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HITTING PROPERTIES AND NON-UNIQUENESS FOR SDE

DRIVEN BY STABLE PROCESSES

JULIEN BERESTYCKI, LEIF DÖRING, LEONID MYTNIK, AND LORENZO ZAMBOTTI

Abstract. We study a class of self-similar jump type SDEs driven by Hölder-
continuous drift and noise coefficients. Using the Lamperti transformation for pos-
itive self-similar Markov processes we obtain a necessary and sufficient condition
for almost sure extinction in finite time. We then show that pathwise uniqueness
holds in a restricted sense, namely among solutions spending a Lebesgue-negligible
amount of time at 0. A direct power transformation plays a key role.

1. Introduction and Results

In recent years there has been considerable interest in proving existence and es-
pecially uniqueness of solutions to SDEs driven by α-stable Lévy processes with
Hölder continuous coefficients. In [11, 17, 10] pathwise uniqueness for equations
with Hölder continuous noise coefficients was obtained in the spirit of the classical
Yamada-Watanabe result for SDEs driven by Brownian motion. On the other hand
when the noise is additive (i.e. the noise coefficient is constant) and it is the drift
coefficient which is supposed to be Hölder, Priola [18] extended the known results
for SDEs driven by Brownian motion to SDEs driven by stable Lévy processes.

In the present work we want to focus on a family of SDEs which interpolate
between the two classes of problems described above since both the drift and the
noise coefficients are chosen Hölder-continuous. We study existence and uniqueness
(or lack of uniqueness) of non-negative solutions (Zt)t≥0 to the stochastic differential
equation (SDE) of jump type

Zt = Z0 +

∫ t

0

Zβ
s− dLs + θ

∫ t

0

Zη
s ds, t ≥ 0, (1.1)

where β, η ∈ [0, 1), θ ≥ 0 and (Lt)t≥0 is a spectrally positive α-stable α ∈ (1, 2) Lévy
process with Laplace exponent

logE[e−λL1 ] = λα =

∫

(0,∞)

(

e−λx − 1 + λx
) α(α− 1)

Γ(2− α)
x−1−α dx, λ ≥ 0.
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LM is partly supported by the Israel Science Foundation.
JB, LM and LZ thanks the Isaac Newton Institute for Mathematical Sciences, Cambridge, for

their invitation during which part of this work was produced.
1

http://arxiv.org/abs/1111.4388v2
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Observe that the drift is non-locally Lipschitz precisely around a point where the
noise coefficients is degenerate (i.e. equal to 0). Therefore, it is perhaps not so
surprising that uniqueness might fail if solutions hit zero. One of our main results
is that, in a certain regime, pathwise uniqueness indeed fails, and we can explicitly
construct two different solutions (which are moreover both strong).

It turns out that if we chose η properly as a function of α and β the solutions of
(1.1) trapped in 0 will be self-similar. This, in fact, is a crucial ingredient for our
analysis and we will henceforth assume

θ ≥ 0, α ∈ (1, 2), β ∈ [1− 1/α, 1), η = 1− α(1− β) ∈ [0, 1). (1.2)

Although this choice of parameters might appear arbitrary at first sight, covers
in fact many important special cases.

- Solutions to (1.1) with θ = 0 and β = 1/α are called continuous state
branching processes with stable branching mechanism. If θ > 0 and still β =
1/α, the additional drift can be interpreted as a state-dependent immigration
to the system and was studied for more general immigration mechanisms in
Chapter 10 of Li [16].

- In the forthcoming article Berestycki et al. [3] the authors use a spatial
version of the SDE (1.1) with β = 1/α and η = 2 − α to study generalized
Fleming-Viot superprocesses with mutation. Since the problem seems to be
of independent interest, questions of existence and uniqueness of solutions
to (1.1) are studied here separately.

- If β = 1− 1/α, then η = 0, and uniqueness follows for any θ ≥ 0 by Li and
Mytnik [17].

The case β = 1 is not covered by the range of parameters allowed by (1.2). Never-
theless, it is easily seen that then η = 1 and for any parameter θ ≥ 0 the SDE (1.1)
is a linear equation for which pathwise uniqueness is a simple consequence of the
Lipschitz property of the coefficients.

Before stating the results let us fix some notation. We suppose that (Lt)t≥0 is
adapted to a stochastic basis (Ω,G, (Gt)t≥0,P) satisfying the usual conditions. A
(Gt)t≥0-adapted stochastic process (Zt)t≥0 with almost surely càdlàg sample paths
solving (1.1) a.s. is said to be a solution to Equation (1.1). If a solution is adapted
to the augmented filtration of (Lt)t≥0 then it is said to be a strong solution to
Equation (1.1). We say that pathwise uniqueness holds for the SDE (1.1) if for any
two solutions Z1, Z2 defined on Ω we have P(Z1

t = Z2
t , ∀ t ≥ 0) = 1.

A first simple observation is that strong existence and pathwise uniqueness of
non-negative solutions hold for the SDE (1.1) before

T0 := inf{t ≥ 0 : Zt = 0},

the first hitting time of 0; indeed, the coefficients are Lipschitz continuous on (ε,∞)
for all ε > 0. In order to understand why uniqueness might fail, we first explain
when the event {T0 <∞} has positive probability, since otherwise nothing needs to
be proved. Using that solutions of Equation (1.1) are self-similar for the appropriate
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choice of β and η, Lamperti’s transformation –which will be recalled below– can be
applied to prove the following result:

Theorem 1.1. Let α ∈ (1, 2), and β, η are chosen as in (1.2), then T0 <∞ almost
surely if and only if 0 ≤ θ < Γ(α) and T0 = ∞ almost surely if and only if θ ≥ Γ(α).

To see how uniqueness might fail when (re)starting at zero let us suppose that Z
is the unique solution up to T0. If β > 1 − 1/α, one possible solution to the SDE
(1.1) is always the trivial solution (Z̄t)t≥0 := (Zt∧T0)t≥0, i.e. the solution trapped
at zero after T0. Hence, the existence of a non-trivial solution contradicts pathwise
uniqueness in the classical sense. It does not if we weaken the set of possible solutions
to the class S

S :=

{

(Zt)t≥0

∣

∣

∣
Z ≥ 0 and

∫ ∞

0

1{Zt=0}dt = 0 a.s.

}

which in particular rules out the trivial solution Z̄. Of course it is not clear a priori
whether there is a solution Z ∈ S. Both the drift and the noise are null when
solutions hit zero so that existence of strong solutions that leave zero is non-trivial.

Theorem 1.2. Let α ∈ (1, 2), β ∈ (1− 1/α, 1) and suppose that Z0 > 0. Recall that
η = 1− α(1− β).

A) If θ > Γ(αβ)
Γ(η)

, then there is a unique solution Z ∈ S to the SDE (1.1), which
is moreover strong.

B) If θ ≤ Γ(αβ)
Γ(η)

, then there is no solution Z ∈ S to the SDE (1.1).

Remark 1.3. Recently, Bass et al. have obtained a strong uniqueness result in a
class similar to S but without the positivity requirement, for solutions of a Brownian-
driven SDE with Hölder diffusion coefficient and no drift (and a similar singularity
at 0).

To combine the two theorems notice that with the choice (1.2) of parameters
α, β, η the inequality

Γ(αβ)

Γ(η)
< Γ(α), (1.3)

holds, see Lemma 2.5 below. Therefore, for β ∈ (1 − 1/α, 1), Theorems 1.1 and 1.2
define three regimes for the SDE (1.1) as θ varies.

- If θ ≤ Γ(αβ)
Γ(η)

then the set of solutions of type S is empty. We can not rule out

the existence of solutions outside S other than Z̄.
- If Γ(αβ)

Γ(η)
< θ < Γ(α) there is a unique, strong, non-trivial solution in S which

hits zero in finite time almost surely. When β > 1 − 1/α, Z̄ is still a strong
solution. Therefore, in this case, we have a non-uniqueness phenomenon for
solutions of Equation (1.1).

- Finally, if θ ≥ Γ(α) there is a unique solution which never hits zero.

It is interesting to note that the regimes can be equally obtained from the theory of
positive self-similar Markov processes as we explain below in Section 4.
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Let us finally discuss the connection to the particular boundary case α = 2, β =
1/α = 1/2 (which is not covered by (1.2)). Equation (1.1) becomes, for θ ≥ 0 and
Z0 ≥ 0

Zt = Z0 +

∫ t

0

√

Zs dBs + θ t, t ≥ 0.

We recognize in (2Zt, t ≥ 0) a squared-Bessel process of dimension 2θ. The drift
is constant, and pathwise uniqueness always holds due to the classical results of
Yamada and Watanabe. Since Γ(0) = +∞, the interesting regime B in Theorem
1.2 reduces to the case θ = 0, where 0 is a trap for Z by pathwise uniqueness.
Since Γ(2) = 1, the dichotomy of Theorem 1.1 corresponds to the fact that a Bessel
process of dimension 2θ hits 0 in finite time with positive probability iff θ < 1.

Organization of the Proofs. In Section 2 we use the theory of positive self-similar
Markov processes to prove Theorem 1.1. The arguments for the proof of Theorem
1.2 are gathered in Section 3. Finally, in Section 4 we show how our results can be
used to construct self-similar extensions of (Zt∧T0)t≥0.

2. Self-similarity and the Proof of Theorem 1.1

A positive self-similar Markov process (pssMp) of index γ is a strong Markov
family (Px)x>0 with coordinate process denoted by Z in the Skorohod space of
càdlàg functions satisfying

the law of (cZc−1/γt)t≥0 under Px is given by P
cx (2.1)

for all c > 0. John Lamperti has shown in [15] that this property is equivalent to
the existence of a Lévy process ξ such that, under Px, the process (Zt∧T0)t≥0 has the
same law as

(

x exp
(

ξτ(tx−1/γ )

))

t≥0
, where

τ(t) := inf{s ≥ 0 : As > t} and At :=

∫ t

0

exp

(

1

γ
ξs

)

ds.

Since this is all we need, we assume from now on that the Lévy process ξ is conserva-
tive, i.e. the lifetime is infinite. The proof of Theorem 1.1 is based on the equivalence

T0 <∞ a.s. for all initial conditions Z0 > 0 ⇐⇒ ξ drifts to −∞ (2.2)

for pssMps which is due to Lamperti [15]. In order to connect the SDE (1.1) to these
results we start with a simple lemma.

Lemma 2.1. Suppose that β ∈ [1 − 1
α
, 1), then, for any initial condition x > 0,

the SDE (1.1) admits a unique non-negative solution absorbed at zero. The induced
Markov family (Px)x>0 is self-similar of index 1/(1− η) ≥ 1.

Proof. Existence and pathwise uniqueness before hitting any level ǫ follows from the
Lipschitz structure of the integrands in (ǫ,∞). Sending ǫ to zero this carries over to
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solutions up to T0. To prove the self-similarity assertion, we abbreviate γ = 1/(1−η)
to obtain

cZtc−1/γ = cZ0 +

∫ tc−1/γ

0

cZβ
s−dLs + θ

∫ tc−1/γ

0

cZ1−1/γ
s ds

= cZ0 +

∫ t

0

cZβ

(sc−1/γ)−
dL(c−1/γs) + θ

∫ t

0

c1−1/γZ
1−1/γ

sc−1/γds

= cZ0 +

∫ t

0

(

cZ(sc−1/γ)−

)β
dLc

s + θ

∫ t

0

(cZsc−1/γ)
1−1/γ ds,

where the Lévy process Lc
t := c1/(αγ)Ltc−1/γ has the same distribution as L, and

we have used in particular that c1−1/(αγ) = cβ. The self-similarity now follows from
well-posedness of the SDE before hitting zero. �

Next, we calculate the Lévy process ξ corresponding to solutions of the SDE (1.1)
via Lamperti’s transformation. For θ = 0 and β = 1/α, i.e. the stable CSBPs without
immigration, ξ can be recovered from Proposition 2 of Kyprianou and Pardo [14]
combined with the generator calculations of Caballero and Chaumont [5].

Lemma 2.2. Suppose that M is a Poisson point process on (0,∞) × (0,∞) with
intensity measure M′(ds, dx) = ds⊗ cαe

x(ex − 1)−α−1 dx, then

ξt :=

(

θ +

∫ ∞

0

(log(1 + x)− x) cαx
−1−α dx

)

t+

∫ t

0

∫ ∞

0

x (M−M′)(ds, dx)

(2.3)

is the Lévy process corresponding under Lamperti’s transformation to the pssMp
(Px)x>0 defined by the SDE (1.1).

Proof. First note that ξ can equivalently be written as

ξt =

(

θ +

∫ ∞

0

(log(1 + x)− x) cαx
−1−α dx

)

t

+

∫ t

0

∫ ∞

0

log(1 + x)(N −N ′)(ds, dx),

(2.4)

where N is a Poisson point process on (0,∞) × (0,∞) with intensity measure
N ′(ds, dx) = ds ⊗ cαx

−1−α. The equivalence follows for instance from Theorem
II.1.8 of Jacod and Shiryaev [13] and the compensator calculation, for any measur-
able function W with compact support,

∫ t

0

∫ ∞

0

W (s, x)M′(ds, dx) =

∫ t

0

∫ ∞

0

W (s, x)cαe
x(ex − 1)−1−α dx

=

∫ t

0

∫ ∞

0

W (s, log(x+ 1))cαx
−1−α dx

=

∫ t

0

∫ ∞

0

W (s, log(x+ 1))N ′(ds, dx)
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so that the jump-measures of both Poissonian integrals have the same deterministic
intensity. Itō’s formula (see page 44 of Ikeda and Watanabe [12]) applied to (2.4)
directly shows that Mt := exp(ξt) satisfies

Mt = 1 + θ

∫ t

0

Ms ds+

∫ t

0

∫ ∞

0

Ms−x (N −N ′)(ds, dx). (2.5)

Recalling from the Lévy-Itō representation that

Lt :=

∫ t

0

∫ ∞

0

x (N −N ′)(ds, dx)

is a spectrally positive α-stable Lévy process with Laplace exponent λα and inserting
in (2.5) shows that exp(ξt) solves

Mt = 1 + θ

∫ t

0

Ms ds+

∫ t

0

Ms− dLs.

Next, we have to include the time-change: since γ = 1/(1 − η), Lamperti’s time-
change becomes

τ(t) := inf{s > 0 : As > t}, At :=

∫ t

0

λs ds, λs := exp{(1− η)ξs}.

If we set

L̃t :=

∫ τ(t)

0

λ
1/α
s− dLs, t > 0,

then we claim that (L̃t)t≥0 has the same law as (Lt)t≥0. Indeed, let us denote by

Ñ , respectively Ñ ′, the image measure of N , resp. N ′, under the map (s, x) 7→

(As, λ
1/α
s− x). Then Ñ is an optional random measure, whose compensator Ñ ′ is equal

to N ′, since using the change of variable (As, λ
1/α
s− x) = (r, y), we find

∫ ∞

0

∫ ∞

0

f(As, λ
1/α
s− x) dscαx

−1−α dx =

∫ ∞

0

∫ ∞

0

f(r, y) λ
−1− 1

α
+ 1

α
+1

τ(r) dr cαy
−1−αdy.

By [13, Theorem II.1.8], Ñ and N have the same law. Therefore, since

∫ t

0

∫ ∞

0

x (Ñ − Ñ ′)(ds, dx) =

∫ ∞

0

∫ ∞

0

1(As≤t) λ
1/α
s− x (N −N ′)(ds, dx)

=

∫ τ(t)

0

λ
1/α
s− dLs = L̃t,
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the claim is proved. Plugging-in, we obtain

Mτ(t) = 1 + θ

∫ τ(t)

0

Ms ds+

∫ τ(t)

0

Ms−dLs

= 1 + θ

∫ t

0

Mτ(u) τ̇(u) du+

∫ t

0

Mτ(u)−e
−(1−β)ξ

τ(u)−dL̃u

= 1 + θ

∫ t

0

eξτ(u)(1−(1−η)) du+

∫ t

0

eξτ(u)−(1−(1−β))dL̃u

= 1 + θ

∫ t

0

Mη
τ(u) du+

∫ t

0

Mβ
τ(u)−dL̃u.

Hence, (Mτ(t))t≤T0 is a weak solution to the SDE (1.1) until first hitting zero. Unique-
ness of solutions then implies that ξ is the Lamperti transformed Lévy process cor-
responding to the solution of the SDE (1.1). �

Corollary 2.3. Suppose that ξ is the Lamperti transformed Lévy process correspond-
ing to the pssMp (Px)x>0 induced by the solutions to the SDE (1.1), then

E[exp(λξ1)] = exp

(

λ

(

θ −
Γ(α− λ)

Γ(1− λ)

))

(2.6)

for λ ∈ [0, 1).

Proof. All we need to do is to apply the exponential formula (see Theorem 25.17 of
Sato [23])) to the Lévy process ξ represented as in (2.4)

E[exp(λξ1)] = exp

(

λ

(

θ +

∫ ∞

0

(log(1 + x)− x) cαx
−1−α dx

)

+

∫ ∞

0

(

(1 + x)λ − 1− λ log(1 + x)
)

cαx
−1−α dx

)

= exp

(

λθ +

∫ ∞

0

(

(1 + x)λ − 1− λx
)

cαx
−1−α dx

)

.

To calculate the inner integral we use twice partial integration to obtain
∫ ∞

0

(

(1 + x)λ − 1− λx
)

cαx
−1−α dx =

λ(λ− 1)

α(α− 1)
cα

∫ ∞

1

xλ−2(x− 1)−α+1 dx. (2.7)

Substituting x by 1/y and recalling that cα = α(α−1)
Γ(2−α)

then yields

λ(λ− 1)

Γ(2− α)

∫ 1

0

1

yλ−2

(1

y
− 1
)−α+1 1

y2
dy =

λ(λ− 1)

Γ(2− α)

∫ 1

0

xα−λ−1(1− x)1−α dx. (2.8)

The integral can be reformulated via Beta-functions to obtain equality with

λ(λ− 1)

Γ(2− α)
B(α− λ, 2− α) =

λ(λ− 1)

Γ(2− α)

Γ(α− λ)Γ(2− α)

Γ(2− λ)
= −λ

Γ(α− λ)

Γ(1− λ)
, (2.9)

where for the first equality we used B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and for the second
Γ(x+ 1) = xΓ(x). �
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Corollary 2.4. Let β ∈ [1−1/α, 1) and suppose that ξ is the Lamperti transformed
Lévy process corresponding to the pssMp (Px)x>0 induced by the solutions to the SDE
(1.1), then

i) ξ drifts to −∞ if and only if θ < Γ(α),

ii) there is 0 < a < 1− η such that E[eaξ1 ] > 1 if and only if θ > Γ(αβ)
Γ(η)

.

Proof. Let us first recall that, by Hölder’s inequality, the Laplace exponent ψ(λ) :=
logE[eλξ1 ] is convex whenever it is well-defined. Furthermore, it satisfies ψ(0) = 0
and ψ′(0+) = E[ξ1].
i) To verify the claim it suffices to check for which values θ the mean E[ξ1] is strictly
negative which is equivalent to finding λ > 0 such that ψ(λ) < 0. By our explicit

calculation we have ψ(λ) = λ
(

θ − Γ(α−λ)
Γ(1−λ)

)

, λ ∈ [0, 1), so that ξ drifts to −∞ if and

only if there is λ > 0 such that θ < Γ(α−λ)
Γ(1−λ)

. Since the Gamma-function is continuous

on (0,∞) and Γ(1) = 1 this is possible if and only if θ < Γ(α).
ii) Let us first assume η > 0. As the formula for the Laplace exponent is well-defined
for λ = 1− η, the left-hand side of the claim is equivalent to

θ >
Γ(α− (1− η))

Γ(1− (1− η))
=

Γ(αβ)

Γ(η)

due to the convexity of ψ. Similarly in the case of η = 0, we extend continuously the
Laplace exponent to λ = 1, and by taking Γ(0) = ∞ (this we assume everywhere
throughout the paper) we see that the left-hand side of the claim is equivalent to
θ > 0 in this case. �

Next, we connect the regimes of the previous corollary, i.e. we verify (1.3) above:

Lemma 2.5. Suppose α ∈ (1, 2) and β ∈ [1− 1/α, 1), then

Γ(αβ)

Γ(η)
< Γ(α).

Proof. Let p, q,m, n > 0 with (p−m) > 0 and (q − n) < 0; then we claim that

Γ(p+ n) Γ(q +m) > Γ(p+ q) Γ(m+ n). (2.10)

Let us first show that this implies the claim of the lemma. By the constraint on β,
we can find n such that α(1− β) < n < 1; since α > 1 we can set

p := α− n > 0, q := n− α(1− β) > 0, m := 1− n > 0,

and we obtain

p+ n = α, q +m = 1− α+ αβ = η, p+ q = αβ, m+ n = 1.

Moreover p−m = α− 1 > 0 and q − n = −α(1− β) < 0, so that the desired result
is obtained.
Let us now prove (2.10). Define the maps f, g : (0, 1) → [0,+∞) by

f(x) := xp−m, g(x) := (1− x)q−n.
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Let us consider a B(m,n)-variable X , with density

Γ(m+ n)

Γ(m)Γ(n)
xm−1(1− x)n−1

1{x∈ (0,1)} dx.

As (p−m) > 0 and (q−n) < 0, the maps f and g are monotone increasing on [0, 1].
Therefore, considering (X, Y ) i.i.d. we obtain

0 < E((f(X)− f(Y ))(g(X)− g(Y ))) = 2(E(f(X)g(X))− E(f(X))E(g(X)))

i.e.

E(f(X)g(X)) > E(f(X))E(g(X)).

But this corresponds to

Γ(m+ n)

Γ(m)Γ(n)

Γ(p)Γ(q)

Γ(p+ q)
>

Γ(m+ n)

Γ(m)Γ(n)

Γ(p)Γ(n)

Γ(p + n)

Γ(m+ n)

Γ(m)Γ(n)

Γ(m)Γ(q)

Γ(m+ q)

and after cancellation we get (2.10). �

With the preparation finished, our first theorem can be proved.

Proof of Theorem 1.1. In Lemma 2.1 we proved that solutions to the SDE (1.1) ab-
sorbed at zero form a pssMps (Px)x>0. The corresponding Lévy process has been
characterized in Lemma 2.2. Combining the Equivalence (2.2) with part i) of Corol-
lary 2.4 the claim follows. �

In fact, we calculated in Corollary 2.4 more than we needed for the proof of
Theorem 1.1 since part ii) was not used. The equivalence will be used later in
Section 4.

3. Solutions after T0 and the Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the simple power transformation z 7→ z1−η

which turns the Hölder continuous drift into a constant drift.

Lemma 3.1. Suppose θ ≥ 0, α ∈ (1, 2), β ∈ (1− 1/α, 1) and suppose that (Zt)t≥0 is

a non-negative (strong) solution to the SDE (1.1) started at Z0 > 0. Then (Z1−η
t )t≥0

is a non-negative (strong) solution to

Vt = Z1−η
0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)
∫ t

0

1{Vs 6=0} ds

+

∫ t

0

∫ ∞

0

(

(

V
1

(1−η)

s− + V
β

1−η

s− x

)1−η

− Vs−

)

(N −N ′)(ds, dx), t ≥ 0,

(3.1)

where N is a Poisson point process on (0,∞) × (0,∞) with intensity measure
N ′(ds, dx) = ds⊗ cαx

−1−α.

Proof. Let us first rewrite the SDE (1.1) via the Lévy-Itō representation in the form

Zt = Z0 + θ

∫ t

0

Zη
s ds+

∫ t

0

∫ ∞

0

Zβ
s−x (N −N ′)(ds, dx),
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where N is the jump-measure of L which has intensity N ′(ds, dx) = ds⊗cαx−1−α dx.
We cannot directly apply Itō’s formula with F (z) = z1−η since F is not smooth at the
boundary of [0,∞) and cannot be extended to a concave function on R. To surround
this difficulty let us define Fǫ(z) = (z + ǫ)1−η, which is smooth for z ∈ [0,∞), and

G(z, x, ǫ) = Fǫ(z + zβ x)− Fǫ(z)− F ′
ǫ(z)z

βx, z, x, ǫ ≥ 0.

Itō’s formula then yields the almost sure identity

(Zt + ǫ)1−η − (Z0 + ǫ)1−η

= θ (1− η)

∫ t

0

(Zs + ǫ)−ηZη
s ds

+

∫ t

0

∫ ∞

0

(

(Zs− + ǫ+ Zβ
s− x)

1−η − (Zs− + ǫ)1−η
)

(N −N ′)(ds, dx)

+

∫ t

0

∫ ∞

0

G(Zs, x, ǫ) cα x
−1−α dx

=: Iǫt + IIǫt + IIIǫt .

In order to finish the proof we let ǫ tend to zero and show that the summands
converge almost surely along a subsequence. It follows readily from dominated con-
vergence that

lim
ǫ→0

Iǫt = θ(1− η)

∫ t

0

1{Zs>0} ds.

Next, for IIIǫt we make the change of the variables y = x Zβ
s

Zs+ǫ
to get

IIIǫt = cα

∫ t

0

(

Zs

Zs + ǫ

)αβ

ds

∫ ∞

0

(

(1 + y)1−η − 1− (1− η)y
)

y−1−αdy.

Using (2.7)-(2.9) with λ = 1− η, one obtains

IIIǫt = −(1 − η)
Γ(αβ)

Γ(η)

∫ t

0

(

Zs

Zs + ǫ

)αβ

ds.

Now, we can apply the dominated convergence theorem to obtain almost surely

lim
ǫ↓0

IIIǫt = −(1 − η)
Γ(αβ)

Γ(η)

∫ t

0

1{Zs>0} ds.

Next, we have to deal with the term IIǫt for which we first show Lp-convergence for
some p ∈ (α, 2). Let us abbreviate

H(z, x, ǫ) := Fǫ(z + zβ x)− Fǫ(z) ≥ 0

satisfying

d

dǫ
H(z, x, ǫ) = F ′

ǫ(z + zβ x)− F ′
ǫ(z) ≤ 0.
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Since 1− η = α(1−β) < 1, we can fix p ∈ (α, 1
1−β

∧ 2). Applying Burkholder-Davis-

Gundy inequality (see e.g. [8, Theorem VII.92]) we obtain

E

[(
∫ t

0

∫ ∞

0

(

(Zs− + Zβ
s− x)

1−η − Z1−η
s−

)

(N −N ′)(ds, dx)

−

∫ t

0

∫ ∞

0

(

(Zs− + ǫ+ Zβ
s− x)

1−η − (Zs− + ǫ)1−η
)

(N −N ′)(ds, dx)

)p]

≤ cpE

[

(
∫ t

0

∫ ∞

0

(

H(Zs−, x, 0)−H(Zs−, x, ǫ)
)2
N (ds, dx)

)p/2
]

≤ cpE

[

∫ t

0

∫ ∞

0

(

H(Zs, x, 0)−H(Zs, x, ǫ)
)p
N (ds, dx)

]

= cpE

[

∫ t

0

∫ ∞

0

(

H(Zs, x, 0)−H(Zs, x, ǫ)
)p
cα x

−1−αdx ds

]

(3.2)

where cp > 0 is a constant coming from the Burkholder-Davis-Gundy inequality.
Since H is positive and pointwise decreasing in ǫ, to show that the right-hand side
of (3.2) converges to zero, by monotone convergence theorem, it is enough to show
the boundedness of

E

[

∫ t

0

∫ ∞

0

H(Zs, x, 0)
p cα x

−1−αdx ds

]

. (3.3)

To this end, make the change of variable x = Z1−β
s y (note that the integrand is zero

whenever Zs = 0) to obtain

E

[

∫ t

0

∫ ∞

0

H(Zs, x, 0)
pds cα x

−1−α dx

]

= E

[

∫ t

0

∫ ∞

0

Z(p−1)(1−η)
s ((1 + y)1−η − 1)p ds cα y

−1−αdy

]

.

To bound the right-hand side we use two bounds for the integrand. First, applying
the Hölder property, gives

((1 + y)1−η − 11−η)p ≤ yp(1−η)

and, secondly, we use the mean-value theorem with some ζ > 0 to obtain

((1 + y)1−η − 11−η)p = (1− η)p((1 + ζ)−ηy)p ≤ (1− η)pyp.

Plugging-in and using Fubini’s theorem, we derive the upper bound

E

[

∫ t

0

∫ ∞

0

H(Zs, x, 0)
p ds cα x

−1−αdx

]

≤ cp

∫ t

0

E
[

Z(p−1)(1−η)
s

]

ds

∫ ∞

0

min(yp, yp(1−η)) cα y
−1−α dy.

(3.4)
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For the latter integral we estimate
∫ ∞

0

min(yp, yp(1−η)) cα y
−1−α dy ≤ cα

∫ 1

0

yp−1−α dy + cα

∫ ∞

1

yp(1−η)−1−α dy

= cα

∫ 1

0

yp−1−α dy + cα

∫ ∞

1

ypα(1−β)−1−α dy

(3.5)

which is finite since p ∈ (α, (1 − β)−1 ∧ 2). Defining τm = inf{t ≥ 0 : Zt > m},
which tends to infinity almost surely by Lemma 2.3 of Fu and Li [11], the defining
equation (1.1) yields

E[Zt∧τm ] = Z0 + E

[

θ

∫ t∧τm

0

Zη
s ds

]

≤ Z0 + θ

∫ t

0

(E[Zs∧τm ] + 1) ds

≤ Z0 + θ

∫ t

0

E[Zs∧τm ] ds+ θt.

Hence, by the Gronwall inequality and Fatou’s lemma,

E
[

Z
(p−1)(1−η)
t

]

≤ lim
m→∞

E
[

Z
(p−1)(1−η)
t∧τm

]

≤ 1 + lim
m→∞

E[Zt∧τm ]

≤ 1 + θt + θ2
∫ t

0

seθ(t−s) ds

so that
∫ t

0
E
[

Z
(p−1)(1−η)
s

]

ds < ∞. This together with (3.5) implies that the right-
hand side of (3.4) is finite.
Now that the finiteness of (3.3) is verified, (3.2) and monotone convergence prove
the convergence

IIǫt
ǫ→0
−→

∫ t

0

∫ ∞

0

(

(Zs− + Zβ
s− x)

1−η − Z1−η
s−

)

(N −N ′)(ds, dx)

in Lp. Hence, there is a subsequence ǫk along which almost surely

lim
ǫk→0

IIǫkt =

∫ t

0

∫ ∞

0

(

(Zs− + Zβ
s− x)

1−η − Z1−η
s−

)

(N −N ′)(ds, dx).

Finally, along ǫk all summands Iǫkt , IIǫkt , IIIǫkt converge almost surely so that we
proved the semimartingale decomposition

Z1−η
t = Z1−η

0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)
∫ t

0

1{Zs>0} ds

+

∫ t

0

∫ ∞

0

(

(Zs− + Zβ
s− x)

1−η − Z1−η
s−

)

(N −N ′)(ds, dx),

so that, replacing Z by V 1/(1−η), the claim follows. �

Here is the reverse power transformation with a small but crucial difference in the
drift.
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Lemma 3.2. Suppose θ ≥ 0, α ∈ (1, 2), β ∈ (1− 1/α, 1), and suppose there exists a
non-negative (strong) solution (Vt)t≥0 to

Vt = V0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

t

+

∫ t

0

∫ ∞

0

(

(

V
1

1−η

s− + V
β

1−η

s− x

)1−η

− Vs−

)

(N −N ′)(ds, dx), t ≥ 0,

(3.6)

started at V0 > 0. Then Z := V
1

1−η is a non-negative (strong) solution of the SDE

(1.1) with initial condition V
1

1−η

0 .

Proof. Applying the Meyer-Itô formula (see Theorem 51 of Protter [19]) with the
convex function F (v) = z1/(1−η), we obtain

Zt = V
1

1−η

t

= V
1

1−η

0 +

(

θ −
Γ(αβ)

Γ(η)

)
∫ t

0

V
η

1−η
s ds+

∫ t

0

∫ ∞

0

V
β

1−η

s− x (N −N ′)(ds, dx)

+

∫ t

0

∫ ∞

0

[

V
β

1−η
s x−

1

1− η
V

η
1−η
s

(

(

V
1

1−η
s + V

β
1−η
s x

)1−η

− Vs

)]

N ′(ds, dx)

= Z0 +

(

θ −
Γ(αβ)

Γ(η)

)
∫ t

0

Zη
s ds+

∫ t

0

∫ ∞

0

Zβ
s−x (N −N ′)(ds, dx) (3.7)

−
1

1− η

∫ t

0

Zη
s

∫ ∞

0

[

(

Zs + Zβ
s x
)1−η

− Z1−η
s − (1− η)Zβ−η

s x
]

cαx
−1−α dx ds.

With the same integral identity used, in the proof of Lemma 3.1 for analyzing IIIǫ,
we get that the inner integral in the last term on the right-hand side equals to

∫ ∞

0

G(Zs, x, 0)cαx
−1−α dx = −(1− η)

Γ(αβ)

Γ(η)
.

Substituting this into (3.7), we finally obtain

Zt = Z0 + θ

∫ t

0

Zη
s ds+

∫ t

0

∫ ∞

0

Zβ
s−x (N −N ′)(ds, dx).

�

Before coming to the consequences of the power transformation we need existence
and uniqueness for solutions of the jump type SDE (3.6).

Lemma 3.3. Suppose V0 ≥ 0 and α ∈ (1, 2), β ∈ (1 − 1/α, 1), then the two state-
ments are equivalent:

i) θ > Γ(αβ)
Γ(η)

,

ii) there is a unique solution V ∈ S of the SDE (3.6) which is moreover strong.



14 JULIEN BERESTYCKI, LEIF DÖRING, LEONID MYTNIK, AND LORENZO ZAMBOTTI

Proof. Step 1: For the first part of the proof we assume θ > Γ(αβ)
Γ(η)

and prove

existence of a unique non-negative strong solution which we then show is of type S.
To ease notation, let us define

g(v, z) = v(1 + v−1/αz)1−η − v and c = (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

so that the (3.6) becomes

Vt = V0 + ct +

∫ t

0

∫ ∞

0

g(Vs−, x)(N −N ′)(ds, dx).

In the following we aim at applying the techniques developed in Li and Mytnik
[17] though their Theorem 2.2 cannot be applied directly. Let us start with some
estimates for g. Taking the derivative with respect to v yields

∂g

∂v
(v, z) = −

1 − η

α

z

v1/α

(

1 +
z

v1/α

)−η

+
(

1 +
z

v1/α

)1−η

− 1

= −(1 − β)x (1 + x)−η + (1 + x)1−η − 1

=: f(x),

where x = z
v1/α

. It follows directly that f(0) = 0 and furthermore

f ′(x) = (1− β)ηx (1 + x)−η−1 − (1− β) (1 + x)−η + (1− η)(1 + x)−η

= (1− β) (1 + x)−η−1

(

(ηx− (1 + x) +
1− η

1− β
(1 + x)

)

= (1− β) (1 + x)−η−1 (αβx+ α− 1)

> 0

for all x > 0 whereas the last equality follows as we recall the definition of η =
1− α(1− β), and the last inequality follows from the assumption that α > 1. This
implies that f(x) is positive for all x > 0, and hence g(v, z) is increasing in v for all
z. With this preparation we can find a modulus of continuity for g. Using the bound

(1 + x)1−η ≤ 1 + (1− η)x, x ≥ 0, (3.8)

shows that

0 ≤ f(x) ≤ 1 + (1− η)x− 1 = (1− η)x.

Now assume without loss of generality that v1 ≤ v2. To estimate |g(v2, z)− g(v1, z)|
we consider two cases:

Case 1. We first assume that |v2 − v1| ≤
1
2
v2. The previous calculations and the

mean-value theorem yield (recall that x = z

v
1/α
1

),

|g(v2, z)− g(v1, z)| ≤ (1− η)x(v2 − v1) ≤ (1− η)
z

v
1/α
1

(v2 − v1),

which combined with

v1 ≥
1

2
v2 ≥ v2 − v1
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gives the estimate

|g(v2, z)− g(v1, z)| ≤ (1− η)z(v2 − v1)
1−1/α.

Case 2. Next we assume |v2 − v1| ≥
1
2
v2. In this case we will use the following

(crude) bound (recall that again v2 ≥ v1 and g(v, z) is increasing in v):

|g(v2, z)− g(v1, z)| ≤ g(v2, z) ≤ v2(1 + (1− η)v
−1/α
2 z − 1)

= (1− η)v
1−1/α
2 z

≤ c|v2 − v1|
1−1/αz,

where the second inequality follows from (3.8) and the last inequality follows from
the assumption of Case 2.

In total we obtain the following uniform modulus of continuity for g:

|g(v2, z)− g(v1, z)| ≤ c|v2 − v1|
1−1/αz. (3.9)

We are now in a position to prove existence for all t ≥ 0 and pathwise uniqueness
for (3.1).

Pathwise Uniqueness: The claim follows from Proposition 3.1 of Li and Mytnik
[17] for which conditions i)-iii) are trivially matched and for condition iv) we apply
their Lemma 3.2. To match with their notation, chose ρ(v) = ρm(v) = v−1/2, v ≥ 0,
and p = pm = 1−1/α. Then, by (3.9) the condition (2c) from that paper is satisfied
with ρ and p as above and with fm(z) = z. Then by Lemma 3.2 from there we get
that for any h > 0 (note that µ0(dz) = cαz

−α−1dz there):
∫ ∞

0

Dl0(v2,v1,z)φk(v2 − v1)cαz
−α−1dz

≤ cαk
−1|v2 − v1|

2−2/α−11|v2−v1|≤ak−1

∫ h

0

z2−α−1 dz

+ cα|v2 − v1|
1−1/α1|v2−v1|≤ak−1

∫ ∞

h

z1−α−1 dz

= cαk
−1|v2 − v1|

1−2/α1|v2−v1|≤ak−1
h2−α + cα|v2 − v1|

1−1/α1|v2−v1|≤ak−1
h1−α.

Now take bk = ln(k) and h = |v2 − v1|1/αbk and we get,
∫ ∞

0

Dl0(v2,v1,z)φk(v2 − v1)cαz
−α−1dz

≤ cαk
−1|v2 − v1|

1−2/α+2/α−1 ln(k)2−α
1|v2−v1|≤ak−1

+ cα|v2 − v1|
1−1/α+1/α−1 ln(k)1−α

1|v2−v1|≤ak−1

≤ cα1|v2−v1|≤ak−1
(k−1 ln(k)2−α + ln(k)1−α)

which tends to zero as k → ∞. Hence, condition iv) is satisfied and pathwise unique-
ness follows from Proposition 3.1 of Li and Mytnik [17].

Strong Existence: With the pathwise uniqueness in hands, strong solutions can
now be constructed as in Section 5 of Fu and Li [11]; we only sketch the arguments.
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The condition θ > Γ(αβ)
Γ(η)

enters here crucially since it assures a positive constant

drift which pushes solutions up whenever they hit zero.
First, one has to consider the truncated equations

Vt = V0 + ct+

∫ t

0

∫ m

ǫ

g(Vs−, x) ∧m (N −N ′)(ds, dx),

which have solutions V ǫ,m due to Theorem 4.4 of Fu and Li [11]. It follows readily
from Aldous’ criterion that the sequence V ǫ,m is tight for any m fixed. Using the
generators one can then verify weak convergence to a solution of

Vt = V0 + ct+

∫ t

0

∫ m

0

g(Vs−, x) ∧m (N −N ′)(ds, dx).

The pathwise uniqueness proof given above applies equally for this truncated version
so that any subsequences V ǫk,m converge to the unique strong solution V m. The
pathwise uniqueness then allows to get rid of the truncation m as in the proof of
Proposition 2.4 of Fu and Li [11].

Type S: Suppose V is the unique strong solution of the SDE (3.6) constructed
above. Then, by Lemma 3.2, Z := V 1/(1−η) solves (1.1) and Z1−η solves the SDE
(3.1). Since V = (V 1/(1−η))η−1 this shows that V satisfies (3.1) and (3.6) so that
equalizing both yields almost surely

Z1−η
0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)
∫ t

0

1{Vs 6=0} ds

+

∫ t

0

∫ ∞

0

(

(

V
1

1−η

s− + V
β

1−η

s− x

)1−η

− Vs−

)

(N −N ′)(ds, dx)

= Z1−η
0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

t

+

∫ t

0

∫ ∞

0

(

(

V
1

1−η

s− + V
β

1−η

s− x

)1−η

− Vs−

)

(N −N ′)(ds, dx).

Hence,
∫ t

0
1{Zs 6=0} ds = t almost surely which proves that Z (and hence V ) is of type

S.
Step 2: Let us assume that θ ≤ Γ(αβ)

Γ(η)
and suppose there is a solution V of

type S. By the power transformation of Lemma 3.2 the sequence of stopping times

τm = inf
{

t ≥ 0 : V
1/(1−η)
t > m

}

converges almost surely to infinity as argued in the

proof of Lemma 3.1. In the case θ < Γ(αβ)
Γ(η)

, non-negativity combined with monotone
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convergence and Fatou’s lemma implies that

0 ≤ E[Vt] ≤ lim
m→∞

E[Vt∧τm ]

= V0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

lim
m→∞

E[t ∧ τm]

= V0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

t.

Hence, choosing t large enough, we arrive at a contradiction since the right-hand
side is negative. We conclude that there cannot be a solution of type S.
Next, suppose that θ = Γ(αβ)

Γ(η)
which is strictly smaller than Γ(α) so that solutions

almost surely hit zero in finite time. The proof of pathwise uniqueness given in

Step 1 also applies in the case θ = Γ(αβ)
Γ(η)

. Now suppose there is a solution V ∈ S.

Consequently, since the constant drift is zero, also the stopped solution (V̄t)t≥0 :=
(Vt∧T0)t≥0 is a solution to (3.6). Since it is clearly different from V as V̄ /∈ S, we
found a contradiction to the pathwise uniqueness. �

We are now prepared to prove Theorem 1.2.

Proof of Theorem 1.2. A) Let (Vt)t≥0 the unique strong solution to (3.6) constructed

in Lemma 3.3. Then Lemma 3.2 shows that Z = V
1

1−η is a strong solution to the
SDE (1.1) which by Lemma 3.3 is of type S. Now we suppose there are two solutions
Z1, Z2 with Z1

0 = Z2
0 that spend a Lebesgue null set of time at zero. Then the power

transformation is reversible due to Lemmas 3.1 and 3.2 so that the uniqueness follows
from Lemma 3.3.
B) If there was a solution of class S to the SDE (1.1), taking the power 1− η, there
would be a solution of class S of the SDE (3.6). But this gives a contradiction to
Lemma 3.3. �

4. Self-Similar Extensions

Lamperti’s transformation for pssMps, which we recalled in Section 2, can not
be used directly to characterize pssMps after hitting zero (or started from zero)
since the infinite time-horizon (0,∞) for ξ is compressed via the time-change to the
possibly finite time-horizon (0, T0) so that the entire information on ξ is already
used until T0. This drawback was resolved in recent years.

If ξ drifts to −∞, Rivero [22] and Fitzsimmons [9] independently proved that a
pssMp of index γ has a recurrent self-similar Markovian extension of index γ after
T0 with non-negative sample paths that leave zero continuously if and only if the
following Cramér-type condition holds for the corresponding Lévy process ξ:

There is 0 < a <
1

γ
such that E[eaξ1 ] > 1. (4.1)

Due to Corollary 2.4 ii), Condition (4.1) is equivalent to θ > Γ(αβ)
Γ(η)

which we found

more directly to be the necessary and sufficient condition for the existence of non-
trivial solutions to the SDE (1.1).
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To further explore the connection between the present work and the results of
Rivero and Fitzsimmons recall from Lemma 2.1 that solutions to the SDE (1.1)
define a pssMp (Px)x>0. If we define furthermore (P̄x)x≥0 via the solutions Zx ∈ S to
the SDE (1.1) started at x ≥ 0, then we can easily deduce the following consequence
from the pathwise uniqueness:

Corollary 4.1. Let β ∈ [1 − 1/α, 1) and suppose θ > Γ(αβ)
Γ(η)

, then (P̄x)x≥0 is the

unique extension of (Px)x>0 that leaves zero continuously.

Proof. It follows directly from the definition of (P̄x)x≥0 that it is an extension of
(Px)x>0 so that it suffices to prove the self-similarity for our solutions Zx ∈ S to the
SDE (1.1). Since, by construction, those are obtained by taking the power 1 − η of
solutions to the SDE (3.6) it suffices to show that solutions to the SDE (3.6) are
self-similar of index 1. Setting V c

t := cVtc−1 and plugging into the defining equation
yields

V c
t = cVtc−1 = cV0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

t

+

∫ tc−1

0

∫ ∞

0

(

(

(

cVs−
)

1
1−η +

(

cVs−
)

β
1−η c

1
αx
)1−η

− cVs−

)

(N −N ′)(ds, dx)

= V c
0 + (1− η)

(

θ −
Γ(αβ)

Γ(η)

)

t

+

∫ t

0

∫ ∞

0

(

(

(

V c
s−

)
1

1−η +
(

V c
s−

)
β

1−η x
)1−η

− V c
s−

)

(N(c) −N ′
(c))(ds, dx),

where N(c) and N ′
(c) are the image of N , respectively N ′, under the map (s, x) 7→

(cs, c1/αx). SinceN ′
(c) = N ′,N(c) has the same law asN , and we see that both (Vt)t≥0

and (cVtc−1)t≥0 are solutions to the same well-posed SDE so that they coincide in
law. Solutions trivially leave zero continuously since the integrand is null at zero. �

If ξ does not drift to −∞, by (2.2) almost surely the sample paths of the corre-
sponding pssMp do not hit zero. The main question becomes whether the Markov
family (Px)x>0 can be extended continuously to P

0. Caballero and Chaumont [6] and
later Chaumont et al. [7] proved that Px converges weakly to a non-trivial limit law
as x tends to zero, i.e. it is a Feller process on [0,∞) and not on (0,∞) only, if and
only if the overshoot process

ξTx − x, x ≥ 0, with Tx := inf{t ≥ 0 : ξt ≥ x},

converges, as x → ∞, weakly towards the law of a finite random variable. A simpler
construction of P0 has been given in Bertoin and Savov [4] via Lévy processes indexed
by the real line.
In the case of the pssMps (Px)x>0 corresponding to the SDE (1.1), the Feller property
on [0,∞) is again a direct consequence of the uniqueness of Lemma 3.3.

Corollary 4.2. Let β ∈ [1 − 1/α, 1) and suppose that θ > Γ(αβ)
Γ(η)

, then (P̄x)x≥0 is

weakly continuous in the initial condition.
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Proof. This follows directly from the uniqueness of Lemma 3.3 combined with [13,
Theorem IX.4.8]. �

Our direct expression of the self-similar extension at zero is possible since the
pssMp is given by a stochastic differential equation. In Döring and Barczy [1] this
approach is extended by first reformulating Lamperti’s transformation via jump type
SDEs and then proceeding accordingly.
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martingales. Hermann, Paris, 1983.
[9] P. Fitzsimmons: On the existence of recurrent extensions of self-similar Markov processes.

Electron. Comm. Probab. 11 230-241, (2006).
[10] N. Fournier. On pathwise uniqueness for stochastic differential equations driven by stable Ly

processes. to appear in Ann. Inst. H. PoincarProbab. Statist (2011)
[11] Z. Fu and Z.H. Li: Stochastic equations of non-negative processes with jumps. Stochastic

Processes and their Applications 120 306–330, (2010).
[12] N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes. North-

Holland Publishing Company, 1981.
[13] J. Jacod and A.N. Shiryaev: Limit theorems for stochastic processes. Second edition. Springer-

Verlag, Berlin, 2003.
[14] A. Kyprianou and J.C. Pardo: Continuous state branching processes and self-similarity. Jour-

nal of Applied Probability (2008) 45 (4), 1140-1160.
[15] J. Lamperti: Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete

22 205–225, (1972).
[16] Z.H. Li: Measure-Valued Markov Processes Springer, Probability and Itss Applications, 2010

[17] Z.H. Li and L. Mytnik: Strong solutions for stochastic differential equations with jumps. To
appear in Annales de l’Institut Henri Poincare: Probabilites et Statistiques.

[18] E. Priola: Pathwise uniqueness for singular SDEs driven by stable processes, to appear in
Osaka Journal of Mathematics (2011).

[19] P. Protter: Stochastic Integration and Differential Equations, Springer-Verlag Berlin-

Heidelberg, 1995

[20] D. Revuz and M. Yor: Continuous Martingales and Brownian Motion, 3rd Edition. Springer-
Verlag Berlin Heidelberg, 1999.

[21] V. Rivero: Recurrent extensions of self-similar Markov processes and Cramér’s condition.
Bernoulli 11(3) 471–509 (2005).
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