B. Applied Statistics II

4. Consider the data in Table 1 taken from Canadian records of pure-bred dairy cattle. They give average butterfat percentages for random samples of 10 mature cows.

Sample	1	2	3	4	5	6	7	8	9	10
Canadian	3.92	4.95	4.47	4.28	4.07	4.10	4.38	3.98	4.46	5.05
Guernsey	4.54	5.18	5.75	5.04	4.64	4.79	4.72	3.88	5.28	4.66

Table 1: Butter fat $\%$ for two different cattle types, 5 years and older (Sokal and Rohlf, 1981).
(a) [6 marks] State the formula for the two sample Wilcoxon test statistic W and the assumptions on the samples $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{m}\right)$.
Calculate the value of W for the data provided.
(b) [6 marks] Consider the null hypothesis that the distribution of average butterfat is the same for Canadian and Guernsey cattle.
(i) Using the normal approximation to the distribution of W under the null hypothesis, or otherwise, test the null hypothesis at the 5% level.
[Note that Var $W=n m(n+m+1) / 12$ under the null hypothesis.]
(ii) The Wilcoxon two sample test is invariant under a large class of transformations of the data. What is this class? Explain why the test statistic is invariant.
(iii) Describe one additional method to calculate the p-value of the Wilcoxon two sample test.
(c) [5 marks] Consider $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} F_{1}$ and $Y_{1}, \ldots, Y_{m} \stackrel{\text { i.i.d. }}{\sim} F_{2}$. We assume that $F_{1}(t)=$ $F_{2}(t+\Delta)$. State the Hodges-Lehman estimator for difference in location. How many data items of X need to be corrupted for the location estimate to take arbitrarily large values?
(d) [5 marks] Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} F_{1}$ and $Y_{1}, \ldots, Y_{n} \stackrel{\text { i.i.d. }}{\sim} F_{2}$, independent of each other. Fix a threshold $t \in \mathbb{R}$ and let U and V denote the number of the X 's and Y 's respectively that are less than or equal to t. Then U and V have Binomial distributions with parameters $\mathbb{P}(X \leqslant t)$ and $\mathbb{P}(Y \leqslant t)$, respectively. Consider the null-hypothesis that $F_{1}=F_{2}$. Let

$$
S=U-V
$$

with null distribution

$$
\mathbb{P}(S=i)=\sum_{j, k: j-k=i}\binom{n}{j}\binom{n}{k} p^{j+k}(1-p)^{2 n-i-k}
$$

where the unknown p can be replaced by the estimate $\widehat{p}=\frac{U+V}{2 n}$.
(i) Give an example of $F_{1} \neq F_{2}$ and t for which the power of the test based on S does not increase to 1 as $n \rightarrow \infty$.
(ii) Give an additional disadvantage of this test compared to the Wilcoxon test.
5. (a) [15 marks] (Bootstrapping) Let Y be a Poisson distributed random variable $Y \sim \operatorname{Po}(\lambda)$. We would like to estimate $\theta=\operatorname{median}(Y)$ on the basis of $Y_{1}, \ldots, Y_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Po}(\lambda)$.
(i) Describe two estimators for $\widehat{\theta}$. An exact formula is not required.
(ii) The aim is to estimate the standard error $\operatorname{se}(\widehat{\theta})$. Describe in words, or using pseudocode, the parametric bootstrap estimate of $\operatorname{se}(\widehat{\theta})$.
(iii) Describe a method in words. or using pseudocode, to obtain a nonparametric bootstrap estimate of $\operatorname{se}(\widehat{\theta})$.
(iv) Describe one method to obtain a bootstrap confidence interval. State if the method yields a first order or a second order accurate confidence interval. Explain what is meant by first order and second order accuracy.
(b) [7 marks] (Local linear regression) Consider the one-dimensional regression problem

$$
Y_{i}=f\left(x_{i}\right)+\varepsilon_{i} \quad \text { for } i=1, \ldots, n
$$

with $x_{i} \in \mathbb{R}$, where $\epsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ and where $f: \mathbb{R} \rightarrow \mathbb{R}$ is an unknown twice continuously differentiable function.
For a kernel K_{h}, local linear regression around x_{0} is given implicitly through the minimisation problem

$$
\left(\widehat{\alpha}\left(x_{0}\right), \widehat{\beta}\left(x_{0}\right)\right)=\underset{\alpha\left(x_{0}\right), \beta\left(x_{0}\right)}{\arg \min } \sum_{i=1}^{n} K_{h}\left(x_{0}, x_{i}\right)\left(y_{i}-\alpha\left(x_{0}\right)-\beta\left(x_{0}\right) x_{i}\right)^{2}
$$

such that the regression estimate is given by $\widehat{f}\left(x_{0}\right)=\widehat{\alpha}\left(x_{0}\right)+\widehat{\beta}\left(x_{0}\right) x_{0}$. The estimate takes the form

$$
\widehat{f_{h}}\left(x_{0}\right)=b\left(x_{0}\right)\left(B^{T} W\left(x_{0}\right) B\right)^{-1} B^{T} W\left(x_{0}\right) Y
$$

where $b(x)=(1, x), B=\left(b\left(x_{1}\right)^{T}, \ldots, b\left(x_{n}\right)^{T}\right)$ and $W(x)$ is a diagonal matrix with entries $K_{h}\left(x_{0}, x_{i}\right)$.
(i) Consider a kernel of the form $K_{h}(x, y)=K\left(\frac{y-x}{h}\right)$ for a twice continuously differentiable function $K: \mathbb{R} \rightarrow \mathbb{R}$ such that $K(x) \geqslant 0 \forall x \in \mathbb{R}, \int K(x) d x=1$ and $\int x K(x) d x=0$.
The prediction error or risk is typically defined as $\mathrm{R}(h)=E\left\{\left(Y-\widehat{f}_{h}(X)\right)^{2}\right\}$ where the expectation is with respect to random new observations Y and x chosen randomly among $\left(x_{1}, \ldots, x_{n}\right)$. Sketch qualitatively the typical behaviour of $\mathrm{R}(h)$ as h varies. How does this relate to the choice of h ? Explain the terms undersmooth and oversmooth.
(ii) Let $l\left(x_{0}\right)=b\left(x_{0}\right)\left(B^{T} W\left(x_{0}\right) B\right)^{-1} B^{T} W\left(x_{0}\right)$. Prove that

$$
\sum_{i=1}^{N} l_{i}\left(x_{0}\right)=1 \quad \text { and } \quad \sum_{i=1}^{N}\left(x_{i}-x_{0}\right) l_{i}\left(x_{0}\right)=0
$$

[Hint: consider $\left.l\left(x_{0}\right) B.\right]$

