B. Applied Statistics II

4. Consider a one-dimensional nonparametric regression problem of the form

$$
Y_{i}=f\left(x_{i}\right)+\sigma \epsilon_{i}, \quad i=1, \ldots, n
$$

where ϵ_{i} denote i.i.d. random vaiables with zero mean and standard deviation of 1 . Assume that

$$
0 \leqslant x_{1}<x_{2}<\cdots<x_{n} \leqslant 1 .
$$

(a) [5 marks] Define the Nadaraya-Watson kernel estimator and its parameters. Give the definition of a linear smoother. Show that the Nadaraya-Watson kernel estimator is a linear smoother.
(b) [2 marks] Show that the estimator $\widehat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y}$ is a linear smoother. What are its degrees of freedom?
(c) [5 marks] Let \widehat{f} be a linear smoother. State one estimator $\widehat{\sigma}^{2}$ for σ^{2} and compute its expectation. Comment on how the bias of $\widehat{\sigma}^{2}$ depends on f and \widehat{f}.
(d) [4 marks] The $\operatorname{lm}()$ command in R stands for "linear model". Nevertheless, it can be of use for some nonparametric regression methods. Define a regression spline and say briefly why $\operatorname{lm}()$ can be used to calculate a regression spline.
(e) [6 marks] Consider the following estimator

$$
\widehat{f}(x)=\text { median }\left\{Y_{i} \text { such that }\left|x_{i}-x\right| \leqslant \lambda\right\} .
$$

(i) State one desirable and one undesirable property of this estimator.
(ii) Show that \widehat{f} is not a linear smoother for all λ, by considering $\lambda=2$ and a dataset $\left\{i, y_{i}\right\}_{1 \leqslant i \leqslant n}$, or otherwise.
5. (a) [11 marks]

Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} F$ where F is some unknown distribution and let $\widehat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)$ be an estimator of θ.
(i) Describe how $\operatorname{Var}\left(\widehat{\theta}_{n}\right)$ is estimated using the bootstrap method.
(ii) Suppose that an estimator $\widehat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ of θ has an expectation equal to $\theta(1+\gamma)$ so that the bias is $\theta \gamma$. The bias factor γ can be estimated by $\widehat{\gamma}=\frac{\mathbb{E}_{\tau} \widehat{\theta}\left(X^{\star}\right)}{\widehat{\theta}}-1$ where

$$
X^{\star}=\left(X_{\tau_{1}}, \ldots, X_{\tau_{n}}\right)
$$

with $\tau_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\{1, \ldots, n\})$ (i.e. each τ_{i} has a uniform distribution on the discrete values $1, \ldots, n)$. Show that $\widehat{\gamma}$ is exactly equal to γ in the case of the variance estimate $\widehat{\sigma}^{2}(X)=\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2}$ where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(b) [11 marks]
(i) Define the breakdown point and the asymptotic breakdown point of an estimator $\widehat{\theta}$. State the asymptotic breakdown point of the median.
(ii) Consider the data points x_{1}, \ldots, x_{n} with $x_{i} \in \mathbb{R}$ for all i. The following estimator

$$
\widehat{p}=\operatorname{median}\left\{\frac{x_{i}+x_{j}}{2}: i \leqslant j\right\}
$$

is called the pseudomedian. Calculate its asymptotic breakdown point.

