Monte Carlo Objectives

- Treat log of unbiased estimator of \(p(x) \) as an objective
 \[
 q_k(z_{1:k}, z_{1:k-1}) \}
 \]
 \(\text{that can be optimized with stochastic gradients.} \)

Defining FIVO

- Given model \(p \) over a sequence of \(n \) observations \(x \) with \(n \) latents \(z \) that factorizes in tractable conditionals,
 \[
 \text{and a variational posterior,}
 \]
 \(q_k(z_{1:k}, z_{1:k-1}) \}
 \]
 \(\text{define the incremental importance weights}
 \]
 \(\alpha_k(z_{1:k}) = \frac{p_k(z_{1:k}, z_{1:k-1})}{q_k(z_{1:k}, z_{1:k-1})} \}
 \]
 \(\text{Simulate the particle filter, see figures to the right.}
 \]
 \(\text{Define FIVO objective as expected log-likelihood estimator}
 \]
 \(L_{N}^{FIVO}(x_{1:n}, p, q) = \mathbb{E} \left[\sum_{k=1}^{n} \log \hat{p}_k \right] \leq \log p(x_{1:n}) \}
 \]
 \(\text{Tightness}
 \]
 \(\text{In many sequential settings FIVO is a tighter bound than}
 \]
 \(\text{IWAE, since relative variance of particle filter scales better}
 \]
 \(\text{than importance sampling:}
 \]
 \(\text{Proposition. Let } \hat{p}_N(x) \text{ be an unbiased positive estimator of } p(x). \text{ Let } g(N) = \mathbb{E}[\hat{p}_N(x) - p(x)^N] \text{ be the 6th central moment. If the 1st inverse moment } \limsup N g(N) < \infty \text{ is bounded, then}
 \]
 \(\log p(x) - \mathbb{E} \log \hat{p}_N(x) = \frac{1}{2} \text{var} \left(\hat{p}_N(x) \right) + O(\sqrt{g(N)}) \}
 \]

- VRNN [3] trained with ELBO, IWAE, FIVO, and evaluate log-likelihood (relative to ELBO for TIMIT) on heldout data:

Optimizing FIVO

- This is an unbiased gradient for reparameterized latents
 \[
 \sum_{k=1}^{N} \nabla \log \hat{p}_k + \sum_{k'=k+1}^{N} \log \hat{p}_{k'} \nabla \log w_{k'} \}
 \]
 \(\text{in practice, we found it better to drop resampling terms.} \)

ARXIV Link and Citations

https://arxiv.org/abs/1705.09279