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I Multi-edges directed graphs
I Emails
I Citations
I WWW

I Simple graphs
I Social network
I Protein-protein interaction
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Introduction

B1 B2 B3 B4

A1 A2Readers/Customers

I Bipartite graphs
I Scientists authoring papers
I Readers reading books
I Internet users posting messages on forums
I Customers buying items
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Introduction

I Build a statistical model of the network to
I Find interpretable structure in the network
I Predict missing edges
I Predict connections of new nodes
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Introduction

I Properties of real world networks
I Sparsity

Dense graph: ne = Θ(n2)
Sparse graph: ne = o(n2)

with ne the number of edges and n the number of nodes

I Power-law degree distributions

[Newman, 2009, Clauset et al., 2009]
F. Caron 7 / 57



Book-crossing community network
5 000 readers, 36 000 books, 50 000 edges
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Book-crossing community network
Degree distributions on log-log scale
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Introduction

I Statistical network modeling

I Probabilistic symmetry: exchangeability

I Ordering of the nodes is irrelevant

1
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Introduction

I Graphs usually represented by a discrete structure

I Adjacency matrix Xij ∈ {0, 1}, (i, j) ∈ N2

I Joint exchangeability

(Xij)
d
= (Xπ(i)π(j))

for any permutation π of N

π

︸ ︷︷ ︸
π
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Introduction

I Aldous-Hoover representation theorem

(Xij) = (F (Ui, Uj, U{ij}))

where Ui,U{ij} are uniform random variables and F is a random
function from [0, 1]3 to {0, 1}

I Several network models fit in this framework (e.g. stochastic
blockmodel, infinite relational model, etc.)

[Hoover, 1979, Aldous, 1981, Lloyd et al., 2012]
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Introduction

I Corollary of A-H theorem

Exchangeable random graphs are either empty or dense

I To quote the survey paper of Orbanz and Roy

“the theory [...] clarifies the limitations of exchangeable
models. It shows, for example, that most Bayesian models of

network data are inherently misspecified”

I Give up exchangeability for sparsity? e.g. preferential attachment
model

[Barabási and Albert, 1999, Orbanz and Roy, 2015]
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Point process representation

I Representation of a graph as a (marked) point process over R2
+

I Representation theorem by Kallenberg for jointly exchangeable point
processes on the plane

I Construction based on a completely random measure

I Properties of the model
I Exchangeability
I Sparsity
I Power-law degree distributions (with exponential cut-off)
I Interpretable parameters and hyperparameters
I Reinforced urn process construction

I Posterior characterization

I Scalable inference

[Kallenberg, 2005, Caron and Fox, 2014]
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Point process representation

I Undirected graph represented as a point process on R2
+

Z =
∑
i,j

zijδ(θi,θj)

with θi ∈ R, zij ∈ {0, 1} with zij = zji

0
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Point process representation

Joint exchangeability

Let Ai = [h(i− 1), hi] for i ∈ N then

(Z(Ai ×Aj))
d
= (Z(Aπ(i) ×Aπ(j)))

for any permutation π of N and any h > 0

0
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Point process representation

I Kallenberg derived a de Finetti style representation theorem for jointly
and separately exchangeable point processes on the plane

I Representation via random transformations of unit rate Poisson
processes and uniform variables

I Continuous-time equivalent of Aldous-Hoover for binary variables

I Our construction will fit into this framework

[Kallenberg, 1990, Kallenberg, 2005]
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Completely random measures

I Nodes are embedded at some location θi ∈ R+

I To each node is associated some sociability parameter wi
I Homogeneous completely random measure on R+

W =

∞∑
i=1

wiδθi W ∼ CRM(ρ, λ).

0
wi

θi

I Lévy measure ν(dw, dθ) = ρ(dw)λ(dθ) with λ the Lebesgue
measure

[Kingman, 1967]
F. Caron 21 / 57



Completely random measures

I Lévy measure ν(dw, dθ) = ρ(dw)λ(dθ) with λ the Lebesgue
measure

I ρ is a measure on R+ such that∫ ∞
0

(1− e−w)ρ(dw) <∞. (1)

which implies that W ([0, T ]) <∞ for any T <∞.∫ ∞
0

ρ(dw) =∞ =⇒Infinite number of jumps in any interval [0, T ]

“Infinite activity CRM”∫ ∞
0

ρ(dw) <∞ =⇒Finite number of jumps in any interval [0, T ]

“Finite activity CRM”
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Model for multi-edges directed graphs
We represent the integer-weighted directed graph using an atomic measure
on R2

+

D =

∞∑
i=1

∞∑
j=1

nijδ(θi,θj),

where nij counts the number of directed edges from node θi to node θj .
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Model for multi-edges directed graphs

I Conditional Poisson process with intensity measure W̃ = W ×W
on the product space R2

+:

D |W ∼ PP(W ×W )
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(d) Intensity measure W̃
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Model for multi-edges directed graphs

I By construction, for any bounded intervals A and B of R+,

W̃ (A×B) = W (A)W (B) <∞
I Finite number of counts over A×B ⊂ R2

+

D(A×B) <∞
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Model for undirected graphs
I Point process

Z =

∞∑
i=1

∞∑
j=1

zijδ(θi,θj),

with the convention zij = zji ∈ {0, 1}
I Constructed from D by setting zij = zji = 1 if nij + nji > 0 and
zij = zji = 0 otherwise
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Model for undirected graphs

I Hierarchical model

W =
∑∞
i=1wiδθi W ∼ CRM(ρ, λ)

D =
∑
ij nijδ(θi,θj) D ∼ PP (W ×W )

Z =
∑
ij min(nij + nji, 1)δ(θi,θj)

F. Caron 27 / 57



Model for undirected graphs
I Equivalent direct formulation for i ≤ j

Pr(zij = 1 | w) =

{
1− exp(−2wiwj) i 6= j
1− exp(−w2

i ) i = j

and zji = zij

0
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Properties: Exchangeability

Exchangeability

Let h > 0 and Ai = [h(i− 1), hi], i ∈ N. By construction,

(Z(Ai ×Aj))
d
= (Z(Aπ(i) ×Aπ(j)))

for any permutation π of N.
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Properties: Sparsity

I W (R+) =∞, so infinite number of edges on R2
+

I Restrictions Dα and Zα of D and Z, respectively, to the box [0, α]2.

I Nα number of nodes, and N (e)
α number of edges

0
α

α
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Properties: Sparsity
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Properties: Sparsity

Definition
(Regular variation) Let W ∼ CRM(ρ, λ). The (infinite-activity) CRM
is said to be regularly varying if the tail Lévy intensity verifies∫ ∞

x
ρ(dw)

x↓0∼ `(1/x)x−σ

for σ ∈ (0, 1) where ` is a slowly varying function satisfying
limt→∞ `(at)/`(t) = 1 for any a > 0.

F. Caron 33 / 57



Properties: Sparsity

Assume ρ 6= 0 and E[W ([0, 1])] <∞.

Theorem
Let Nα be the number of nodes and N (e)

α the number of edges in the
undirected graph restriction, Zα. Then

N (e)
α =


Θ
(
N2
α

)
if W is finite-activity

o
(
N2
α

)
if W is infinite-activity

O
(
N2/(1+σ)
α

)
if W is regularly varying1 with σ ∈ (0, 1)

almost surely as α→∞.

1with limt→∞ `(t) > 0
F. Caron 34 / 57
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Generalized Gamma Process

I Lévy intensity
1

Γ(1− σ)
w−1−σe−τw

with σ ∈ (−∞, 0] and τ > 0
or σ ∈ (0, 1) and τ ≥ 0

I Special cases:
I Gamma process (σ = 0)
I Stable process (τ = 0, σ ∈ (0, 1))
I Inverse Gaussian process (σ = 1/2, τ > 0)

I Infinite activity for σ ≥ 0

I Regularly varying for σ ∈ (0, 1)

I Exact sampling of the graph via an urn process

I Power-law degree distribution

[Brix, 1999, Lijoi et al., 2007]
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Generalized Gamma Process
Sparsity

Theorem
Let Nα be the number of nodes and N (e)

α the number of edges in the
undirected graph restriction, Zα. Then

N (e)
α =


Θ
(
N2
α

)
if σ < 0

o
(
N2
α

)
if σ ∈ [0, 1), τ > 0

O
(
N2/(1+σ)
α

)
if σ ∈ (0, 1), τ > 0

almost surely as α→∞. That is, the underlying graph is sparse if
σ ≥ 0 and dense otherwise.
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Particular cases: Generalized Gamma Process

Erdös-Rényi G(1000, 0.05) Gamma Process

GGP (σ = 0.5) GGP (σ = 0.8)
F. Caron 38 / 57



Particular cases: Generalized Gamma Process
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Particular cases: Generalized Gamma Process

Power-law degree distributions

I Power-law like behavior providing a heavy-tailed degree distribution

I Higher power-law exponents for larger σ

I The parameter τ tunes the exponential cut-off in the tails.
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Particular cases: Generalized Gamma Process

F. Caron 41 / 57
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Posterior characterization

Conditional distribution of Wα given Dα.

Theorem
Let (θ1, . . . , θNα), Nα ≥ 0, be the set of support points of Dα such that
Dα =

∑
1≤i,j≤Nα nijδ(θi,θj). Let mi =

∑Nα
j=1(nij + nji) > 0 for

i = 1, . . . , Nα. The conditional distribution of Wα given Dα is equivalent to the
distribution of

w∗

∞∑
i=1

P̃iδθ̃i +

Nα∑
i=1

wiδθi

where θ̃i ∼ Unif([0, α]), and (P̃i)|w∗ ∼ PK(ρ|w∗) are from a Poisson-Kingman
distribution . The weights (w1, . . . , wNα , w∗) are jointly dependent conditional on
Dα, with p(w1, . . . , wNα , w∗|Dα) ∝[

Nα∏
i=1

wi
mi

]
e
−
(∑Nα

i=1 wi+w∗
)2 [

Nα∏
i=1

ρ(wi)

]
× g∗α(w∗)

where g∗α is the probability density function of the random variable W ∗α = Wα([0, α]).

[Prünster, 2002, James, 2002, James et al., 2009]
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Posterior inference for undirected graphs

I Let φ = (α, σ, τ ) with flat priors

I We want to approximate

p(w1, . . . , wNα, w∗, φ|(zij)1≤i,j≤Nα)

I Latent count variables nij = nij + nji

I Markov chain Monte Carlo sampler

1. Update the weights (w1, . . . , wNα) given the rest using an
Hamiltonian Monte Carlo update

2. Update the total mass w∗ and hyperparameters φ = (α, σ, τ ) given
the rest using a Metropolis-Hastings update

3. Update the latent counts (nij) given the rest from a truncated
Poisson distribution

F. Caron 44 / 57
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Simulated data

I Simulation of a GGP graph with α = 300, σ = 1/2, τ = 1

I 13,995 nodes and 76,605 edges

I MCMC sampler with 3 chains and 40,000 iterations

I Takes 10min on a standard desktop with Matlab
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(a) α (b) σ

(c) τ (d) w∗
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Simulated data

(a) 50 nodes with highest degree (b) 50 nodes with lowest degree

Figure: 95 % posterior intervals of (a) the sociability parameters wi of the 50
nodes with highest degree and (b) the log-sociability parameter logwi of the 50
nodes with lowest degree. True values are represented by a green star.
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Real network data

I Assessing the sparsity of the network

I We aim at reporting Pr(σ ≥ 0|z) based on a set of observed
connections (z)

I 12 different networks

I ∼ 1, 000− 300, 000 nodes and 10, 000− 1, 000, 000 edges

F. Caron 49 / 57



(a) facebook107 (b) polblogs (c) USairport (d) UCirvine

(e) yeast (f) USpower (g) IMDB (h) cond-mat1

(i) cond-mat2 (j) enron (k) internet (l) wwwF. Caron 50 / 57



Real network data

Name Nb nodes Nb edges Time Pr(σ > 0|z) 99% CI σ
(min)

facebook107 1,034 26,749 1 0.00 [−1.06,−0.82]
polblogs 1,224 16,715 1 0.00 [−0.35,−0.20]
USairport 1,574 17,215 1 1.00 [ 0.10, 0.18]
UCirvine 1,899 13,838 1 0.00 [−0.14,−0.02]
yeast 2,284 6,646 1 0.28 [−0.09, 0.05]
USpower 4,941 6,594 1 0.00 [−4.84,−3.19]
IMDB 14,752 38,369 2 0.00 [−0.24,−0.17]
cond-mat1 16,264 47,594 2 0.00 [−0.95,−0.84]
cond-mat2 7,883 8,586 1 0.00 [−0.18,−0.02]
Enron 36,692 183,831 7 1.00 [ 0.20, 0.22]
internet 124,651 193,620 15 0.00 [−0.20,−0.17]
www 325,729 1,090,108 132 1.00 [0.26, 0.30]
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(a) facebook107 (b) polblogs (c) USairport

(d) UCirvine (e) yeast (f) USpower
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(g) IMDB (h) cond-mat1 (i) cond-mat2

(j) enron (k) internet (l) www
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Conclusion

I Statistical network models

I Build on exchangeable random measures

I Sparsity and power-law properties

I Scalable inference

I Similar construction for bipartite graphs

I Extensions to more structured models: low-rank, block-model,
covariates, dynamic networks,etc
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