
Foundations of Statistical Inference

Julien Berestycki

Department of Statistics
University of Oxford

MT 2016

Julien Berestycki (University of Oxford) BS2a MT 2016 1 / 20

Lecture 6 : Bayesian Inference
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Ideas of probability

The majority of statistics you have learned so are are called classical
or Frequentist. The probability for an event is defined as the proportion
of successes in an infinite number of repeatable trials.

By contrast, in Subjective Bayesian inference, probability is a measure
of the strength of belief.

We treat parameters as random variables. Before collecting any data
we assume that there is uncertainty about the value of a parameter.
This uncertainty can be formalised by specifying a pdf (or pmf) for the
parameter. We then conduct an experiment to collect some data that
will give us information about the parameter. We then use Bayes
Theorem to combine our prior beliefs with the data to derive an
updated estimate of our uncertainty about the parameter.
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The history of Bayesian Statistics

Bayesian methods originated with Bayes and Laplace (late 1700s
to mid 1800s).
In the early 1920’s, Fisher put forward an opposing viewpoint, that
statistical inference must be based entirely on probabilities with
direct experimental interpretation i.e. the repeated sampling
principle.
In 1939 Jeffrey’s book ’The theory of probability’ started a
resurgence of interest in Bayesian inference.
This continued throughout the 1950-60s, especially as problems
with the Frequentist approach started to emerge.
The development of simulation based inference has transformed
Bayesian statistics in the last 20-30 years and it now plays a
prominent part in modern statistics.
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Problems with Frequentist Inference - I
Frequentist Inference generally does not condition on the
observed data

A confidence interval is a set-valued function C(X ) ⊆ Θ of the data X
which covers the parameter θ ∈ C(X ) a fraction 1− α of repeated
draws of X taken under the null H0.

This is not the same as the statement that, given data X = x , the
interval C(x) covers θ with probability 1− α. But this is the type of
statement we might wish to make. (observe that this statement makes
sense iff θ is a r.v.)

Example 1 Suppose X1,X2 ∼ U(θ− 1/2, θ + 1/2) so that X(1) and X(2)
are the order statistics. Then C(X ) = [X(1),X(2)] is a α = 1/2 level CI
for θ. Suppose in your data X = x , x(2) − x(1) > 1/2 (this happens in
an eighth of data sets). Then θ ∈ [x(1), x(2)] with probability one.
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Problems with Frequentist Inference - II

Frequentist Inference depends on data that were never observed

The likelihood principle Suppose that two experiments relating to θ,
E1,E2, give rise to data y1, y2, such that the corresponding likelihoods
are proportional, that is, for all θ

L(θ; y1,E1) = cL(θ; y2,E2).

then the two experiments lead to identical conclusions about θ.

Key point MLE’s respect the likelihood principle i.e. the MLEs for θ are
identical in both experiments. But significance tests do not respect the
likelihood principle.
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Consider a pure test for significance where we specify just H0. We
must choose a test statistic T (x), and define the p-value for data
T (x) = t as

p-value = P(T (X ) at least as extreme as t |H0).

The choice of T (X ) amounts to a statement about the direction of
likely departures from the null, which requires some consideration of
alternative models.

Note 1 The calculation of the p-value involves a sum (or integral) over
data that was not observed, and this can depend upon the form of the
experiment.

Note 2 A p-value is not P(H0|T (X ) = t).
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Example

A Bernoulli trial succeeds with probability p.

E1 fix n1 Bernoulli trials, count number y1 of successes

E2 count number n2 Bernoulli trials to get fixed number y2 successes

L(p; y1,E1) =

(
n1

y1

)
py1(1− p)n1−y1 binomial

L(p; n2,E2) =

(
n2 − 1
y2 − 1

)
py2(1− p)n2−y2 negative binomial

If n1 = n2 = n, y1 = y2 = y then L(p; y1,E1) ∝ L(p; n2,E2).
So MLEs for p will be the same under E1 and E2.
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Example
But significance tests contradict : eg, H0 : p = 1/2 against
H1 : p < 1/2 and suppose n = 12 and y = 3.

The p-value based on E1 is

P
(

Y ≤ y |θ =
1
2

)
=

y∑
k=0

(
n
k

)
(1/2)k (1− 1/2)n−k (= 0.073)

while the p-value based on E2 is

P
(

N ≥ n|θ =
1
2

)
=
∞∑

k=n

(
k − 1
y − 1

)
(1/2)k (1− 1/2)n−k (= 0.033)

so different conclusions at significance level 0.05.

Note The p-values disagree because they sum over portions of two
different sample spaces.
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Bayesian Inference - Revison

Likelihood f (x | θ) and prior distribution π(θ) for ϑ. The posterior
distribution of ϑ at ϑ = θ, given x , is

π(θ | x) =
f (x | θ)π(θ)∫
f (x | θ)π(θ)dθ

⇒ π(θ | x) ∝ f (x | θ)π(θ)

posterior ∝ likelihood× prior

The same form for θ continuous (π(θ | x) a pdf) or discrete (π(θ | x) a
pmf). We call

∫
f (x | θ)π(θ)dθ the marginal likelihood.

Likelihood principle Notice that, if we base all inference on the
posterior distribution, then we respect the likelihood principle. If two
likelihood functions are proportional, then any constant cancels top and
bottom in Bayes rule, and the two posterior distributions are the same.
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Example 1
X ∼ Bin(n, ϑ) for known n and unknown ϑ. Suppose our prior
knowledge about ϑ is represented by a Beta distribution on (0,1), and
θ is a trial value for ϑ.

π(θ) =
θa−1(1− θ)b−1

B(a,b)
, 0 < θ < 1.
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Example 1
Prior probability density

π(θ) =
θa−1(1− θ)b−1

B(a,b)
, 0 < θ < 1.

Likelihood

f (x | θ) =

(
n
x

)
θx (1− θ)n−x , x = 0, . . . ,n

Posterior probability density

π(θ | x) ∝ likelihood× prior
∝ θa−1(1− θ)b−1θx (1− θ)n−x

= θa+x−1(1− θ)n−x+b−1

Here posterior has the same form as the prior (conjugacy) with
updated parameters a,b replaced by a + x ,b + n − x , so

π(θ | x) =
θa+x−1(1− θ)n−x+b−1

B(a + x ,b + n − x)
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Example 1

For a Beta distribution with parameters a,b

µ =
a

a + b
, σ2 =

ab
(a + b)2(a + b + 1)

The posterior mean and variance are

a + X
a + b + n

,
(a + X )(b + n − X )

(a + b + n)2(a + b + n + 1)

Suppose X = n and we set a = b = 1 for our prior. Then posterior
mean is

n + 1
n + 2

i.e. when we observe events of just one type then our point estimate is
not 0 or 1 (which is sensible especially in small sample sizes).
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Example 1

For large n, the posterior mean and variance are approximately

X
n
,

X (n − X )

n3

In classical statistics

θ̂ =
X
n
,
θ̂(1− θ̂)

n
=

X (n − X )

n3
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Example 1
Suppose ϑ = 0.3 but prior mean is 0.7 with std 0.1. Suppose data
X ∼ Bin(n, ϑ) with n = 10 (yielding X = 3) and then n = 100 (yielding
X = 30, say).
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As n increases, the likelihood overwhelms information in prior.
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Example 2 - Conjugate priors
Normal distribution when the mean and variance are unknown.Let
τ = 1/σ2, θ = (τ, µ). τ is called the precision. The prior τ has a
Gamma distribution with parameters α, β > 0, and conditional on τ , µ
has a distribution N(ν, 1

kτ ) for some k > 0, ν ∈ R.
The prior is

π(τ, µ) =
βα

Γ(α)
τα−1e−βτ · (2π)−1/2(kτ)1/2 exp

{
−kτ

2
(µ− ν)2

}
or

π(τ, µ) ∝ τα−1/2 exp
[
−τ
{
β +

k
2

(µ− ν)2
}]

The likelihood is

f (x | µ, τ) = (2π)−n/2τn/2 exp

{
−τ

2

n∑
i=1

(xi − µ)2

}
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Example 2 - Conjugate priors

Thus

π(τ, µ | x) ∝ τα+(n/2)−1/2 exp

[
−τ

{
β +

k
2

(µ− ν)2 +
1
2

n∑
i=1

(xi − µ)2

}]

Complete the square to see that

k(µ− ν)2 +
∑

(xi − µ)2

= (k + n)

(
µ− kν + nx̄

k + n

)2

+
nk

n + k
(x̄ − ν)2 +

∑
(xi − x̄)2
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Example 2 - Completing the square
Your posterior dependence on µ is entirely in the factor

exp

[
−τ

{
β +

k
2

(µ− ν)2 +
1
2

n∑
i=1

(xi − µ)2

}]
The idea is to try to write that as

c exp
[
−τ
{
β′ +

k ′

2
(ν ′ − µ)2

}]
so that (conditional on τ ) we recognize a Normal density.

k(µ− ν)2 +
∑

(xi − µ)2

= µ2(k + n)− µ(2kν + 2
∑

xi) + . . .

= (k + n)

(
µ− kν + nx̄

k + n

)2

+
nk

n + k
(x̄ − ν)2 +

∑
(xi − x̄)2
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Example 2 - Conjugate priors

Thus the posterior is

π(τ, µ | x) ∝ τα′−1/2 exp
[
−τ
{
β′ +

k ′

2
(ν ′ − µ)2

}]
where

α′ = α +
n
2

β′ = β +
1
2
· nk

n + k
(x̄ − ν)2 +

1
2

∑
(xi − x̄)2

k ′ = k + n

ν ′ =
kν + nx̄

k + n

This is the same form as the prior, so the class is conjugate prior.

Julien Berestycki (University of Oxford) BS2a MT 2016 21 / 20

Example 2 - Contd
If we are interested in the posterior distribution of µ alone

π(µ|x) =

∫
π(τ, µ|x)dτ =

∫
π(µ|τ, x)π(τ |x)dτ

Here, we have a simplification if we assume 2α = m ∈ N. Then

τ = W/2β, µ = ν + Z/
√

kτ

with W ∼ χ2
m and Z ∼ N(0,1). Recall that Z

√
m/W ∼ tm (Studen with

m d.f.) we see that the prior of µ is√
km
2β

(µ− ν) ∼ tm

and the posterior is√
k ′m′

2β′
(µ− ν ′) ∼ tm′ , m′ = m + n
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Example: estimating the probability of female birth
given placenta previa
Result of german study: 980 birth, 437 females. In general population
the proportion is 0.485.
Using a uniform (Beta(1,1)) prior, posterior is Beta(438,544).

post. mean = 0.446 post. std dev = 0.016
central 95% post. interval = [0.415,0.477]

Sensibility to proposed prior. α/β − 2 = “prior sample size".
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