1. Let \(X_1, \ldots, X_n \) be a random sample from the uniform distribution \(U[\theta - \frac{1}{2}, \theta + \frac{1}{2}] \). Show that the MLE of \(\theta \) is any value \(\hat{\theta} \) in the interval \([\max(X_i) - \frac{1}{2}, \min(X_i) + \frac{1}{2}]\). What is the method of moments estimator?

2. The random variable \(X \) has a discrete distribution such that \(P(X = r) = \theta^{-1} \) for \(r = 1, 2, \ldots, \theta \), where \(\theta \) is an unknown positive integer. Show that \(Y \), the maximum of a sample of \(n \) independent observations of \(X \), is a complete sufficient statistic for \(\theta \), and hence verify that
\[
\frac{Y^{n+1} - (Y - 1)^{n+1}}{Y^n - (Y - 1)^n}
\]
is a minimum-variance unbiased estimator for \(\theta \).

3. Consider a binomial experiment with probability of success \(p \) in which \(m \) fixed trials are conducted, resulting in \(R \) successes; a further set of trials is then conducted until \(s \) (fixed) further successes have occurred. The number of trials necessary in the second set is a random variable \(N \). By considering the function
\[
U(R, N) = \frac{R}{m} - \frac{s - 1}{N - 1}
\]
show that \((R, N)\) are jointly sufficient for \(p \), but not complete.

4. (GJJ 2.19) The random variables \(X_1, X_2, \ldots, X_n \) are iid with density \(f(x; \theta) = \theta x^{\theta-1} \) for \(0 < x < 1 \) and \(\theta > 0 \) unknown.
 (i) Find a sufficient statistic \(T \) for \(\theta \).
 (ii) Given that \(-\log(X_1) \) is unbiased for \(\theta^{-1} \), find another unbiased estimator with smaller variance. Give a simple expression of this estimator involving \(T \).

5. Let \(X = (X_1, \ldots, X_n) \) be a random sample from a density \(f_X(x; \theta) \) belonging to a parametric family \(\mathcal{F} \). Let \(T = t(X) \) be a function of \(X \) and denote the density of \(T \) by \(f_T(t; \theta) \). Assuming statistical regularity, define \(i_X(\theta) \) to be the Fisher information about \(\theta \) in \(X \). Finally, let \(i_X|T(\theta) \) denote the Fisher information conditional on \(T = t \) and define
\[
i_X|T(\theta) = \int i_X|t(\theta)f_T(t; \theta)dt
\]
(a) Show that
\[
i_X(\theta) = i_X|T(\theta) + i_T(\theta)
\]
(b) Show that
\[
i_X(\theta) \geq i_T(\theta),
\]
with equality for all \(\theta \) if and only if \(T = t(X) \) is sufficient for \(\theta \).

Hint: Use the factorization theorem for the density
\[
f_X(x; \theta) = f_X|T(x \mid t; \theta)f_T(t; \theta).
\]
(c) Hence, or otherwise, determine the Fisher information about θ in the first r order statistics

$$X_{(1)} < X_{(2)} < \cdots < X_{(r)}$$

of a sample of size n from the density

$$f(x; \theta) = \theta \exp(-\theta x), \ x > 0$$

6. Suppose $T(x)$ is complete sufficient for θ given data x. Show that if a minimal sufficient statistic $S(x)$ for θ exists, then $T(x)$ is also minimal sufficient.