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SB1.2/SM2 Computational Statistics - HMM

» References:

» D. Barber. Bayesian Reasoning and Machine Learning, Cambridge
University Press, 2012.

» K.P. Murphy. Machine Learning. A probabilistic perspective. The
MIT Press, 2012

» More advanced references

» R. van Handel. Hidden Markov models. Lecture notes, University of
Princeton, 2008.

» O. Cappé, E. Moulines, T. Ryden. Inference in Hidden Markov
Models. Springer, 2007.

» The course requires the following notions:

» Discrete Markov chains [Part A Probability]
» Bayesian methods: prior, posterior, maximum a posteriori [Part A
Statistics]
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Motivating example

» Sequence of observations y1.7 = (y1,42,...,yr), T > 1
» Some natural order of the data

> Index t in (y¢)¢=1,.. 7 may refer to time, index of a site on a
chromosome or a piece of DNA or the position of a word in a
sentence

» Objective: For each ¢, infer some non-observed/hidden quantity of
interest x; € X where X is a finite set
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Motivating example

» Part-of-Speech Tagging (POST): task of labelling a word in a text
corpus as a particular part of speech, such as noun, verb, adjective

or adverb

VB ADJ DET ADJ NOUN

Nothing is so painful to the human mind

DET ADJ COORD ADJ NOUN
as a great and sudden change.

Figure: Example of Part-of-Speech tagging. Observations (y1,...,yr) are the
T words in a document, where y; refers to the ¢'s word in the document. One
is interested in inferring the tags (z1,...,z7) where x; is the tag associated to

the t's word y; in the sentence.
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Motivating example

» POST may be challenging, as some words such as change or mind
may correspond to different parts of speech (noun/verb) depending
on the context.

» One possibility is to treat the unknown tags x; as fixed parameters.

» But often a lot of prior information on the hidden sequence is
available

> In the POST example, some POS tags have a higher frequency of
appearance than others. We also know that a sentence has some
structure: a pronoun is often followed by a verb, an adjective by a
noun, etc. and we may want to probabilistically encode this
information in order to get better estimates.
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Motivating example

» Bayesian framework is attractive here

» Hidden tags of interest X, ..., X7 are random variables
» Joint probability mass function over the hidden and observed
variables:
p(rrr,y1r) - = P(Xir = 211, Y1 = Y1)
=P(Yi.r = yr.7| X1 = v1.7) P(X1.7 = 21.7)
Likelihood P?gr

» This joint probability mass function defines our statistical model
and can capture complex dependencies between the hidden states
and the observations.
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Motivating example

» Given some observation sequence (y1,...,yr) the information
about the hidden parameter of interest is encapsulated in the
posterior probability mass function

p(xir|yir) = P(X1r = z1.70|Y1.0 = y11)
o IP)(YVI:T = yl:T|X1:T = xl:T)P(XlzT = xl:T)
P(Yl:T = yl:T)
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Motivating example

» Posterior mode or maximum a posteriori (MAP) estimate
» Solve the combinatorial optimization problem

'f@l:T = argmax p(xl:T’yl:T)'
xl:TEXT

» Combinatorial search space has |X'|T elements and grows
exponentially fast with 7T'.

» Calculating exactly the MAP estimate becomes impossible even for
reasonably small values of T'.

» For example, for a document with 7" = 100 words and |X'| = 20
tags, exhaustive search requires to evaluate the 20'%0 ~ 10130
possible sequences.

HMM. HT 2019. F. Caron. 9 / 80



Motivating example

» Simpler model p(z1.7,y1.7)?

» Obvious simplification is to assume independence between the pairs
(X4, Y1), (X;,Y;) for any t # 7, thus ignoring the sequential
structure.

» Posterior factorizes over t

» MAP estimation reduces to solving independently

= argmax P(Y; = y| Xy = ) P(Xy = 2y), t=1,...,T,
Tt€X

» Linear complexity T'|X| in both T" and |X|

» We can now compute estimates, but does the model capture
enough information to perform the task?

> No: By considering each word independently, the estimated tag will
be the same for multiple occurences of the same word, which is
clearly inappropriate for words like mind or change which may be
assigned different tags.
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Motivating example

» Considering a full model p(z1.7, y1.7) may give a realistic
probabilistic representation of the data and hidden variables, but is
practically useless as the estimate cannot be calculated

» Using a much simpler statistical model which assumes
independence across time allows to compute the estimate, but is
too simplistic to address the task.

» Necessary trade-off between the complexity of the model and the
computational cost of obtaining summaries of the parameters of
interest for that model

» Hidden Markov Models is a class of models for sequential data that
offers a very attractive trade-off between the model's ability to
capture dependencies and the tractability of the estimation
algorithms.
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Motivating example

» Keep in mind that HMMs, like other statistical models, are in
general not meant to reproduce the true data generating process.

» They are an interpretation and approximation of the real world,
targeted to the problem at hand.

> As George Box famously wrote in his 1987 book

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be
useful [...]

Essentially, all models are wrong, but some are useful.

» For many problems involving sequential data, Hidden Markov
Models are indeed very useful, if not realistic, statistical models!
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Outline

Discrete-state HMM
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Recap: Discrete Markov chain

> Let Xo.p = (Xo, X1,...,X7) € XT+1 be a sequence of random
variables

» Finite set X is called the state-space.

» The process is called a Markov chain if for any ¢ > 0 and any
Lo, .-, T4l € X,

P(Xt+1 = :Et+1|Xt = Ty .- ,Xo = CCQ) = P(Xt+1 = ﬂft+1|Xt = l‘t)

» The Markov chain is said to be homogeneous if
P(X¢11 = j|X; = i) does not depend on ¢
> In this case we write

Ai,j = ]P)(Xt-i-l = j’Xt = Z) i, € X

» For simplicity of exposure, we will only consider homogeneous
Markov chains

» For zp € X, let py, = P(Xo = ) be the pmf of the initial state
Xo.
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Recap: Discrete Markov chain

» The joint pmf of Xi.7 is parametrized by (A; ;)i jex and (1;)icx

p(xg;T) = ]P’(X() = 20y -- ,XT = th)
T
= P(Xo = ) HP(Xt = 24| Xy—1 = 21-1)
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Outline

Discrete-state HMM

Hidden Markov Models
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Hidden Markov Models

>

Let Xo.r = (X0, X1,...,X7) € XT*! be a homogeneous Markov
chain with transition matrix (A4;;).

Consider another sequence of random variables Y1.p = (Y3,...,Y7p)
taking values in some set ) called the observation space.

The random variables Y; may be continuous or discrete.

For simplicity of exposure, we only consider discrete random
variables Y;

The random variables (Y7,...,Yr) are independent conditional on
the sequence (Xo, ..., X7).

For discrete random variables Y;

P(Y1 =y1,...,Yr = yr|Xo = 20,..., X7 = 27)

T
= HP(Yt = yt|Xt = JUt)
t=1
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Hidden Markov Models

» If the conditional probability P(Y; = y;|X; = x;) does not depend
on t, then the HMM is said to be homogeneous.

> We write, forx € X andy € Y
9= (y) == P(Y; = y| X = x)

where g;(y) is called the emission probability mass function.

» Using the Markov and conditional independence properties of the
HMM, the joint probability of the hidden states and observations is

T
IP>(‘XO:T = Zo.T, }/O:T = yO:T) = Hzo Hga:t (yt)Awt_l,xt
t=1
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Hidden Markov Models

4

Figure: Graphical representation of a hidden Markov model. Hidden states are
represented with blue circles, and observations with orange circles.
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Outline

Discrete-state HMM

Some applications of HMMs
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Hidden Markov Models: Examples

Part-of-Speech tagging

VB ADV ADJ DET

Nothing is so painful to the

DET ADJ COORD ADJ
as a great and sudden

» X is a set of tags or POS

v

Y is a set of words (vocabulary)

v

Y; is the t's word in the document
X is the unknown POS tag

v

ADJ NOUN
human  mind

NOUN
change.
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Hidden Markov Models: Examples

Robot localization

» Robot with an internal grid-based map of his environment and
some sensors which enable it to detect obstacles/amers.

The state space X is set of possible positions of the robot on a grid
Observation space is Y = {0, 1} (detection/non-detection)

X is the (unknown) position of the robot at time ¢ on the grid

Y} is the observed detection/non-detection of an obstacle
Objective: calculate over time the probability

P(Xy = x¢|Y1.7 = y1.7) that the robot is in a given cell z; € X at
time t given the measurements up to time .

vV vVvVyVvYyVvyy
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Hidden Markov Models: Examples

Gene finding

» Genetic material of an organism is encoded in DNA

» Sequence of base pairs made of four chemical bases: adenine (A),
guanine (G), cytosine (C) and thymine (T).
» Genetic sequence is made of coding and non-coding sub-sequences.

» Coding sub-sequences encode proteins and the task of separating
coding and non-coding sequences of DNA is known as gene finding
and is an important problem in computational biology.

Coding Non-coding

ATTGAC CCATCGTGC CATAGTCGC TGA
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Hidden Markov Models: Examples

Gene finding

v

State space X = {0, 1} where 0:coding, 1:non-coding

v

Observations Y; are the type of the base pair, encoded with the
four-letters observation space ) = {A,C, G, T'}.

X € {0,1} in the hidden state (coding/non-coding).

Based on the observed DNA sequence y1.7, we aim at inferring the
coding sub-sequences.

v

v

Coding Non-coding

ATTGAC CCATCGTGC CATAGTCGC TGA
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Outline

Discrete-state HMM

Inference in HMM
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Hidden Markov Models

Some notations

We will use the following notations

= P(Xi41 = 21| Xy = 24)

=P = | Xy = 2)

P(Xt = ﬂﬁt\Yl =Yl,..., Y = yt)
(

]P)}/l_yla

etc., where the subscripts indicate which random variables we are

referring to.

HMM. HT 2019. F. Caron. 27 / 80



Hidden Markov Models: Inference

» Assume that we have a sequence of observations (y1,...,yr).
» The classical inference problems are the following:
Filtering

v

p(@ely1:t)

Prediction

v

p(xt‘yl:s)v s<t

v

Smoothing
p(xt‘yl:s)7 s>t

Likelihood

v

p(y1.7)

v

Most likely state path

arg max p(xo.r|y1.7)
Zo:T
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Hidden Markov Models: Inference

Filtering and forward recursion

» We are interested in the conditional probability mass function

p(t|y:e)

of the hidden state X; given the data observed up to time t.

» Note that, by Bayes rule, p(z¢|y1.1) can be obtained by normalizing
p(zt; Y1)
p(zt; Y1:t)
/
x;e){p(mtvyl:t)

p(xt|y1:t) - Z

» Recursion for p(x,y1:4)
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Hidden Markov Models: Inference

Filtering and forward recursion

p(@, y1:e) = Z p(@e, Te—1, Y1, Y1:e—1)
"L‘t71€X

= Z p(yelwe, -1, Yyra—1)P(@e|T1—1, y1:0—1)p(Te—1, Y1:-1)
Tt—1 ex

plyeles) Y plwilzia)p(e1, yre)
Ty 1EX

Define ay(xy) = p(x¢,y1.¢). The equation above defines the a-recursion.
Fort=1,...,7T, z; € X

at(fvt):p(yt|$t) Z P($t|$t—1)at—1($t—1)
ri_1E€EX

with ag(zg) = p(xo).
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Hidden Markov Models: Inference

Filtering and forward recursion

v

Consider X ={1,..., K}

Forward «-recursion:

v

v

Fori=1,...,K, set ap(i) = p;
Fort=1,....T
eForj=1,... K, set

v

K

a(4) = gj(we) Y Aijau1(i)

i=1
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Hidden Markov Models: Inference

Filtering and forward recursion

The filtering pmf is obtained by normalizing «;(x;) as

_ p(Tt, y1:t) N ag ()
e R SR

The likelihood term p(y1.7) can be computed from the a recursion

p(y1.1) ZOéT

reX
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Hidden Markov Models: Inference

Filtering and forward recursion

» The computation cost of the whole forward recursion is O(T| X |?)

» Note that the proposed recursion may suffer from numerical
underflow/overflow, as a; may become very small/large for large ¢

» A solution is to normalize ay; or similarly, to propagate the
alternative predict-update recursion

p(zelyre—1) = Z p(xe|zi—1)p(Te—1]Y1:0-1) Predict
T 1€X

G, (Y1) (T |y1:4—1)

zeX 9z, (yt>p(x;f‘y1:t—1)

p(ze|yre) = 5 Update
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Hidden Markov Models: Inference

Forward-backward smoothing

» We are now interested in the conditional probability mass function

p(ﬂﬂt!ylzT)

of the state X; given all the data from time 1 to 7.
> First note that

p(we, y1.7)
p(y1.1)
_ p(xt, Y1:4)p (Y4 1:7]7t)
p(y1.T)

p(mt’ylzT) =

hence p(z¢|y1.7) can be obtained by normalizing
p(xt’ylst)p(yt+1:T|xt)'

» The first term is ay(z¢) which can be obtained by a forward
recursion. We now show how to obtain the second term
Bi(xt) = p(yi+1.7|x¢) by a backward recursion
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Hidden Markov Models: Inference

Forward-backward smoothing

pyer|eia) = p(yer, zilwi)

rt€X

= pelyerrer, o, we)p (Yo, Tl Ti-1)
T€EX

= > pyelee)p(yesrr|ee, e1)p(dle-1)
zre€X

= Z p(e|ze)p(Yesr.r|@e) p(2e|zi—1)
zt€X

Hence ; follows the following backward recursion for t =17, ...,2
Bi—1(wp—1) = Z p(yelxe)p(e|@e—1)Be(we)
reX

with ﬁT(fT) =1.
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Hidden Markov Models: Inference

Forward-backward smoothing

» The forward and backward recursions can be run independently

» The smoothing posterior is finally obtained by normalization

~plnyir) o) Be(a)
Pladin) = = T T (@)@

» The overall computational cost of the forward-backward algorithm
is O(T| X |?)
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Hidden Markov Models: Inference

lllustration

» Consider a frog on a ladder with K = 6 levels, and let X; be the
level at which the frog is at time t.

> (X¢)i=o,.. is a Markov chain with the following transition
probabilities

]__
AZ,,-H:?]’ fori=1,....T—1

A”:p forizl,...,T

1—
Al}i—l:Tp fOFiZQ,...,T

and Ajps=1—pand Ag; = 1%", p=0.4.
» At time ¢ = 0, all states are equally likely
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Hidden Markov Models: Inference

lllustration

» The frog's position is not observed, but a frog's detector is installed
at the lowest level of the ladder, which sends a signal Y; € {1,2} at
each time ¢ where 2 indicates detection and 1 non-detection.

> Probability of detection

09 ifk=1
05 ifk=2
Bra=PM=2X=k) =4 1 1 _3

0 Otherwise

» We observe the following sequence
yiag = (1,1,1,1,2,2,1,1,1,1,2,2,1,2) and want to infer the
filtering and smoothing pmfs of the frog's position at each time ¢
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Hidden Markov Models: Inference

Illustration: Filtering

alpha_recursion = function(y, mu, A, B)
{
K = length(mu)
T = length(y)
alpha = matrix(0, nrow=T,ncol=K)
for (j in 1:K) alphal1l,j] = B[j,y[1]] *sum(A[,j]l* mu)
for (t in 2:T) for (j in 1:K) alphalt,j] = B[j,y[t]] *sum(A[,jl* alphalt-1,])
return(alpha)
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Hidden Markov Models: Inference

Illustration: Filtering
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Hidden Markov Models: Inference

Illustration: Smoothing

beta_recursion = function(y, mu, A, B)
{
K = length(mu)
T = length(y)
beta = matrix(0, nrow=T,ncol=K)
for (j in 1:K) betalT,j]l =1
for (t in T:2) for (i in 1:K) betalt-1,i] = sum(B[,y[t]]*A[i,]* betalt,])
return(beta)
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Hidden Markov Models: Inference

Illustration: Smoothing
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Hidden Markov Models: Inference

MAP estimation

» We are interested in the Maximum a posterior estimate
To.7 = arg max p(xo.r|y1.T)
Zo:T
or equivalently, for fixed y1.p

Zo.r = arg max p(zo.1, Y1.7)
Zo:T

> Note that direct optimization would quickly become unfeasible as
the number of different state paths is | X' |71,

» The MAP estimate can be calculated efficiently using the Viterbi
algorithm, which uses a backward-forward (or forward-backward)
recursion and is a special case of the so-called max-product
algorithm.
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Hidden Markov Models: Inference

MAP estimation
» First note that

T
p(zo.r, Y1) = HP (zt|ze—1)p(ye| )
t=1

and

T
Hp $t|33t 1 yt|l‘t)
t=1

= max {[p p(zi|re—1)p (yt\xt)] rr;aTtXp(lewT_ﬁp(yTIW)}

Z0:T—1

= max {[p p(xe|xi—1)p (yt\fﬂt)] mT—l(xT—l)}

where mT_l(:ET_l) = maxg, p(xr|rr_1)p(yr|rT) is the message from
the end of the chain to the penultimate timestep.
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Hidden Markov Models: Inference
MAP estimation

» We can continue in this manner
» Fort=T-—1,...,1, let

T
my-1(2¢-1) = max {Hp(wklafkl)P(yk!wk)}

k=t

and mp(zr) = 1.

» my_1(z—1) satisfies the following backward recursion

me—1(z—1) = Hu}gxp(yt!wt)P(ﬂﬁt\xt—l)mt(xt)
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Hidden Markov Models: Inference

MAP estimation

» Note that
p(zo)mo(zo) = maxp(zo.r, yr.7)
Hence
Zo = argmax <maXp(fL’0,$1:T7y1:T)>
o 1.7
= arg II;%X mo(fﬂo)P(io)
> Similarly,

Z; = arg max (maX P(Z0:t—1, Tt, Teg1:1, yl:T))
Tt xt+1:T

= argmax | max p(i"tfla Tty Tt41:T> yt:T)
Tt Tt41:T

= argmax (me(ze) p(ye|@e)p(ae|2e-1)) -
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Hidden Markov Models: Inference
MAP estimation

Viterbi algorithm with X = {1,..., K}

» Fori=1,...,K, set mp(i) = 1.
» Fort=1T,...,1
» Fori=1,..., K, let

my—1(i) = max g; (ye) Aijme(7)

,,,,,

» Set &p = argmax mg(7) L,
i=1..,K

» Fort=1,...,T
> Set

&y = argmax my ()9 (ye) Az, i-
i=1...,K
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Hidden Markov Models: Inference

MAP estimation

» The computational complexity of the Viterbi algorithm is
O(T| X |?), the same as the forward-backward recursion

» For numerical stability, logarithms are computed in practice
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Hidden Markov Models: Inference

MAP estimation: lllustration

viterbi = function(y, mu, A, B)

{

= length(mu)

length(y)

matrix (0, nrow=T,ncol=K)
m0 = matrix(0, nrow=1,ncol=K)
x.map = rep(0, T)

= I I

# Backward

for (i in 1:K) m[T,i] = 1

for (t in T:2) for (i in 1:K) m[t-1,i] = max(B[,y[t]]*A[i,]* m[t,])
for (i in 1:K) mO[i] = max(B[,y[1]11*A[i,1* m[1,])

#Forward

x0.map = which.max(m0 * mu)

x.map[1] = which.max(m[1,]1*B[,y[1]11*A[x0.map,])

for (t in 2:T) x.map[t] = which.max(m[t,]*B[,y[t]]*A[x.map[t-1],])
return(x.map)
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Hidden Markov Models: Inference

MAP estimation: lllustration
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Outline

Discrete-state HMM

Learning in HMM
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Hidden Markov Models: Learning

v

So far we have assumed that the parameters A, 1 and g of the
HMMs were known

v

This is not the case in general
We can differentiate two cases

v

» The fully observed case: we have a dataset where the hidden states
(zo,21,...,2x7) are known

» The unsupervised case: all we have is the data (yi,...,yr) and the
hidden variables are not observed

v

For simplicity, we only consider estimation of the transition matrix
A.
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Hidden Markov Models: Learning

Fully observed data

» If the hidden states (xg,x1,...,27) are known, the parameter A
can be fitted using maximum likelihood

> Letn;j = Zthl I(xy = j,x4—1 = 1) be the number of transitions
between state ¢ and state j.

» The MLE of A4, ; is
ni,j

A=
7-]
Zzex UZN
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Hidden Markov Models: Learning

Unsupervised case

> If the hidden states are not observed, finding the MLE is much
more challenging as we want to optimize

ﬁ = arg max lOgP(y1:T§ A)
A

» It is possible to derive an iterative algorithm, known as the
Baum-Welch algorithm to find the MLE

» The Baum-Welch algorithm is a special case of the
Expectation-Maximization algorithm, applied to HMMs
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Hidden Markov Models: Learning

Unsupervised case

» EM algorithm
> At iteration k
» E step

Q(A’ A(kil)) = ]E[logp(XO:T7 Y1:1; A)‘yl:Ta A(kil)]

» M step
AR = argmax Q(A; A*~D)
A

» Each iteration increases the value of the log-likelihood
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Hidden Markov Models: Learning

Unsupervised case

» The prior pmf can be expressed as

('IO Ta = Mz H Anl]

1,jEX

» The log joint pmf can be expressed as

T
log p(wo:r, Y173 A) = 10g ray + Y nijlog Asj+ > log gy, (1)

1,JEX

t=1

HMM. HT 2019. F. Caron. 56 / 80



Hidden Markov Models: Learning

Unsupervised case

» The @ function of the EM is thus expressed as

Q(A; A*) = E[log p(Xo.7, y1.17; A) ly1.1, A”]

= Z E[Ni jly1.r, A*]log Aij + C
ijex

where C' is a constant independent of A and

Nij=> I(X;=j,X¢1=1).
t=1

The expected counts can be expressed as

T

yrr, AT =Y P(X; =, Xi1 = ilyrr; A”)
=1

E[Ni ;
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Hidden Markov Models: Learning

Unsupervised case

» The terms p(zy, z4—1|y1.7; A*) can be obtained from the
forward-backward recursion, as [check!]

p(l’m Tt—1 ’ylzTQ A*) X a1 (xt—l)p(yt’xt)p(xt|$t—1),8t(xt)

» The M step gives

k —
A;J) — argrggj)_( E[Ni,j|y1;T,A(k D] log A
— E[Ni,j’yl;']“, A(k_l)]
> B[N e|yrr, AB=D]
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Recap: multivariate Gaussian random variables

» The probability density function of a multivariate Gaussian random
variable X € R% with mean z and covariance matrix X is given as

N (i, 5) = Mexp{—§<x S m}.

» Notations: For X,Y continuous random variables, we write p(x),
p(z,y) and p(x|y) for the pdf of X, (X,Y) and X|Y =y

HMM. HT 2019. F. Caron. 61 / 80



Recap: multivariate Gaussian random variables

» Let (X,Y), X € R% and Y € R%, be a jointly Gaussian vector
with mean and covariance matrix

MZ(Hx>’E:(ExJ} Emy)
Hy Yyr Dy
Then the marginals are given by

Y ~ N(My» Eyy)

and the conditional
XY =y ~ N(pzpy, Zapy)
where
Say = Sz — SaySyy Sya
Haly = to + Sy Sy (y — 1)
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Recap: multivariate Gaussian random variables
» Consider Gaussian random variables X € R% and Y € R% with
X ~ N (s X
YIX=2~N(Az+b,%,,)

where p, € R%, Yex is @ dy x d, covariance matrix, A is a dy, x d,
matrix, b is a d, vector and X, is a dy X d, covariance matrix.

ylx
Then
(XY =y)~N (“rEIy7 Zw\y)
Y ~N (Nyv z:yy)
where
py = Apz + b
Syy = Sypp + ATez AT
—1
Sy = (Sad + AT, 14)

. HT 2019. F. Caron. 63 / 80
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Linear Gaussian state-space models
» (Xo,...,X7), X; € R% be the hidden states

» (Y1,...,Yr), Y; € R% are observations

» Linear Gaussian state-space model, fort =1,...,T
X = F X1+ Gi V4 State model
Y, = HX; +W; Observation model

where the random variables (Xo, V1, Va, ..., Vp, Wi, Wa, ..., Wr)
are independent with X ~ N (po,Xo) and for t =1,....T,

‘/t NN(OaQt)7 Wt NN(OvRt)

with

» V; is the state noise at time ¢
W, is the observation noise at time ¢
F} is the d, x d, state transition matrix
Gy is the d, x d, noise transfer matrix
H, is the d,, x d, observation matrix

vV vy VvyYy
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Linear Gaussian state-space models

» Under the above assumptions, the sequence
(Xo0,X1,Y1,...,Xp,Yp) is a (continuous-state) hidden Markov
model

» If GyQ;G] has full rank, the joint pdf p(zo.7, y1.7) factorizes as

T

p(zor,yr1r) = plao) [ [ plyslwe)p(alwi—1)

where

p(ﬂﬁt\ﬂct—l) = /\/(xt; Fiay_q, GtQthT)
p(yt|ze) = N (ye; Hywy, Ry)
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Linear Gaussian state-space models
Example: Object tracking
» Let X; = (P?, P!, P?, V&, VY, V)T denote the position and
velocity of an object at time index t = 0,1, .. ..

» The position and velocity are not directly observed, but a GPS
delivers noisy observations of the position

Y= (Ptxaptyvptz)-r + W

where W, ~ N (0, R).
» White noise acceleration model

52
PP =P +0Vi%, + 514%—1

Vi =ViZ + 047,
where § =1 here, A7 ; is the unknown acceleration at time ¢,

assumed to be Gaussian with zero mean and variance Q*, and
similarly for the other coordinates.
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Linear Gaussian state-space models
Example: Object tracking

» Dynamic linear Gaussian model with

100100 /2 0 0
010010 0 1/2 0
oo 1001 o 0 12
F=looo1o00[ % 1 o o
000010 0 1 0
000001 0 0 1
100000
H={(0100 00
001000

and V; = (A% |, AY | A7 )T

» Objective is to calculate p(x¢|y;.;) at each time ¢.
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Linear Gaussian state-space models

Example: Linear regression with time-varying coefficients

» Let (2, Y:), t=1,...,T where z; € RP are covariates and Y; € R
are response variables

» Linear relation between the response and the covariate

» Regression coefficients are assumed to evolve over time

B =Bi—1+ W
Y = 26 + Wy

where 5; € RP is the regressor at time ¢, and V; is a vector of
independent Gaussian random variables with variance o7
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Inference in Linear Gaussian state-space models

Kalman Filter

» Filtering pdf p(z¢|y1.+) of the hidden state X; given observations
Y1.¢ up to time .

> Let
pee—1 = E[X¢| Y141 = y14-1]
2t|t71 = E[(X: — Het|t— (X — Nt|t71)T|Y1:t—1 = Y11
ppe = E[X¢ Y14 = y14]
Zt|t = E[(X; — Mt|t)( t— Mt|t)T|Y1:t = Y1:t)
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Inference in Linear Gaussian state-space models

Kalman Filter

> Let p(x¢|y1.1) and p(z¢|y1¢—1) be the filtering and one-step
predictive pdfs at time ¢. Then

p(@e|yr—1) = N (x5 prege—1, Seje—1)
p(xelyre) = N (w4 K|t Et\t)

> (=1, Zeje—1) and (g, Xyp¢) follow a two-step recursion
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Inference in Linear Gaussian state-space models

Kalman Filter

» Prediction Step

Htjt—1 = FtMt—1|t—1
Et\t—l = tht—l\t—lFtT + GtQthT
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Inference in Linear Gaussian state-space models

Kalman Filter

» Update/correction step
Ptje = Hep—1 + K
S = (I — KiHy) Yy
where 14 is the residual or innovation
Ve =Yt — Qt|t—1
Grje—1 = E[Ye|Yia—1 = y14—1] = Hipyyp—1
and K; is the Kalman gain
Ky =Sy, HS7
with
Sy = E[(Y: — th\tfl)(Y;f - gt\tfl)T‘let—l = Y1:4-1]
= Ht2t|t71HtT + Ry
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Inference in Linear Gaussian state-space models
Kalman Smoother

» We are now interested in the smoothing pdfs p(x¢|y;.7) of the
hidden state X, given all the observations y;.7.
> Let

pyr = E[Xe|Yi.r = y1.7]
._ T _
Sy = E[( Xy — poyr) (Xe — poyr) ' 1Y1.r = 1.7

» We can obtain the smoothing pdfs by

1. Run the forward recursion of the Kalman filter, in order to obtain
(#ee)e> X¢pe) for t =1,..., T, and
2. Run a backward recursion.
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Inference in Linear Gaussian state-space models

Kalman Smoother

> Let p(x¢|y1.7) be the smoothing pdf at time ¢. Then

p(@ilyr.r) = N (24 by Xyr)

where (17, Xy 1) follow the recursion

oy = teje + Je(pgrm — Hesige)
Sor = S + Je(Serar — Serg) S

where J; is the backward Kalman gain

_ T -1
Jr = Zt‘tFt+1Et+l|t'
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Inference in Linear Gaussian state-space models

Example

» Consider the following simple scalar example of a random walk
observed in noise

Xi =X 1+ WV,
Y, =Xy + Wy

where X ~ N(0,1), Vi ~ N(0,Q), Wi ~ N (0, R) where
Q=0.02and R =0.2.
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Inference in Linear Gaussian state-space models

Example

» Prediction

Hijt—1 = He—1]t—1
Ypji—1 = Ypqpp—1 + Q

» Update
Sile—
K, — tlt—1
Y1+ R
and
5 RY11
tt Y1+ R
n Yije—1
K¢ S +Rﬂt\t—1 Et|t,1+R t
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