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1 EVA

We use prediction data from EVA to assess whether secondary structure pre-
diction accuracy along the chain is equivalent. We consider only those methods
that have made over 500 predictions. These methods, their general algorithm
type and the number of predictions they made through EVA are listed in table
1.

Method Prediction type No.Predictions Reference
APSSP Neural net 1252 [1]
APSSP2 Neural net 724 [2]
JPred Combination 1294 [3]
PHD Neural net 1871 [4]

PHDpsi Neural net 1758 [5]
PROF king Neural net 1400 [6]
PROFsec Neural net 1609 Rost, unpublished
PSIpred Neural net 1639 [7]

SAM-T99sec Hidden Markov model 682 [8]
SSpro2 Neural net 1304 [9]

Table 1: EVA data sets for assessing N-terminal restriction in real protein struc-
tures
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2 relFRAG

2.1 The CASP data set in numbers

We analyse free-modeling data from three CASP experiments: 6, 7 and 8. Tem-
plate based models from CASP7 and CASP8 are also investigated. The number
of models tested, broken down by method, are given in table 2. Our data set
for template based models in CASP7 and CASP8 is given in table 3.

First Models All Models
Human Server Human Server

CASP Models Results Models Results Models Results Models Results
6 888 459 497 122 2,927 1,728 2,009 562
7 1,632 1,175 1,494 783 6,105 4,728 6,130 3,305
8 587 520 721 490 4,965 3,854 2,904 2,079

Table 2: CASP data sets for free-modeling in the three most recent meetings.
Models (columns 2, 4, 6, 8, 10 and 12) give the total number of free models
submitted to CASP. Results (columns 3, 5, 7, 9, 11 and 13) are the number of
models falling within our inclusion criteria. The number of results is smaller
than the number of models because N- and C- terminal fragments may be too
close in sequence space or both fragments have a root mean squared deviation
greater than 2Å.

Template Based Models
CASP Meeting Models Results

7 89,604 83,937
8 66,953 62,312

Table 3: Template Based Model data from CASP7 and CASP8. Models gives
the total number of models that we analysed in this study. Results gives the
number of relFRAG scores that were successfully calculated. The number of
results is smaller than the number of models because N- and C- terminal frag-
ments may be too close in sequence space or the root mean squared deviation
of both fragments is greater than 2Å.

2.2 Mean relFRAG score

Through our measure relFRAG, we demonstrate that fragment prediction accu-
racy is significantly biased towards being more accurate near the amino termi-
nus. The mean relFRAG score correlates well with fragment length (Figure 1).
Our relFRAG scores is shown to correlate with model quality (Figure 2) with
better quality models generally showing a more negative relFRAG score. Here
we show that as fragment length increases to cover too much of the structure
the correlation breaks down. Indicating that the structural trend implied by
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Figure 1: Fragment length is related to the mean relFRAG score, for fragment
lengths 5 to 20 the correlation has an R2 value of 0.9931. Up to length 20,
as fragment length increases the bias towards better prediction accuracy near
the amino terminus increases. At a fragment length of 20 the amino terminus
is on average predicted over 2.5 times as accurately as the carboxy terminus.
Bias toward increased prediction accuracy at the N-terminus is seen at longer
fragment lengths (25, 30, 35 and 40) but it is less extreme and the line in general
is heading back towards the expected value of zero. Data is taken from all valid
first model predictions made in CASP6, CASP7 and CASP8.

relFRAG is concentrated on the terminal regions of proteins. The distribution
of relFRAG scores is shown in figure 3. 57% of all model fragments have a neg-
ative relFRAG score; i.e. more accurate prediction near the amino terminus.
This trend is also seen for fragments of length 10, 15 and 20.

When considering the actual distribution of root mean squared deviation
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Figure 2: The effect our 2Å root mean squared deviation (RMSD) cut-off has on
relFRAG scores. The RMSD cut-off has little effect on results for fragments of
length 5 (blue stars). The proportion of models with a relFRAG less score than
zero (better N-terminal prediction) at a fragment length of 20 (purple crosses)
drops by approximately 0.14 from an RMSD cut-off of 3 to an RMSD cut-off
of 5. For fragments of length 10 (red squares), 15 (green triangles) and 20 the
proportion of models with a relFRAG score less than zero is significantly greater
than 0.5 at all RMSD cut-offs.
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Figure 3: Distribution of relFRAG scores. Data is shown for all fragment lengths
combined (all, red) and for fragments of length 5 (5, yellow), 10 (10, blue), 15
(15, black) and 20 (20, green). Data is taken from all valid first model predictions
made in CASP6, CASP7 and CASP8.
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(RMSD) values for model fragments (Figure 4) we find there is a higher per-
centage of N-terminal than C-terminal fragments in the RMSD range 0 to 1.
Conversely there is a higher percentage of C-terminal than N-terminal fragments
in the RMSD range 2 to 3. If we use an RMSD cut-off >3Åfor relFRAG cal-
culations the proportion of models with a relFRAG score less than zero (better
prediction at the N-terminus) is still significantly greater than 0.5 (Figure 2).
Thus, the effect illustrated by relFRAG is a real, intra-model sequence-position
mediated bias in prediction accuracy. That is to say, in general, the N-terminal
fragment is predicted with greater accuracy than its analogous C-terminal frag-
ment. The effect is seen at fragment lengths <5 and is more pronounced in
better models.
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Figure 4: Distribution of root mean squared deviation (RMSD) values. Data is
shown for fragments of length 5 (top left), 10 (top right), 15 (bottom left) and 20
(bottom right). The distribution of N-terminal fragment RMSD is shown in red
(squares) while the distribution for C-terminal fragments is in green (triangles).
The two distributions at length 5 are quintessentially identical. At lengths
10, 15 and 20 a higher percentage of N-terminal fragments than C-terminal
fragments are found in the RMSD range 0 to 1. Over other RMSD ranges the
distributions correlate well. Data is taken from all valid first model predictions
made in CASP6, CASP7 and CASP8.
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2.3 Bias is not due to one target

The number of models in our sample is very large. The number of target is
considerably smaller. We perform a leave one out analysis to show that the bias
observed in terminal prediction accuracy is not attributed to a single target
(Table 4).

Excluded Fragment Length
Target 5 10 15 20
T0300 0.479 0.576 0.655 0.755

T0361 D1 0.484 0.588 0.721 0.864
T0307 D1 0.477 0.566 0.657 0.778

T0356 0.475 0.579 0.678 0.788
T0241 2 0.483 0.577 0.68 0.789
T0248 2 0.472 0.567 0.681 0.791

T0482-D1 0.49 0.577 0.68 0.789
T0443-D1 0.47 0.578 0.672 0.775

T0316 0.469 0.566 0.662 0.758
T0201 0.48 0.578 0.683 0.796

T0321 D2 0.477 0.576 0.68 0.789
T0496-D1 0.484 0.565 0.662 0.791

T0238 0.478 0.583 0.678 0.793
T0296 0.481 0.568 0.669 0.789

T0209 2 0.478 0.575 0.68 0.789
T0386 0.483 0.582 0.688 0.792
T0319 0.483 0.587 0.693 0.791

T0416-D2 0.48 0.58 0.682 0.791
T0405-D1 0.474 0.571 0.679 0.794

T0242 0.481 0.58 0.68 0.789
T0382 D1 0.476 0.578 0.665 0.768
T0397-D1 0.476 0.583 0.689 0.789
T0347 D2 0.482 0.58 0.682 0.788
T0216 1 0.479 0.579 0.687 0.786
T0321 0.475 0.569 0.68 0.789

Table 4: One target in particular is not responsible for the results observed. Col-
umn 1 indicates the target that has been excluded from the analysis. Columns
2, 3, 4 and 5 show the fraction of models that are predicted more accurately at
the N-terminus than the C-terminus for each fragment length.

2.4 Algorithms

For each group we calculate the fraction of models predicted with higher ac-
curacy at the N-terminus than the C-terminus. We consider only those groups
with over 50 relFRAG results at all fragment lengths and more than 30 results
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over length 10. The majority of participating groups predict the N-terminus
of models more accurately than the C-terminus (Figure 5). Very few groups
(17 if considering fragments of length 11 to 20) show no bias (fraction of mod-
els predicted better at the N-terminus between 0.48 and 0.52) in their pre-
dictions. These are Zhang-server, LOOPP Server, forecast, FFASflextemplate,
Pcons multi, mariner1, Jones-UCL, GeneSilico, GeneSilicoMetaServer, Midway-
Folding, SAINT1, PS2-manual (CASP 8); SSU, Sternberg, MTUNIC (CASP 7);
KIST-CHOI, BAKER (CASP 6).

2.5 Domains

We find that tertiary structure prediction is generally more accurate near the
amino terminus. Domains are seen as individual folding units. To investigate
whether this amino terminal bias is restricted to the amino terminus of proteins
or the is a general trend at the amino terminus of folding units we analyse
data from domain 1 and domain 2 of multi-domain proteins. When considering
all fragments more accurate prediction near the amino terminus is limited to
domain 1, suggesting that the bias is concentrated at the start of a protein
chain. However, when we consider only longer fragment lengths more accurate
prediction of fragments near the amino terminus is evident for both domain 1
and domain 2 (Table 5).

Domain 1
Fragment length 5 10 15 20 All

Number <0 719 673 347 120 7605
Number = 0 0 1 0 0 2
Number >0 787 445 205 53 5547

% <0 47.7 60.2 62.9 69.4 57.8
Domain 2

Fragment length 5 10 15 20 All
Number <0 233 159 121 72 2261
Number = 0 0 0 0 0 0
Number >0 286 195 73 31 2352

% <0 44.9 44.9 62.4 69.9 49.0

Table 5: relFRAG data for free-modeling multi-domain targets broken down by
domain. At longer fragment lengths, prediction accuracy is more accurate near
the amino terminus. Over all lengths prediction accuracy is more biased toward
better prediction at the amino terminus in domain 1 compared to domain 2.
Actual data is shown for fragment lengths 5, 10, 15 and 20. Total data is the
cumulative data for all fragment lengths 5 to 20 inclusive.
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Figure 5: The majority of groups predict the N-terminus of their model with
higher accuracy than the C-terminus. Considering all fragment lengths (black
squares), over 70% of groups predict the N-terminus better than the C-terminus
in a majority of their models. Taking fragments of length 11 and over (red
triangles), the percentage of groups rises to over 80%. The X-axis is the fraction
of the group’s models predicted better at the N-terminus. The Y-axis indicates
the percentage of groups.
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2.6 Terminal Compactness

Our results suggest that N-terminal regions may be more compact and closer to
their global energy minimum structure than C-terminal regions. Similarly, the
C-terminal may show more subtle structural variance due to increased flexibility
over the N-terminus. These suggestions run counter to the work of Laio and
Micheletti [10] whose investigation of 458 proteins showed that the C-terminus
is generally more compact than the N-terminus. We reran a number of their
tests on a much larger data set, 2618 non-redundant proteins selected via the
PISCES web server [11]. Compactness is calculated using both the Radius of
Gyration (RoG) and the Moment of Inertia (MoI). As an example, MoI is the
average distance of a residue (R) in the range RN to RC to the centre of mass
(M) of all residues in the range. M is calculated as the average co-ordinates X,
Y and Z of all residues in the range RN to RC (equation 1). Where L is the
number of residues in the range RN to RC .

MoI =
1
L

RC∑

i=RN

[δ(Ri,M)]2 (1)

For each protein in our set we take a structural fragment of length X (where
X varies from 6 to 40) from both the N-terminus and the C-terminus. The MoI
and RoG of each structural fragment is then calculated and the relative terminal
compactness calculated: log(N − compactness)/(C − compactness). For both
MoI and RoG, if the N-terminal fragment is more compact we expect a negative
value to be returned. When considering our whole data set our findings support
tho

se of Laio and Micheletti. However, as discussed in the main paper β-strand
is more prevalent at the N-terminus and is known to be a less compact sec-
ondary structure than α-helix. When we consider only proteins with equivalent
termini, that is the most N-terminal secondary structure is the same as the most
C-terminal secondary structure then we find that, in general, the N-terminus
is more compact than the C-terminus (Figure 6). Thus, measures of relative
structural compactness are not independent of secondary structure types and it
is only a fair test to compare structures with equivalent termini.
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Figure 6: When comparing equivalent termini, we show that the N-terminus
is generally more compact than the C-terminus (red and green lines). This is
true for two different measure of compactness, Moment of Inertia (MoI) and
Radius of Gyration (RoG). Equivalent termini are where both the N- and C-
termini have the same type of secondary structure - e.g. either both helix or
both strand. If non-equivalent termini are also included (blue and purple lines)
the more compact terminus varies with fragment length.
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