the mean width of each
individual tunnel segment) to define a set of weights. The 3D
coordinates of the nodes are known, so this network gives a
rare opportunity to investigate a transportation network that
is used by animals. The edge length is rather homogeneous
(which is presumably deliberate) and the warren seems to
have been developed in three phases via generational changes

that are similar to an urban sprawl [74]. In Fig. 4, we show
the rabbit-warren network projected into a two-dimensional
(2D) plane. In the figure panels, we color the nodes and edges
according to various measures of coreness.

The node with the largest PS value in terms of both geodesic
distance and GSN is the “secondary hub” marked in Fig. 4(b)
and was pointed out by an expert on rabbits. The descriptor
“secondary” refers to the fact that it was the second hub in
temporal order; it is not a statement of relative importance. The
secondary hub has the second largest geodesic BC value. The
“primary hub” region marked in Fig. 4(a) has nodes with larger
CS values than geodesic and GSNP values. As one can see in
Table V, the geodesic and GSNP values are highly correlated
in the rabbit-warren network. According to the rabbit experts
and the documentary [71], stronger rabbits are able to acquire
better breeding areas. The best breeding areas experience lower
traffic, and the breeding areas with the lowest PS values are
the ones that the rabbit experts claimed are the best ones. (If
a breeding area experiences too much traffic, a rabbit needs to
spend more time protecting its offspring to ensure that they are
not killed by other rabbits [71].) Thus, coreness values seem
to give insights about the structure of the rabbit warren that
directly reflect aspects of the social hierarchy of rabbits. The
breeding areas also have small BC values, so BC values are
also insightful for the rabbit-warren network.

Additionally, as shown in Table V, the correlation between
PS and BC values is much larger than that between CS and
PS values and that between CS and BC values. This hints that
PS values for a real transportation network are relevant for
examining traffic in such a network. The PS and BC values of
edges are also positively correlated.

B. Urban road networks

To examine 2D transportation networks, we use road
networks from 100 large urban areas [square samples of the
area (2 km × 2 km)] from all over the world [37,75]. To
briefly compare these networks to each other (and to the rabbit
warren, which is roadlike but embedded in 3D rather than
2D), we construct a taxonomy by using mesoscopic response
functions (MRFs) [76] based on community structure [25].
As with the rabbit-warren network, the road networks are
weighted and undirected, and the weight of each edge is given
by the reciprocal of the Euclidean distance between the pair
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(a) (b) (c)

FIG. 4. (Color online) Visualization of the rabbit-warren network. An edge’s thickness is linearly proportional to the mean width of the
tunnel segment that it represents. (It is difficult to discern the differences in width, as the widths are rather homogeneous.) An edge’s length is
linearly proportional to its real length. We color (a) the nodes according to CS values, (b) the nodes and edges according to geodesic PS values,
and (c) the nodes and edges according to GSNP values. We project the three-dimensional positions of nodes into a plane using a bird’s-eye
view. The labels “primary hub” and “secondary hub” were applied by experts [71], and the secondary hub was populated later in time than the
primary one. (The term “primary” is not being used to indicate relative importance.)

of nodes that it connects. Thus, shorter roads correspond to
stronger connections. We show the result of our taxonomy
computation in Fig. 5. This taxonomy is based on pairwise
closeness between networks determined from three types
of normalized MRFs: a generalized modularity (i.e., with a
resolution parameter) [2] of network partitions, entropy of
community sizes (based on their heterogeneity), and number
of communities. A network’s MRF indicates how a particular
quantity defined on a network partition changes as a function of
a resolution parameter [25]. As with the navigability measure
in Ref. [37], the roads are not well-classified by external factors
such as the continent in which cities are located. The rabbit
warren is located between Recife and Barcelona in Fig. 5.

We examine core-periphery structure in the urban road
networks. As an illustrative example, we show a square sample

of the West End area of London in Fig. 6. In Table V, we
show correlation values between CS values, PS values, GSNP
values, and BC values. An interesting difference between the
rabbit warren (which is embedded in 3D), which we discussed
in Sec. IV A, and the road networks (which are embedded in
2D) that one can see in this table is that the correlations of
CS values versus other quantities (geodesic PS values, GSNP
values, and BC values) are notably larger in the former. It is
natural to ask whether the smaller embedding dimension of the
road networks as compared to the rabbit-warren network might
be related to this property. The effects of spatial embeddedness
on network structure is a difficult and interesting topic in
general [77]. We thus investigate this possibility in more detail
in Sec. IV C by examining networks produced by generative
models for 2D and 3D roadlike networks.

TABLE V. Pearson and Spearman correlation values between various core and centrality values (CS, PS, and BC) for transport and synthetic
roadlike networks. For the rabbit warren, we give (in parentheses) two-tailed p-values for the null hypothesis of absence of correlation. The
values that we show for road networks (“Roads”) are the mean correlation values for all 100 roads, and we give standard errors in parentheses.
The results of 2D and 3D null-model, 100-node roadlike networks are from an ensemble of 100 initial node locations. (In each case, we report
mean values and standard errors over an ensemble.) We use the same SciPy package in PYTHON [44] as in Tables I and II.

Network Correlation CS vs PS CS vs BC PS vs BC PS vs BC CS vs GSNP PS vs GSNP PS vs GSNP
(nodes) (nodes) (nodes) (edges) (nodes) (nodes) (edges)

Rabbit warren [70] Pearson 0.231 0.284 0.561 0.303 0.371 0.348 8.25 × 10−2

(1.61 × 10−2) (2.87 × 10−3) (2.70 × 10−10) (1.00 × 10−3) (7.85 × 10−5) (2.22 × 10−4) (0.381)

Spearman 0.318 0.437 0.568 0.403 0.331 0.293 0.198
(8.08 × 10−4) (2.29 × 10−6) (1.48 × 10−10) (7.84 × 10−6) (4.69 × 10−4) (2.09 × 10−3) (3.42 × 10−2)

3D null model [78] Pearson 0.570(9) 0.609(8) 0.869(4) 0.472(9) 0.52(1) 0.842(4) 0.13(1)

Spearman 0.572(9) 0.668(7) 0.762(4) 0.394(7) 0.51(1) 0.710(5) 0.14(1)
Roads [37] Pearson −7(8) × 10−4 −2(7) × 10−4 4.1(4) × 10−2 5.8(6) × 10−2 −1(9) × 10−4 4.2(4) × 10−2 1.5(3) × 10−2

Spearman −3(8) × 10−4 4(7) × 10−4 6.7(6) × 10−2 8.8(8) × 10−2 2(8) × 10−4 6.0(6) × 10−2 2.7(3) × 10−2

2D null model [78] Pearson 0.29(2) 0.33(1) 0.668(7) 0.247(9) 0.25(2) 0.675(7) 9.7(8) × 10−2

Spearman 0.36(1) 0.45(1) 0.683(6) 0.288(8) 0.31(2) 0.692(6) 0.216(9)
2D null model with Pearson 0.27(2) 0.36(1) 0.694(6) 0.35(1) 0.23(1) 0.713(6) 0.170(1)
edge crossing [78] Spearman 0.35(2) 0.46(1) 0.707(6) 0.389(9) 0.31(2) 0.692(6) 0.216(9)
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FIG. 5. (Color online) Taxonomy of the 100 road networks and the rabbit warren using mesoscopic response functions (MRFs) based on
community structure [25]. The vertical axis gives a “distance” measured from the MRFs. (This is analogous to a distance when studying
phylogeny, so it indicates when different sets of networks diverge from each other in this taxonomy.) We set the threshold for assigning different
colors to networks to be 40% of the maximum distance (see the dashed horizontal line) determined from the MRFs.

C. Generative models for 2D and 3D roadlike networks

To examine correlations between the coreness measures
and BC values in roadlike networks, we generate 2D and 3D
roadlike structures from a recently introduced navigability-

based model for road networks [78]. We start by determining
the locations of nodes either in the unit square (for 2D roadlike
networks) or in the unit cube (for the 3D case). We then add
edges by constructing a minimum spanning tree (MST) via

(a) (b) (c)

FIG. 6. (Color online) A square sample (2 km × 2 km) of the road network in London. We color (a) the nodes based on their CS values,
(b) the nodes and edges based on their geodesic PS values, and (c) the nodes and edges based on their GSNP values.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. (Color online) Examples of 2D and 3D roadlike networks produced from generative models. For the 2D example, we show
(a) its nodes colored according to their CS values and (b) its nodes and edges colored according to their geodesic PS values. We show the 3D
example projected into a plane, and we color (c) its nodes by their CS values and (d) its nodes and edges by their PS values. For these 3D
networks, we add shortcuts greedily to make the mean path length as small as possible, and we note that the total length limit is twice the
length of the minimum spanning tree (MST) determined from the initial node locations [78]. The edges in panels (c) and (d) that appear to
cross are, of course, artifacts of projecting the 3D road network into a plane. For comparison, we also present (e) the CS values and (f) the PS
values for a modified 2D null model in which crossed edges are allowed. In this null model, we use the same initial locations of nodes as in
panels (a) and (b).

Kruskal’s algorithm [79]. Let lMST denote the total (Euclidean)
length of the MST. We then add the shortcut that minimizes
the mean shortest path length over all node pairs, and we
repeat this step until the total length of the network reaches a
certain threshold. (When there is a tie, we pick one shortcut
uniformly at random from the set of all shortcuts that minimize
the shortest path length.) Our final network is the set of nodes
and edges right before the step that would force us to exceed
this threshold by adding a new shortcut. Reference [78] called
this procedure a “greedy shortcut construction”. In adding
shortcuts, we also apply an additional constraint to emulate
real road networks: new edges are not allowed to cross any
existing edges.

Consider a candidate edge ecand (among all of the possible
pairs of nodes without an edge currently between them) that
connects the vectors q and q + �q. We start by examining the
2D case. Suppose that there is an edge eext (which exists before
the addition of a new shortcut) that connects p and p + �p.
The equation of intersection,

p + t�p = q + u�q,

then implies that

t = [(q − p) × �q]z
(�p × �q)z

, t ∈ [0,1],

u = [(q − p) × �p]z
(�p × �q)z

, u ∈ [0,1]. (5)

In Eq. (5), the z component (indicated by the subscripts)
is perpendicular to the plane that contains the network. If
Eq. (5) has a solution, then eext intersects with ecand, so ecand

is excluded and we try another candidate edge. We continue
until we exhaust every pair of nodes that are currently not
connected to each other by an edge. We now consider the
singular cases, in which the denominator in Eq. (5) equals 0.
When �p × �q = 0, it follows that �p ‖ �q (i.e., they are
parallel to each other), so they cannot intersect; therefore, ecand

is not excluded. When �p × �q = 0 and (q − p) × �p = 0
[which is equivalent to (q − p) × �q = 0 because �p ‖ �q
implies that (q − p), �p, and �q are all parallel to each other],
ecand and eext are collinear and share infinitely many points,
so ecand is excluded from consideration in that case as well
[80]. We now consider the 3D case. The distance between (the
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closest points of) ecand and eext is

d = |(�p × �q) · (q − p)|
|(�p × �q)| .

Thus, if d > 0, then it is guaranteed that ecand and eext do not
intersect. Again, �p × �q = 0 corresponds to the parallel
case, so ecand and eext cannot intersect [81]. If d = 0, then the
vectors p and q yield a plane, so we obtain the same solution
as in the 2D case, where we replace the z component in Eq. (5)
with the component that lies in the direction perpendicular to
the relevant 2D plane.

We generate synthetic roadlike networks by placing 100
nodes uniformly at random inside of a unit square (2D) or cube
(3D), and we use a threshold of 2lMST for the total length of
the edges. In Fig. 7, we show examples of 2D and 3D roadlike
networks. For each embedding dimension, we consider 50
different networks in our ensemble. We consider 50 different
initial node locations in each case, but that is the only source of
stochasticity (except for another small source of stochasticity
from the tie-breaking rule) because the construction process
itself is deterministic. Our main observation from examining
these synthetic networks is that correlations of CS values
with other quantities (geodesic PS values, GSNP values,
and BC values) are much larger in the 3D networks than
in the 2D networks (see Table V). This suggests that the
embedding dimension of the roadlike networks is related to
the correlations that we see in coreness (and betweenness)
measures.

To further investigate the effects of the spatial embedding,
we compare the results from the 2D generative model with a
generative model that is the same except for a modified rule
that allows some intersecting edges. As shown in Table V, the
correlation values between PS values and geodesic BC values
for the modified model are slightly larger than in the original
model, though not that many edges cross each other in practice
[see Figs. 7(e) and 7(f)]. Therefore, although prohibiting edge
crossings has some effect on correlations, the fact that most
edges can be drawn in the same plane when edge crossings are
allowed (i.e., the graphs in the modified model are “almost 2D”
in some sense) suggests that the dimension in which a network
(or most of a network) is embedded might have a larger effect
on correlations between coreness (and betweenness) measures
than the edge-crossing rule.

V. CONCLUSIONS AND DISCUSSION

In this paper, we examined two types of core-periphery
structure—one developed using intuition from social net-
works and another developed using intuition from transporta-
tion networks—in several networks from a diverse set of

applications. We showed that correlations between these
different types of structures can be very different in different
types of networks. This underscores the fact that it is important
to develop different notions of core-periphery structure that
are appropriate for different situations. We also illustrated in
our case studies that coreness measures can detect important
nodes and edges. For roadlike networks, we also examined
the effect of spatial embeddedness on correlations between
coreness measures.

As with the study of community structure (and many other
network concepts), the notion of core-periphery structure
is context-dependent. For example, we illustrated that the
intuition behind what one considers a core road or junction
in a road (or roadlike) network is different from the intuition
behind what one considers to be a core node in a social
network. Consequently, it is important to develop and inves-
tigate (and examine correlations between) different notions
of core-periphery structure. We have taken a step in this
direction through our case studies in this paper, and we also
obtained insights in several applications. Our work also raises
interesting questions. For example, how much of the structure
of the rabbit warren stems from the fact that it is embedded in
3D, how much of its structure stems from its roadlike nature,
and how much of its structure depends fundamentally on the
fact that it was created by rabbits (but would be different from
other roadlike networks that are also embedded in 3D)?

Finally, we emphasize that core-periphery structure is a
fascinating and important aspect of networks that deserves
much more attention than it has received thus far in the
literature.
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Interface 9, 2540 (2012).
[67] L. da F. Costa, F. A. Rodriguez, G. Travieso, and P. R. Villas

Boas, Adv. Phys. 56, 167 (2007).
[68] H. H. Kolb, J. Zool. London (A) 206, 253 (1985).
[69] C. R. White, J. Zool. London 265, 395 (2005).
[70] The rabbit warren was excavated for the purpose of filming a

documentary that aired on the BBC [71]. The injection phase was
22–24 January 2013. The excavation phase started on 8–10 April
with mechanical excavation. A mixture of mechanical and hand
excavation was done on 15–17 April. There was exclusively
hand excavation on 22–23 April, and finishing touches were
applied on 30 April 2013 (while the documentary was being
filmed).

[71] The Burrowers: Animal Underground, http://www.bbc.co.uk/
programmes/b038p45r

[72] The simplified rabbit warren data that we used in this paper
is available at https://sites.google.com/site/lshlj82/rabbit_
warren_data.zip. There are two files: one has the
node information, and the other has the edge
information.

[73] S. Buckley (private communication).
[74] D. Hosken, excerpt from the third episode of [71].
[75] The road network data set is available at https://sites.google

.com/site/lshlj82/road_data_2km.zip. The file names give the
city identities.

[76] The code to produce MRFs can be found at http://www.jponnela
.com/web_documents/mrf_code.zip

[77] M. Barthelemy, Phys. Rep. 499, 1 (2011).
[78] S. H. Lee and P. Holme, Eur. Phys. J. Spec. Top. 215, 135

(2013).
[79] J. B. Kruskal, Proc. Amer. Math. Soc. 7, 48 (1956).
[80] R. Goldman, in Graphics Gems, edited by A. S. Glassner

(Academic, Waltham, MA, 1993), p. 304.
[81] W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H.
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