B. Applied Statistics II

4. Consider the data in Table 1 taken from Canadian records of pure-bred dairy cattle. They give average butterfat percentages for random samples of 10 mature cows.

<table>
<thead>
<tr>
<th>Cattle type</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
<th>Sample 6</th>
<th>Sample 7</th>
<th>Sample 8</th>
<th>Sample 9</th>
<th>Sample 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian</td>
<td>3.92</td>
<td>4.95</td>
<td>4.47</td>
<td>4.28</td>
<td>4.07</td>
<td>4.10</td>
<td>4.38</td>
<td>3.98</td>
<td>4.46</td>
<td>5.05</td>
</tr>
<tr>
<td>Guernsey</td>
<td>4.54</td>
<td>5.18</td>
<td>5.75</td>
<td>5.04</td>
<td>4.64</td>
<td>4.79</td>
<td>4.72</td>
<td>3.88</td>
<td>5.28</td>
<td>4.66</td>
</tr>
</tbody>
</table>

Table 1: Butter fat % for two different cattle types, 5 years and older (Sokal and Rohlf, 1981).

(a) [6 marks] State the formula for the two sample Wilcoxon test statistic W and the assumptions on the samples $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_m)$.

Calculate the value of W for the data provided.

(b) [6 marks] Consider the null hypothesis that the distribution of average butterfat is the same for Canadian and Guernsey cattle.

(i) Using the normal approximation to the distribution of W under the null hypothesis, or otherwise, test the null hypothesis at the 5% level.

[Note that $\text{Var } W = nm(n + m + 1)/12$ under the null hypothesis.]

(ii) The Wilcoxon two sample test is invariant under a large class of transformations of the data. What is this class? Explain why the test statistic is invariant.

(iii) Describe one additional method to calculate the p-value of the Wilcoxon two sample test.

(c) [5 marks] Consider $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F_1$ and $Y_1, \ldots, Y_m \overset{i.i.d.}{\sim} F_2$. We assume that $F_1(t) = F_2(t + \Delta)$. State the Hodges-Lehman estimator for difference in location. How many data items of X need to be corrupted for the location estimate to take arbitrarily large values?

(d) [5 marks] Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F_1$ and $Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} F_2$, independent of each other. Fix a threshold $t \in \mathbb{R}$ and let U and V denote the number of the X’s and Y’s respectively that are less than or equal to t. Then U and V have Binomial distributions with parameters $\mathbb{P}(X \leq t)$ and $\mathbb{P}(Y \leq t)$, respectively. Consider the null-hypothesis that $F_1 = F_2$. Let

$$S = U - V$$

with null distribution

$$\mathbb{P}(S = i) = \sum_{j,k:j-k=i} \binom{n}{j} \binom{n}{k} p^{j+k}(1-p)^{2n-i-k}$$

where the unknown p can be replaced by the estimate $\hat{p} = \frac{U+V}{2n}$.

(i) Give an example of $F_1 \neq F_2$ and t for which the power of the test based on S does not increase to 1 as $n \rightarrow \infty$.

(ii) Give an additional disadvantage of this test compared to the Wilcoxon test.
5. (a) [15 marks] (Bootstrapping) Let \(Y \) be a Poisson distributed random variable \(Y \sim \text{Po} (\lambda) \). We would like to estimate \(\theta = \text{median} (Y) \) on the basis of \(Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} \text{Po} (\lambda) \).

(i) Describe two estimators for \(\hat{\theta} \). An exact formula is not required.

(ii) The aim is to estimate the standard error \(\text{se}(\hat{\theta}) \). Describe in words, or using pseudocode, the parametric bootstrap estimate of \(\text{se}(\hat{\theta}) \).

(iii) Describe a method in words, or using pseudocode, to obtain a nonparametric bootstrap estimate of \(\text{se}(\hat{\theta}) \).

(iv) Describe one method to obtain a bootstrap confidence interval. State if the method yields a first order or a second order accurate confidence interval. Explain what is meant by first order and second order accuracy.

(b) [7 marks] (Local linear regression) Consider the one-dimensional regression problem

\[
Y_i = f(x_i) + \varepsilon_i \quad \text{for } i = 1, \ldots, n
\]

with \(x_i \in \mathbb{R} \), where \(\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2) \) and where \(f: \mathbb{R} \to \mathbb{R} \) is an unknown twice continuously differentiable function.

For a kernel \(K_h \), local linear regression around \(x_0 \) is given implicitly through the minimisation problem

\[
(\hat{\alpha}(x_0), \hat{\beta}(x_0)) = \arg \min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{n} K_h(x_0, x_i) (y_i - \alpha(x_0) - \beta(x_0)x_i)^2
\]

such that the regression estimate is given by \(\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0 \). The estimate takes the form

\[
\hat{f}_h(x_0) = b(x_0) \left(B^T W(x_0) B \right)^{-1} B^T W(x_0) Y
\]

where \(b(x) = (1, x) \), \(B = (b(x_1)^T, \ldots, b(x_n)^T) \) and \(W(x) \) is a diagonal matrix with entries \(K_h(x_0, x_i) \).

(i) Consider a kernel of the form \(K_h(x, y) = K\left(\frac{|x-y|}{h}\right) \) for a twice continuously differentiable function \(K: \mathbb{R} \to \mathbb{R} \) such that \(K(x) \geq 0 \ \forall x \in \mathbb{R}, \int K(x) \, dx = 1 \) and \(\int xK(x) \, dx = 0 \).

The prediction error or risk is typically defined as \(R(h) = E\{(Y - \hat{f}_h(X))^2\} \) where the expectation is with respect to random new observations \(Y \) and \(x \) chosen randomly among \((x_1, \ldots, x_n) \). Sketch qualitatively the typical behaviour of \(R(h) \) as \(h \) varies. How does this relate to the choice of \(h \)? Explain the terms undersmooth and oversmooth.

(ii) Let \(l(x_0) = b(x_0) \left(B^T W(x_0) B \right)^{-1} B^T W(x_0) \). Prove that

\[
\sum_{i=1}^{N} l_i(x_0) = 1 \quad \text{and} \quad \sum_{i=1}^{N} (x_i - x_0) l_i(x_0) = 0.
\]

[Hint: consider \(l(x_0)B \).]