B. Applied Statistics II

4. Consider a one-dimensional nonparametric regression problem of the form

$$Y_i = f(x_i) + \sigma \epsilon_i, \quad i = 1, \dots, n$$

where ϵ_i denote i.i.d. random vaiables with zero mean and standard deviation of 1. Assume that

$$0 \leqslant x_1 < x_2 < \dots < x_n \leqslant 1.$$

- (a) [5 marks] Define the *Nadaraya-Watson kernel estimator* and its parameters. Give the definition of a *linear smoother*. Show that the Nadaraya-Watson kernel estimator is a linear smoother.
- (b) [2 marks] Show that the estimator $\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y}$ is a linear smoother. What are its degrees of freedom?
- (c) [5 marks] Let \hat{f} be a linear smoother. State one estimator $\hat{\sigma}^2$ for σ^2 and compute its expectation. Comment on how the bias of $\hat{\sigma}^2$ depends on f and \hat{f} .
- (d) [4 marks] The lm() command in R stands for "linear model". Nevertheless, it can be of use for some nonparametric regression methods. Define a *regression spline* and say briefly why lm() can be used to calculate a regression spline.
- (e) [6 marks] Consider the following estimator

$$\widehat{f}(x) =$$
median { Y_i such that $|x_i - x| \leq \lambda$ }.

- (i) State one desirable and one undesirable property of this estimator.
- (ii) Show that \hat{f} is not a linear smoother for all λ , by considering $\lambda = 2$ and a dataset $\{i, y_i\}_{1 \le i \le n}$, or otherwise.

NOT TO BE DISTRIBUTED TO UNDERGRADUATE STUDENTS

5. (a) [11 marks]

Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} F$ where F is some unknown distribution and let $\widehat{\theta}_n(X_1, \ldots, X_n)$ be an estimator of θ .

- (i) Describe how $\operatorname{Var}(\widehat{\theta}_n)$ is estimated using the bootstrap method.
- (ii) Suppose that an estimator $\hat{\theta}(X_1, \dots, X_n)$ of θ has an expectation equal to $\theta(1 + \gamma)$ so that the bias is $\theta\gamma$. The bias factor γ can be estimated by $\hat{\gamma} = \frac{\mathbb{E}_{\tau}\hat{\theta}(X^{\star})}{\hat{\theta}} 1$ where

$$X^{\star} = (X_{\tau_1}, \dots, X_{\tau_n})$$

with $\tau_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(\{1,\ldots,n\})$ (i.e. each τ_i has a uniform distribution on the discrete values $1,\ldots,n$). Show that $\hat{\gamma}$ is exactly equal to γ in the case of the variance estimate $\hat{\sigma}^2(X) = \frac{1}{n} \sum (X_i - \overline{X})^2$ where $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- (b) [11 marks]
 - (i) Define the *breakdown point* and the *asymptotic breakdown point* of an estimator $\hat{\theta}$. State the asymptotic breakdown point of the median.
 - (ii) Consider the data points x_1, \ldots, x_n with $x_i \in \mathbb{R}$ for all *i*. The following estimator

$$\widehat{p} = \operatorname{median}\left\{\frac{x_i + x_j}{2} : i \leqslant j\right\}$$

is called the pseudomedian. Calculate its asymptotic breakdown point.