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1 Motivating example

Consider that we have a sequence of observations y1:T = (y1, y2, . . . , yT ), T ≥ 1 where there is some natural
order of the data. The index t in the sequence (yt)t=1,...,T may refer to time, the index of a site on a chromosome
or a piece of DNA or the position of a word in a sentence. For each index t = 1, . . . , T , we are interested in
inferring some non-observed/hidden quantity of interest xt ∈ X where X is a finite set. For illustration, consider
the following problem in natural language processing, known as Part-of-Speech tagging.

Part-of-speech tagging (POST) refers to the task of labelling a word in a text corpus as a particular part of
speech, such as noun, verb, adjective or adverb. An illustration is given in Figure 1.

PRON VB ADV ADJ PREP DET ADJ NOUN PREP DET ADJ COORD ADJ NOUN

Nothing is so painful to the human mind as a great and sudden change.

Figure 1: Example of Part-Of-Speech tagging. Observations (y1, . . . , yT ) are the T words in a document, where
yt refers to the t’s word in the document. One is interested in inferring the tags (x1, . . . , xT ) where xt is the
tag associated to the t’s word yt in the sentence.

POST may be challenging, as some words such as change or mind may correspond to different parts of speech
(noun/verb) depending on the context. One possibility is to treat the unknown tags xt as fixed parameters.
However, one usually has quite a lot of prior information on the hidden sequence of tags. For example, in the
POST example, we know that some POS have a higher frequency of appearance than others. We also know
that a sentence has some structure: a pronoun is often followed by a verb, an adjective by a noun, etc. and we
may want to probabilistically encode this information in order to get better estimates. This can be done in a
Bayesian framework, by assuming that the hidden tags of interest X1, . . . , XT are also random variables, and
by considering a joint probability mass function (pmf) over the hidden and observed variables:

p(x1:T , y1:T ) : = P(X1:T = x1:T , Y1:t = y1:t)

= P(Y1:T = y1:T |X1:T = x1:T )︸ ︷︷ ︸
Likelihood

P(X1:T )︸ ︷︷ ︸
Prior

.

This joint probability mass function defines our statistical model and can capture complex dependencies
between the hidden states and the observations. Given some observation sequence (y1, . . . , yT ) the information
about the hidden parameter of interest is encapsulated in the posterior probability mass function

p(x1:T |y1:T ) := P(X1:T = x1:T |Y1:T = y1:T )

=
P(Y1:T = y1:T |X1:T = x1:T )P(X1:T = x1:T )

P(Y1:T = y1:T )

From this, we can calculate a point estimate, for example the posterior mode or maximum a posteriori
(MAP) estimate. This boils down to solving the following combinatorial optimization problem

x̂1:T = arg max
x1:T∈XT

p(x1:T |y1:T ).

However, the combinatorial search space has |X |T elements and grows exponentially fast with T . Calculating
exactly the MAP estimate quickly becomes impossible even for reasonably small values of T . For example, for
a document with T = 100 words and |X | = 20 tags, exhaustive search requires to evaluate the 20100 ' 10130

possible sequences.
Maybe one should make some simplifying assumptions on p(x1:T , y1:T ). An obvious simplification would be

to assume independence between the pairs (Xt, Yt), (Xτ , Yτ ) for any t 6= τ , thus ignoring the sequential structure.
In this case, the posterior pmf factorizes over t, and MAP estimation reduces to solving independently

x̂t = arg max
xt∈X

P(Yt = yt|Xt = xt)P(Xt = xt), t = 1, . . . , T,

which has a linear complexity T |X | in both T and |X |, hence a combinatorial search space of size 2000 in the
previous example. We now have a statistical model for which we can compute the MAP estimate. But the
statistical model, although it can incorporate prior information about the frequency of each tag, appears to be
too simplistic for the POST task. By considering each word independently, the estimated tag will be the same
for multiple occurrences of the same word, which is clearly inappropriate for words like mind or change.
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In conclusion, considering a full model p(x1:T , y1:T ) may give a realistic probabilistic representation of the
data and hidden variables, but is practically useless as the estimate cannot be calculated. Using a much simpler
statistical model which assumes independence across time allows to compute the estimate, but is too simplistic
to address the task. Hidden Markov Models is a class of models for sequential data that offers a very
attractive trade-off between the model’s ability to capture dependencies and the tractability of the estimation
algorithms. It is important to keep in mind that HMMs, like other statistical models, are in general not meant
to reproduce the true data generating process. They are an interpretation and approximation of the real world,
targeted to the problem at hand. As George Box famously wrote in his 1987 book

Remember that all models are wrong; the practical question is how wrong do they have to be to not
be useful.[...]

Essentially, all models are wrong, but some are useful.

For many problems involving sequential data, Hidden Markov Models are indeed very useful, if not realistic,
statistical models!

2 Discrete-state Hidden Markov models

2.1 Recap: Discrete Markov chain

Let X0:T = (X0, X1, . . . , XT ) be a sequence of random variables (random process) taking values in some finite
set X called the state-space. The process is called a Markov chain if for any t ≥ 0 and any x0, . . . , xt+1 ∈ X ,

P(Xt+1 = xt+1|Xt = xt, . . . , X0 = x0) = P(Xt+1 = xt+1|Xt = xt) (1)

The Markov chain is said to be homogeneous if P(Xt+1 = j|Xt = i) does not depend on t. In that case, we
write

Ai,j := P(Xt+1 = j|Xt = i) i, j ∈ X

For simplicity of exposure, we will only consider homogeneous Markov chains, but the algorithms can also be
derived in the non-homogenous case as well. For x0 ∈ X , let µx0

= P(X0 = x0) be the pmf of the initial state
X0. The joint pmf of X1:T is parameterized by (Ai,j)i,j∈X and (µi)i∈X

p(x0:T ) := P(X0 = x0, . . . , XT = xt)

= P(X0 = x0)

T∏
t=1

P(Xt = xt|Xt−1 = xt−1)

= µx0

T∏
t=1

Axt−1,xt

2.2 Hidden Markov model

Let X0:T = (X0, X1, . . . , XT ) be a homogeneous Markov chain taking values in X with transition matrix (Aij).
Consider another sequence of random variables Y1:T = (Y1, . . . , YT ) taking values in some set Y called the
observation space. The random variables Yt may be continuous or discrete. We assume that the random
variables (Y1, . . . , YT ) are independent conditional on the state sequence (X0, X1, . . . , XT ). For discrete ran-
dom variables Yt

P(Y1 = y1, . . . , YT = yT |X0 = x0, . . . , XT = xT ) =

T∏
t=1

P(Yt = yt|Xt = xt)

If the conditional probability P(Yt = yt|Xt = xt) does not depend on t, then the HMM is said to be homogeneous.
We write, for x ∈ X and y ∈ Y

gx(y) := P(Yt = y|Xt = x)

where gx(y) is called the emission probability mass function.
For continuous random variables Yt, we use the same notation gx(y) for the probability density function of

Yt|Xt defined as

Pr(Yt ≤ y|Xt = x) =

∫ y

−∞
gx(ỹ)dỹ.
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To simplify exposure, we will only consider discrete observations in the rest of Section 2. Using the Markov
and conditional independence properties of the HMM, the joint probability of the hidden states and observations
factorizes as

P(X0:T = x0:T , Y0:T = y0:T ) = µx0

T∏
t=1

gxt
(yt)Axt−1,xt

A graphical representation of the HMM is given in Figure 2.

X0 X1 X2 X3 . . .

Y2Y1 Y3

Figure 2: Graphical representation of a hidden Markov model. Hidden states are represented with blue circles,
and observations with orange circles. An arrow from node A to node B indicates that A is a parent of B.
For example parents(Y2) = X2. The figure encapsulates conditional independence relations in the sense that

p(x0:T , y1:T ) = p(x0|parents(x0))
∏T
t=1 p(xt|parents(xt))p(yt|parents(yt)). For more details on graphical models,

see the Part C/MSc course on graphical models.

2.3 Some examples

Part-of-Speech Tagging. In natural language processing, part-of-speech tagging (POST) refers to the task
of labelling a word in a text corpus as a particular part of speech, such as noun, verb, adjective or adverb. POST
may be challenging, as some words may correspond to different parts of speech depending on the context. Hidden
Markov models have been used for POST as they allow to take into account the structure of the language.

The observation space Y is the set of words (vocabulary) and the state-space X is the set of tags. Yt refers
to the observed word at position t in the sentence, and Xt its unknown tag.

Robot localisation. Consider a robot equipped with a map of his environment and some sensors (e.g. sound
sensors) which enable it to detect obstacles. The objective of the robot is to self localize himself in the map,
based on noisy measurements and map of the environment. The state space X is the position of the robot on
a grid. The observation state is Y = {0, 1} to indicate if it has detected an obstacle or not. Xt refers to the
position of the robot at time t on the grid, and Yt the detection/non-detection of an obstacle. The objective is
to calculate over time the probability P(Xt = xt|Y1:T = y1:T ) that the robot is in a given cell at time t given
the measurements up to time t.

Figure 3: Robot localization: A robot needs to infer its position Xt on a grid-based map based on noisy
measurements.

Gene finding. The genetic material of an organism is encoded in DNA, a long polymer which consists of
a sequence of base pairs made of four chemical bases: adenine (A), guanine (G), cytosine (C) and thymine
(T). The genetic sequence is made of coding and non-coding sub-sequences. Coding sub-sequences encode
proteins and the task of separating coding and non-coding sequences of DNA is known as gene finding and
is an important problem in computational biology. The state space is X = {0, 1} where 0 indicates a coding

http://www.stats.ox.ac.uk/~evans/gms/index.htm
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Coding Non-coding

ATTGAC CCATCGTGC CATAGTCGC TGA

Figure 4: Illustration of gene finding.

region and 1 a non-coding region. Observations are the type of the base pair, encoded with the four-letters
state-space Y = {A,C,G, T}. Observations Yt are the base pair at the location t in the genome, and Xt ∈ {0, 1}
in the hidden state (coding/non-coding). Based on the DNA sequence Y0:T , we aim at inferring the most likely
sequence X0:T .

2.4 Inference in HMM

For simplicity of exposure, we will only consider discrete-valued observations Yt, but the algorithms apply
similarly with continuous observations. We will use the following notations

p(xt+1|xt) = P(Xt+1 = xt+1|Xt = xt)

p(yt|xt) = P(Yt = yt|Xt = xt)

p(xt|y1:t) = P(Xt = xt|Y1 = y1, . . . , Yt = yt)

p(y1:t) = P(Y1 = y1, . . . , Yt = yt)

etc., where the subscripts indicate which random variables we are referring to.
Assume that we have a sequence of observations (y1, . . . , yT ). The classical inference problems are the

following:
• Filtering

p(xt|y1:t)

• Prediction
p(xt|y1:s), s < t

• Smoothing
p(xt|y1:s), s > t

• Likelihood
p(y1:T )

• Most likely state path
arg max

x0:T

p(x0:T |y1:T )

2.4.1 Forward filtering

We are interested in the conditional probability mass function p(xt|y1:t) of the state Xt given the data observed
up to time t. Note that, by Bayes rule, p(xt|y1:t) can be obtained by normalizing p(xt, y1:t)

p(xt|y1:t) =
p(xt, y1:t)∑

x′t∈X
p(x′t, y1:t)

We will derive a recursion for p(xt, y1:t).

p(xt, y1:t) =
∑

xt−1∈X
p(xt, xt−1, yt, y1:t−1)

=
∑

xt−1∈X
p(yt|xt, xt−1, y1:t−1)p(xt|xt−1, y1:t−1)p(xt−1, y1:t−1)

= p(yt|xt)
∑

xt−1∈X
p(xt|xt−1)p(xt−1, y1:t−1)

Define αt(xt) = p(xt, y1:t). The above equation defines the α-recursion. For t = 1, . . . , T , xt ∈ X

αt(xt) = p(yt|xt)
∑

xt−1∈X
p(xt|xt−1)αt−1(xt−1)
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with α0(x0) = p(x0). The forward recursion is given in Algorithm 1 for X = {1, . . . ,K}. The filtering pmf is
obtained by normalizing αt(xt) as

p(xt|y1:t) =
p(xt, y1:t)

p(y1:t)
=

αt(xt)∑
x∈X αt(x)

.

The likelihood term p(y1:T ) can be computed from the α-recursion

p(y1:T ) =
∑
x∈X

αT (x)

Algorithm 1 Forward α-recursion

• For i = 1, . . . ,K, set α0(i) = µi
• For t = 1, . . . , T

• For j = 1, . . . ,K, set

αt(j) = gj(yt)

K∑
i=1

Ai,jαt−1(i)

The computation cost of the whole forward recursion is O(T | X |2). Note that the proposed recursion may
suffer from numerical underflow/overflow, as αt may become very small or very large for large t. To avoid
this, we can normalize αt, or propagate the filtering pmf p(xt|y1:t) instead of αt, using the following two-step
predict-update recursion

p(xt|y1:t−1) =
∑

xt−1∈X
p(xt|xt−1)p(xt−1|y1:t−1) Predict

p(xt|y1:t) =
gxt

(yt)p(xt|y1:t−1)∑
x′t∈X

gx′t(yt)p(x
′
t|y1:t−1)

Update

2.4.2 Forward-backward Smoothing

We are now interested in the conditional probability mass function

p(xt|y1:T )

of the state Xt given all the data from time 1 to T ≥ t. First note that

p(xt|y1:T ) =
p(xt, y1:T )

p(y1:T )

=
p(xt, y1:t)p(yt+1:T |xt)

p(y1:T )

hence p(xt|y1:T ) can be obtained by normalizing p(xt, y1:t)p(yt+1:T |xt). The first term is αt(xt) which can
be obtained by a forward recursion. The second term βt(xt) = p(yt+1:T |xt) can be obtained by a backward
recursion.

p(yt:T |xt−1) =
∑
xt∈X

p(yt:T , xt|xt−1)

=
∑
xt∈X

p(yt|yt+1:T , xt, xt−1)p(yt+1:T , xt|xt−1)

=
∑
xt∈X

p(yt|xt)p(yt+1:T |xt, xt−1)p(xt|xt−1)

=
∑
xt∈X

p(yt|xt)p(yt+1:T |xt)p(xt|xt−1)

Hence βt follows the following backward recursion for t = T, . . . , 2

βt−1(xt−1) =
∑
xt∈X

p(yt|xt)p(xt|xt−1)βt(xt)
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with βT (xT ) = 1. The backward recursion is given in Algorithm 2 when X = {1, . . . ,K}.
The forward and backward recursions can be run independently. The smoothing pmf is finally obtained by

normalization

p(xt|y1:T ) =
p(xt, y1:T )

p(y1:T )
=

αt(xt)βt(xt)∑
x∈X αt(x)βt(x)

The overall computational cost of the forward-backward algorithm is O(T | X |2).

Algorithm 2 Backward β-recursion

• For i = 1, . . . ,K, set βT (i) = 1
• For t = 1, . . . , T

• For i = 1, . . . ,K, set

βt−1(i) =

K∑
j=1

gj(yt)Ai,jβt(j)

2.4.3 Maximum a posterior estimation

We are interested in the Maximum a posterior estimate

x̂0:T = arg max
x0:T

p(x0:T |y1:T )

or equivalently, for fixed y1:t
x̂0:T = arg max

x0:T

p(x0:T , y1:T )

Note that direct optimization would quickly become unfeasible as the number of different state paths is | X |T+1.
The MAP estimate can be calculated efficiently using the Viterbi algorithm, which uses a backward-forward
(or forward-backward) recursion and is a special case of the so-called max-product algorithm. The algorithm
first performs a backward path which computes messages mt, t = T, . . . , 0. Then it performs a forward path to
return the estimates x̂t, for t = 0, . . . , T .

Backward m0(x0) ←− m1(x1) ←− . . . ←− mT−1(xT−1) ←− mT (xT )
↓ ↓ ↓ ↓

Forward x̂0 −→ x̂1 −→ . . . −→ x̂T−1 −→ x̂T

First note that

p(x0:T , y1:T ) = p(x0)

T∏
t=1

p(xt|xt−1)p(yt|xt)

and

max
x0:T

p(x0)

T∏
t=1

p(xt|xt−1)p(yt|xt) = max
x0:T−1

{[
p(x0)

T−1∏
t=1

p(xt|xt−1)p(yt|xt)

]
max
xT

p(xT |xT−1)p(yT |xT )

}

= max
x0:T−1

{[
p(x0)

T−1∏
t=1

p(xt|xt−1)p(yt|xt)

]
mT−1(xT−1)

}

where mT−1(xT−1) = maxxT
p(xT |xT−1)p(yT |xT ) is the message from the end of the chain to the penultimate

timestep.
We can continue in this manner. For t = T − 1, . . . , 1, let

mt−1(xt−1) = max
xt:T

{
T∏
k=t

p(xk|xk−1)p(yk|xk)

}

and mT (xT ) = 1. mt−1(xt−1) satisfies the following backward recursion for t = T − 1, . . . , 1

mt−1(xt−1) = max
xt

p(yt|xt)p(xt|xt−1)mt(xt).
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Note that
p(x0)m0(x0) = max

x1:T

p(x0:T , y1:T )

Hence

x̂0 = arg max
x0

(
max
x1:T

p(x0, x1:T , y1:T )

)
= arg max

x0

m0(x0)p(x0)

Similarly,

x̂t = arg max
xt

(
max
xt+1:T

p(x̂0:t−1, xt, xt+1:T , y1:T )

)
= arg max

xt

(
max
xt+1:T

p(x̂t−1, xt, xt+1:T , yt:T )

)
= arg max

xt

(mt(xt)p(yt|xt)p(xt|x̂t−1)) .

The overall Viterbi algorithm is given in Algorithm 3. The computational complexity of the Viterbi algorithm
is O(T | X |2), the same as the forward-backward recursion. For numerical stability, logarithms are computed in
practice.

Algorithm 3 Viterbi algorithm for maximum a posteriori estimation

• For i = 1, . . . ,K, set mT (i) = 1.
• For t = T, . . . , 1

– For i = 1, . . . ,K, let
mt−1(i) = max

j=1,...,K
gj(yt)Ai,jmt(j)

• Set x̂0 = arg max
i=1...,K

m0(i)µ(i)

• For t = 1, . . . , T
– Set

x̂t = arg max
i=1...,K

mt(i)gi(yt)Ax̂t−1,i.

2.4.4 Illustration

We consider the following illustrative example. Consider a frog on a ladder with K levels, and let Xt be the
level at which the frog is at time t. We consider the following transition matrix

Ai,i+1 =
1− p

2
for i = 1, . . . ,K − 1

Ai,i = p for i = 1, . . . ,K

Ai,i−1 =
1− p

2
for i = 2, . . . ,K

and A1,2 = 1− p and AK,1 = 1−p
2 , p = 0.4. The frog’s position is not observed, but a frog’s detector is installed

at the lowest level of the ladder, which sends a signal Yt ∈ {1, 2} at each time t where 2 indicates detection and
1 non-detection. The probability of detection is as follows

Bk,2 := P(Yt = 2|Xt = k) =


0.9 if k = 1
0.5 if k = 2
0.1 if k = 3
0 Otherwise

Assume that we observe the following sequence y1:14 = (1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2) and want to infer the
filtering and smoothing pmfs of the frog’s position at each type t as well as the MAP estimate.

The code for the alpha recursion and filtering pmf is as follows.
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alpha_recursion = function(y, mu, A, B)

{
K = length(mu)

T = length(y)

alpha = matrix(0, nrow=T,ncol=K)

for (j in 1:K) alpha[1,j] = B[j,y[1]] *sum(A[,j]* mu)

for (t in 2:T) for (j in 1:K) alpha[t,j] = B[j,y[t]] *sum(A[,j]* alpha[t-1,])

return(alpha)

}
K = 6

p = .4

# Transition matrix

A = diag(x=p,K,K)

A[1,2] = 1-p

for (i in 2:K){
A[i, (i %% K)+1] = (1-p)/2

A[i, (i-1)] = (1-p)/2 }

# Observation matrix

B = matrix(data=NA, nrow=K, ncol=2)

B[1, 2] = .9; B[2, 2] = .5; B[3,2] = .2; B[4:K,2] = 0; B[,1] = 1-B[,2]

mu = 1/K*rep(1,K)

y = c(1,1,1,1,2,2,1,1,1,1,2,2, 1, 2)

T = length(y)

# compute alpha recursion

alpha = alpha_recursion(y, mu, A, B)

# Compute filtering pmf

filtering = matrix(data=NA, nrow=T,ncol=K)

for (t in 1:T) filtering[t,] = alpha[t,]/sum(alpha[t,])

# Plot results

time = matrix(rep(c(1:T),K), T, K)

x = matrix(rep(c(1:K),each=T), T, K)

plot(time, x, cex=5*filtering,bg='lightblue2',pch=21,xlim=c(0.6, T+.5),ylim=c(.5, K+.6))

points(time[,1],rep(.4, T), cex=(y-1)*2, pch=22, bg='red')

Now for the smoothing pmf.

beta_recursion = function(y, mu, A, B)

{
K = length(mu)

T = length(y)

beta = matrix(0, nrow=T,ncol=K)

for (j in 1:K) beta[T,j] = 1

for (t in T:2) for (i in 1:K) beta[t-1,i] = sum(B[,y[t]]*A[i,]* beta[t,])

return(beta)

}
beta = beta_recursion(y, mu, A, B)

smoothing = matrix(data=NA, nrow=T,ncol=K)

for (t in 1:T) smoothing[t,]=alpha[t,]*beta[t,]/sum(alpha[t,]*beta[t,])

plot(time, x, cex=5*smoothing,bg='lightblue2',pch=21,xlim=c(0.6, T+.5),ylim=c(.5, K+.6))

points(time[,1],rep(.4, T), cex=(y-1)*2, pch=22, bg='red')

And the Viterbi algorithm to obtain a MAP estimate.
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Figure 5: Filtering pmf over time t. The size of each circle at location (t, x) is proportional to P (Xt = x|y1:t).
Red squares indicate times at which detection occurs.
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Figure 6: Smoothing pmf over time t. The size of each circle at location (t, x) is proportional to P (Xt = x|y1:14).
Red squares indicate times at which detection occurs.



SB1.2/SM2 Computational Statistics: Hidden Markov Models 11

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

2 4 6 8 10 12 14

1
2

3
4

5
6

time

x

Figure 7: Smoothing pmf over time t and MAP estimate. The size of each circle at location (t, x) is proportional
to P (Xt = x|y1:14). Dark blue diamonds indicate the MAP estimate. Red squares indicate times at which
detection occurs.

viterbi = function(y, mu, A, B)

{
K = length(mu)

T = length(y)

m = matrix(0, nrow=T,ncol=K)

m0 = matrix(0, nrow=1,ncol=K)

x.map = rep(0, T)

# Backward

for (i in 1:K) m[T,i] = 1

for (t in T:2) for (i in 1:K) m[t-1,i] = max(B[,y[t]]*A[i,]* m[t,])

for (i in 1:K) m0[i] = max(B[,y[1]]*A[i,]* m[1,])

#Forward

x0.map = which.max(m0 * mu)

x.map[1] = which.max(m[1,]*B[,y[1]]*A[x0.map,])

for (t in 2:T) x.map[t] = which.max(m[t,]*B[,y[t]]*A[x.map[t-1],])

return(x.map)

}
x.map=viterbi(y, mu, A, B)

plot(time, x, cex=5*smoothing,bg='lightblue2',pch=21,xlim=c(0.6, T+.5),ylim=c(.5, K+.6))

points(time[,1],rep(.4, T), cex=(y-1)*2, pch=22, bg='red')

points(time[,1],x.map, cex=2, pch=23, bg='blue')

2.5 Learning in HMM

So far we have assumed that the parameters A, µ and g of the HMMs were known. This is not the case in
general. We can differentiate two cases
• The fully observed case: we have a dataset where the hidden states (x0, x1, . . . , xT ) are known
• The unsupervised case: all we have is the data (y1, . . . , yT ) and the hidden variables are not observed

For simplicity, we only consider estimation of the transition matrix A.
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2.5.1 Fully observed case

If the hidden states (x0, x1, . . . , xT ) are known, the parameter A can be fitted using maximum likelihood. Let

ni,j =
∑T
t=1 I(xt = j, xt−1 = i) be the number of transitions between state i and state j. The MLE of Ai,j is

Âi,j =
ni,j∑
`∈X ni,`

.

2.5.2 Unsupervised case

If the hidden states are not observed, finding the MLE is much more challenging as we want to optimize

Â = arg max
A

log p(y1:T ;A)

It is possible to derive an iterative algorithm, known as the Baum-Welch algorithm to find the MLE. The
Baum-Welch algorithm is a special case of the Expectation-Maximization algorithm, applied to HMMs. It is
beyond the scope of this course to give a general description of the EM algorithm (see the module on Advanced
Topics in Statistical Machine Learning). The EM algorithm is an iterative algorithm which proceeds in two
steps. At iteration k
• E step

Q(A;A(k−1)) = E[log p(X0:T , y1:T ;A)|y1:T , A(k−1)]

• M step
A(k) = arg max

A
Q(A;A(k−1))

Each iteration increases the value of the log-likelihood

log p(y1:T ;A(k)) ≥ log p(y1:T ;A(k−1))

and the algorithm thus converges to a local maximum of the log-likelihood.
We now show how to calculate the Q function. The prior pmf can be expressed as

p(x0:T ;A) = µx0

∏
i,j∈X

A
ni,j

i,j

The log joint pmf can be expressed as

log p(x0:T , y1:T ;A) = log µx0
+
∑
i,j∈X

ni,j logAi,j +

T∑
t=1

log gyt(xt)

The Q function of the EM is thus expressed as

Q(A;A∗) = E[log p(X0:T , y1:T ;A)|y1:T , A∗]

=
∑
i,j∈X

E[Ni,j |y1:T , A∗] logAi,j + C

where C is a constant independent of A and

Ni,j =

T∑
t=1

I(Xt = j,Xt−1 = i).

The expected counts can be expressed as

E[Ni,j |y1:T , A∗] =

T∑
t=1

P(Xt = j,Xt−1 = i|y1:T ;A∗)

The terms p(xt, xt−1|y1:T ;A∗) can be obtained from the forward-backward recursion, as [check!]

p(xt, xt−1|y1:T ;A∗) ∝ αt−1(xt−1)p(yt|xt)p(xt|xt−1)βt(xt)

The M step gives

A
(k)
i,j = arg max

Ai,j

E[Ni,j |y1:T , A(k−1)] logAi,j

=
E[Ni,j |y1:T , A(k−1)]∑
` E[Ni,`|y1:T , A(k−1)]

.
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3 Continuous-state Hidden Markov models

In many problems, the hidden parameter of interest is continuous, and we consider continuous-state hidden
Markov models, also known as state-space models, or dynamical systems. We focus here on a particular
subclass called linear Gaussian state space model.

3.1 Recap: Linear Gaussian system

We recall in this section some basic results on the manipulation of multivariate Gaussian random variables.

Definition 1. The probability density function of a multivariate Gaussian random variable X ∈ Rdx with mean
µ and covariance matrix Σ is given as

N (x;µ,Σ) :=
1

(2π)dx/2
√
|Σ|

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Remark 2 (Notations). For a Gaussian random variable X, we write pX(x) its probability density function.
Similarly, for jointly Gaussian random variables X and Y , we write pX,Y (x, y) for the joint pdf of X and Y
and pX|Y (x|y) for the conditional pdf of X given Y = y. Wherever this does not lead to confusion, we will drop
subscripts and use the shorter notations p(x), p(x, y) and p(x|y).

Proposition 3. Let (X,Y ), X ∈ Rdx and Y ∈ Rdy , be a jointly Gaussian vector with mean and covariance
matrix

µ =

(
µx
µy

)
,Σ =

(
Σxx Σxy
Σyx Σyy

)
.

Then the marginals are given by

X ∼ N (µx,Σxx)

Y ∼ N (µy,Σyy)

and the conditionals

X|Y = y ∼ N (µx|y,Σx|y)

where

Σx|y = Σxx − ΣxyΣ−1yy Σyx

µx|y = µx + ΣxyΣ−1yy (y − µy)

Corollary 4. Consider Gaussian random variables X ∈ Rdx and Y ∈ Rdy with

X ∼ N (µx,Σxx)

Y |X = x ∼ N (Ax+ b,Σy|x)

where µx ∈ Rdx , Σxx is a dx × dx covariance matrix, A is a dy × dx matrix, b is a dy vector and Σy|x is a
dy × dy covariance matrix. Then

(X|Y = y) ∼ N
(
µx|y,Σx|y

)
Y ∼ N (µy,Σyy)

where

µy = Aµx + b

Σyy = Σy|x +AΣxxA
T

Σx|y =
(

Σ−1xx +ATΣ−1y|xA
)−1

µx|y = Σx|y

(
Σ−1xxµx +ATΣ−1y|x(y − b)

)
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3.2 Dynamic Linear Gaussian state-space models

Let (X0, . . . , XT ) be a sequence of continuous random variables taking values in Rdx , corresponding to the
hidden state of interest, and (Y1, . . . , YT ) be a sequence of continuous random variables taking values in Rdy
(observations). The linear Gaussian state-space model is defined as, for t = 1, . . . , T

Xt = FtXt−1 +GtVt State model

Yt = HtXt +Wt Observation model

where the random variables (X0, V1, V2, . . . , VT ,W1,W2, . . . ,WT ) are independent with X0 ∼ N (µ0,Σ0) and for
t = 1, . . . , T ,

Vt ∼ N (0, Qt)

Wt ∼ N (0, Rt)

with
• Xt is the hidden state at time t
• Yt is the observation at time t
• Vt is the state noise at time t
• Wt is the observation noise at time t
• Ft is the dx × dx state transition matrix
• Gt is the dx × dv noise transfer matrix
• Ht is the dy × dx observation matrix

Under the above assumptions, the sequence (X0, X1, Y1, . . . , XT , YT ) is a (continuous-state) hidden Markov
model, which can be represented graphically as in Figure 2. If GtQtG

T
t has full rank, the joint pdf p(x0:T , y1:T )

factorizes as

p(x0:T , y1:T ) = p(x0)

T∏
t=1

p(yt|xt)p(xt|xt−1)

where

p(xt|xt−1) = N (xt;Ftxt−1, GtQtG
T
t )

p(yt|xt) = N (yt;Htxt, Rt)

Example 5 (Object Tracking). Let Xt = (P xt , P
y
t , P

z
t , V

x
t , V

y
t , V

z
t )T denote the position and velocity of an

object at time index t = 0, 1, . . .. The position and velocity are not directly observed, but a GPS delivers noisy
observations of the position

Yt = (P xt , P
y
t , P

z
t )T +Wt

where the GPS error Wt is supposed (as a first approximation) to be Gaussian with zero mean and covariance
matrix R. As an approximation to the dynamics of the mobile object, we consider the white noise acceleration
model

P xt = P xt−1 + δV xt−1 +
δ2

2
Axt−1

V xt = V xt−1 + δAxt−1

where δ = 1 here, Axt−1 is the unknown acceleration at time t, assumed to be Gaussian with zero mean and
variance Qx, and similarly for the other coordinates. We therefore have a dynamic linear Gaussian model with

F =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , G =


1/2 0 0
0 1/2 0
0 0 1/2
1 0 0
0 1 0
0 0 1

 , H =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



and Vt = (Axt−1, A
y
t−1, A

z
t−1)T. The objective is to calculate p(xt|y1:t) to obtain the position and velocity of each

object at each time t.
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Example 6 (Linear regression with time-varying regression coefficients). Let (zt, Yt), t = 1, . . . , T where zt ∈ Rp
are covariates and Yt ∈ R are response variables. We assume that there is a linear relation between the response
and the covariate. However the regression coefficients are not assumed to be fixed but evolve over time, according
to a random walk. We consider the following model

βt = βt−1 + Vt

Yt = ztβt +Wt

where βt ∈ Rp is the regressor at time t, and Vt is a vector of independent Gaussian random variables with
variance σ2

V . This parameter tunes how quickly the parameter βt evolves over time.

3.3 Inference in dynamic linear Gaussian SSMs

3.3.1 The Kalman filter

Assume that we are interested in the pdf p(xt|y1:t) of the hidden state Xt given observations y1:t up to time t.
Let

µt|t−1 := E[Xt|Y1:t−1 = y1:t−1]

Σt|t−1 := E[(Xt − µt|t−1)(Xt − µt|t−1)T|Y1:t−1 = y1:t−1]

µt|t := E[Xt|Y1:t = y1:t]

Σt|t := E[(Xt − µt|t)(Xt − µt|t)T|Y1:t = y1:t]

The Kalman filter computes sequentially the above means and covariance matrices using two steps: the
prediction step and the update step.

(µ0,Σ0)
Prediction−→ (µ1|0,Σ1|0) −→ . . . −→ (µt−1|t−1,Σt−1|t−1)

Prediction−→ (µt|t−1,Σt|t−1)
Update−→ (µt|t,Σt|t)

Prediction−→ . . .

Proposition 7. Let p(xt|y1:t) and p(xt|y1:t−1) be the filtering and one-step predictive pdfs at time t. Then

p(xt|y1:t−1) = N (xt;µt|t−1,Σt|t−1)

p(xt|y1:t) = N (xt;µt|t,Σt|t)

where (µt|t−1,Σt|t−1) and (µt|t,Σt|t) follow the recursion
• Prediction step

µt|t−1 = Ftµt−1|t−1

Σt|t−1 = FtΣt−1|t−1F
T
t +GtQtG

T
t

• Update/correction step

µt|t = µt|t−1 +Ktνt

Σt|t = (I −KtHt)Σt|t−1

where νt is the residual or innovation, given by the difference between the observation and the predicted
observation

νt := yt − ŷt|t
ŷt|t := E[Yt|Y1:t−1 = y1:t−1] = Htµt|t−1

and Kt is the Kalman gain
Kt = Σt|t−1H

T
t S
−1
t

with

St := E[(Yt − ŷt|t)(Yt − ŷt|t)T|Y1:t−1 = y1:t−1]

= HtΣt|t−1H
T
t +Rt.

Proof. (not examinable) We have X0 ∼ N (µ0,Σ0). Assume that Xt−1|Y1:t−1 ∼ N (µt−1|t−1,Σt−1|t−1). Consider
the state model,

Xt = FtXt−1 +GtVt.
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As Vt is Gaussian, Xt|Y1:t−1 is a linear combination of Gaussian random variables, and is therefore Gaussian.
Yt can be written as a function of the random variables (X0, V0, . . . , Vt−1,W0, . . . ,Wt−1). Vt is independent of
(X0, V0, . . . , Vt−1,W1, . . . ,Wt−1), hence it is independent of Y1:t. We therefore have

E[Xt|y1:t−1] = FtE[Xt−1|y1:t−1] +GtE[Vt|y1:t−1] = Ftµt−1|t−1

cov[Xt|y1:t−1] = cov[FtXt−1|y1:t−1] + cov[GtVt|y1:t−1]

= Ftcov[Xt−1|y1:t−1]FT
t +Gtcov[Vt]G

T
t = FtΣt−1|t−1F

T
t +GtQtG

T
t

Assume now that
Xt|Y1:t−1 ∼ N (µt|t−1,Σt|t−1)

Conditional on Xt, Yt is independent of Y1:t−1, as the observation noise Wt is independent of Y1:t−1. Hence,
using the observation model

Yt|Xt = xt, Y1:t−1 ∼ N (Htxt, Rt)

and Corollary 4, we obtain

Σt|t =
(

Σ−1t|t−1 +HT
t R
−1
t Ht

)−1
µt|t = Σt|t

(
Σ−1t|t−1µt|t−1 +HT

t R
−1
t yt

)
We rearrange this using the Woodbury matrix identity

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

This gives

Σt|t = Σt|t−1 − Σt|t−1H
T
t (Rt +HtΣt|t−1H

T
t )−1HtΣt|t−1

= (I −KtHt)Σt|t−1

and

µt|t = (I −KtHt)Σt|t−1

(
Σ−1t|t−1µt|t−1 +HT

t R
−1
t yt

)
= (I −KtHt)µt|t−1 + (I −KtHt)Σt|t−1H

T
t R
−1
t yt

= (I −KtHt)µt|t−1 + (I −KtHt)KtStR
−1
t yt

= (I −KtHt)µt|t−1 +Kt(I −HtKt)StR
−1
t yt

= (I −KtHt)µt|t−1 +Ktyt

as St −HtKtSt = Rt.

3.3.2 The Kalman smoother

We are now interested in the pdfs p(xt|y1:T ) of the hidden state Xt given all the observations y1:T . Let

µt|T := E[Xt|Y1:T = y1:T ]

Σt|T := E[(Xt − µt|T )(Xt − µt|T )T|Y1:T = y1:T ]

We can obtain the smoothing pdfs by first running the forward recursion of the Kalman filter, in order to
obtain (µt|t,Σt|t) for t = 1, . . . , T , and then run a backward recursion.

Proposition 8. Let p(xt|y1:T ) be the smoothing pdf at time t. Then

p(xt|y1:T ) = N (xt;µt|T ,Σt|T )

where (µt|T ,Σt|T ) follow the recursion

µt|T = µt|t + Jt(µt+1|T − µt+1|t)

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J
T
t

where Jt is the backward Kalman gain

Jt = Σt|tF
T
t+1Σ−1t+1|t.
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3.4 Example

Consider the following simple scalar example of a random walk observed in noise

Xt = Xt−1 + Vt

Yt = Xt +Wt

where X0 ∼ N (0, 1), Vt ∼ N (0, Q), Wt ∼ N (0, R) where Q = 0.02 and R = 0.2. In this case, we have
• Prediction

µt|t−1 = µt−1|t−1

Σt|t−1 = Σt−1|t−1 +Q

• Update

Kt =
Σt|t−1

Σt|t−1 +R

and

Σt|t = (1−Kt)Σt|t−1

µt|t = (1−Kt)µt|t−1 +Ktyt

Assume that we observe y1 = 1.6. The first iteration of the Kalman filter gives

µ1|0 = 0

Σ1|0 = 1 + 0.02 = 1.02

K1 =
1.02

1.02 + 0.2
= 0.83

Σ1|1 = 0.17

µ1|1 = 1.34

Results are presented in Figures 8 and 9 for data simulated from the model with T = 50. The R code is in
Appendix 3.4.
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Figure 8: Filtering mean (red dot) and 99% credible intervals (red dotted line) over time. Observations are
green squares.
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Figure 9: Smoothing mean (red dot) and 99% credible intervals (red dotted line) over time. Observations are
green squares.
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R code for the Kalman filter and smoother

kalman = function(y, F, G, Q, H, R, mu0, Sigma0) {
dy = nrow(y)

T = ncol(y)

dx = length(mu0)

I = diag(dx)

## INITIALIZATION ##

mu.p = matrix(0, nrow = dx, ncol = T)

Sigma.p = array(0, c(dx, dx, T))

mu.f = matrix(0, nrow = dx, ncol = T)

Sigma.f = array(0, c(dx, dx, T))

mu.s = matrix(0, nrow = dx, ncol = T)

Sigma.s = array(0, c(dx, dx, T))

## FORWARD RECURSION ## Time 1

mu.p[, 1] = F %*% mu0

Sigma.p[, , 1] = F %*% Sigma0 %*% t(F) + G %*% Q %*% t(G)

nu = y[, 1] - H %*% mu.p[, 1]

S = H %*% Sigma.p[, , 1] %*% t(H) + R

K = Sigma.p[, , 1] %*% t(H) %*% solve(S)

mu.f[, 1] = mu.p[, 1] + K %*% nu

Sigma.f[, , 1] = (I - K %*% H) %*% Sigma.p[, , 1]

# Time 2:T

for (t in (2:T)) {
# Prediction

mu.p[, t] = F %*% mu.f[, t - 1]

Sigma.p[, , t] = F %*% Sigma.f[, , t - 1] %*% t(F) + G %*% Q %*% t(G)

# Update

nu = y[, t] - H %*% mu.p[, t]

S = H %*% Sigma.p[, , t] %*% t(H) + R

K = Sigma.p[, , t] %*% t(H) %*% solve(S)

mu.f[, t] = mu.p[, t] + K %*% nu

Sigma.f[, , t] = (I - K %*% H) %*% Sigma.p[, , t]

}

## BACKWARD RECURSION ##

mu.s[, T] = mu.f[, T]

Sigma.s[, , T] = Sigma.f[, , T]

for (t in (T - 1):1) {
J = Sigma.f[, , t] %*% t(F) %*% solve(Sigma.p[, , t + 1])

mu.s[, t] = mu.f[, t] + J %*% (mu.s[, t + 1] - mu.p[, t + 1])

Sigma.s[, , t] = Sigma.f[, , t] + J %*% (Sigma.s[, , t + 1] - Sigma.p[,

, t + 1]) %*% t(J)

}

return(list(mu.f = mu.f, Sigma.f = Sigma.f, mu.p = mu.p, Sigma.p = Sigma.p,

mu.s = mu.s, Sigma.s = Sigma.s))

}

T = 50

x = matrix(cos(c(1:T)/10), 1, T)

R = 0.2

mu0 = 0
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Sigma0 = 1

G = 1

Q = 0.02

H = 1

F = 1

y = matrix(x + rnorm(T, sd = sqrt(R)), nrow = 1, ncol = T)

results.KF = kalman(y, F, G, Q, H, R, mu0, Sigma0)

mu.f = results.KF$mu.f

Sigma.f = results.KF$Sigma.f
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