What is covered

After working through these exercises you should be able to:

- 1. Use the ssh command to access remote systems.
- 2. Use the scp command to copy files between systems.
- 3. Run R jobs from a file rather than interactively and monitor their progress.
- 4. Use the screen command to manage access to remote systems.
- 5. Checkpoint your jobs.
- 6. Remote working

1 Logging on to a remote machine

Command	Purpose
ssh <i>host</i>	Log on to a different system, named host.
ssh <i>user@host</i> .stats.ox.ac.uk	Log on to a different system from outside the department, named <i>host</i> .

Table 1: Logging on to a different system

During the course, you will be using servers to run jobs. You will need to login to these servers to create and start your jobs; and you will need to be able to transfer data between your desktop systems and these servers.

Figure 1: A schematic of the Statistics network

There are five CDT servers. They are

- greyheron, greywagtail: 758GB RAM, 96 (hyperthreaded) processors, 16TB /data directory
- greypartridge, greyplover : 758GB RAM, 48 (not hyperthreaded) processors, 16TB /data directory
- greyostrich: 758GB RAM, 48 (not hyperthreaded) processors,22TB /data directory, four NVIDIA TESLA K80 GPU cards (eight GPUs in total). This server should be used only for GPU work.

I'll refer to these as the grey* servers from now on.

From any Statistics computer the short form of the host name can be used. So

ssh greywagtail

would be used to log on the CDT server greywagtail. For all the following examples greywagtail has been used, but this can be replaced by any other server.

On each grey* server you should find two directories where you can store data:

/data/hOSt/oxwasp/oxwasp18/USEr /data/hOSt/not-backed-up/oxwasp/oxwasp18/USEr

For example on host greywagtail for user flint, the directories are

/data/greywagtail/oxwasp/oxwasp18/flint /data/greywagtail/not-backed-up/oxwasp/oxwasp18/flint

Data in the first directory is a backed up daily, data in the second, never. There is a system-wide limit of 400GB changed data per day for backups so please, if you are moving a lot of data around, check with other members of the group to make sure they are not doing the same thing.

2 Copying files between systems

Command	Purpose
scp file host: location	Copy a single file, <i>file</i> , to a re- mote system, <i>host</i> .
scp-r directory host: location	Copy a directory file, <i>file</i> , to a re- mote system, <i>host</i> .
<pre>scp -r directory user@host.stats.ox.ac.uk:location</pre>	From outside the department, copy a directory, <i>directory</i> , to location, <i>location</i> , on a remote system, <i>host</i> .
<pre>scp user@host.stats.ox.ac.uk:location/file .</pre>	From outside the department, copy a single file <i>file</i> , from loca- tion <i>location</i> , to the the current directory on your local computer, using the same file name.

Table 2: The scp command

You will often need to move files and directories between systems. Here are some examples.

If you don't have any files to use, download the file mandel.R using

curl https://www.stats.ox.ac.uk/pub/susan/cdt/mandel.R >mandel.R

Store this file in your local /data directory, not in your home directory.

2.1 Copy a single file from your desktop to a grey* server

- Make sure you are in the directory where the file you want to copy is stored.
- Make sure you know the location on the grey* server where you will copy to file to.

In this example the file we will copy is called mandel.R, with username flint, and it will be copied to the directory /data/greywagtail/oxwasp/oxwasp18/flint/R-scripts/ on the server, greywagtail.

This command assumes that the directory **R-scripts** exists on greywagtail. If it doesn't, then use

```
mkdir R-scripts
```

in the correct location on greywagtail.

scp mandel.R greywagtail:/data/greywagtail/oxwasp/oxwasp18/flint/R-scripts/.

Note the final space and dot "." in the location. This means that the file will have the same name as the version that is being copied. If you want to give a different name use

scp mandel.R greywagtail:/data/greywagtail/oxwasp/oxwasp18/flint/R-scripts/Mymandel.R
for example.

2.2 Copy a directory file from your desktop to a grey* server

- Make sure you are in the directory above the directory you want to copy is stored.
- Make sure you know the location on the grey* server where you will copy to directory to.

In this example, the directory to be copied is **Project** and is to be copied to a directory of the same name /data/greywagtail/oxwasp/oxwasp18/flint/ on greywagtail.

```
scp -r Project greywagtail:/data/greywagtail/oxwasp/oxwasp18/flint/
```

If you don't have a directory yet, create one with

mkdir Project

and copy mandel.R into it.

3 Running R jobs from a file

Command	Purpose
R CMD BATCH file	Run an R job from a file, <i>file</i>
tail -f <i>file</i>	Read a file, <i>file</i> , from the end, watching as data is appended.

Table 3: The R BATCH command

If an R job lasts more than a few minutes or will be running on a remote system, use the **R Batch** command.

Here is some code – with thanks to Tom Jin – to compute points from the Mandelbrot set. It should be stored in a file mandel.R.

Note the test for an interactive session +if(interactive()) {. If R is running from the terminal, the plot is displayed on the screen, if run from a script, then the plot is saved to a file, mandelbrot.png.

An additional file is needed (source("mandelbrot.R"). You can either copy it from a PDF version of the exercises available from https://www.stats.ox.ac.uk/susan/cdt/Remote-Exercises.pdf or download it with

curl https://www.stats.ox.ac.uk/pub/susan/cdt/mandelbrot.R >.

It should be stored in the same directory as your script.

```
# Function based on http://rosettacode.org/wiki/Mandelbrot_set#R
iterate.until.escape <- function(remin, remax, immin, immax,</pre>
delta, trans, cond, max=50, response=dwell) {
  #we iterate all active points in the same array operation,
 #and keeping track of which points are still iterating.
  re <- seg(remin, remax, delta)[-1]</pre>
  im <- seq(immin, immax, delta)[-1]</pre>
  c <- outer(re, im, function(x,y) complex(real=x, imaginary=y))</pre>
  z \leq array(0, dim(c))
  active <- seq_along(z)</pre>
  dwell <- z
  dwell[] <- 0
  for (i in 1:max) {
    z[active] <- trans(z[active], c[active]);</pre>
    survived <- cond(z[active])</pre>
    dwell[active[!survived]] <- i</pre>
    active <- active[survived]</pre>
    if (length(active) == 0) break
  }
  eval(substitute(response))
```

Assuming the R commands are saved in a file, mandel.R, and that it is stored in the current directory, then the command

R CMD BATCH mandel.R &

would run the command. Remember to run the job "in the background" by appending an & to the command so that you keep control of the command line.

The output that would usually appear on the screen will be sent to a file, mandel.Rout by default. The contents of the mandel.Rout will look something like this:

```
R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
```

```
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #! /usr/bin/env Rscript
> source("mandelbrot.R")
> gridSize <- 4000
> # Compute fractal
> y <- iterate.until.escape(immin = -1.5, immax = 1.5, remin = -2,</pre>
+
          remax = 1, delta = 3/gridSize,
          trans = function(z, c)z^2+c,
+
          cond = function(z)abs(z) \le 2, max = 127)
+
> # Output the fractal.
> if(interactive()) {
+ image(y, col = topo.colors(128), useRaster = TRUE)
+ } else {
+ library(png)
+ writePNG(y, target = "mandelbrot.png")
+ }
>
> proc.time()
   user system elapsed
 29.945
          2.282 32.462
```

3.1 Monitoring jobs

It is possible to watch the output from the job as it is written to the output file. For this job use

```
tail -f mandel.Rout
```

This is a particularly useful command. For more information about tail use man tail.

To stop tail type **CTRL-C** – that is hold down the Ctrl key and press the letter c.

4 Running jobs on a remote machine

Command	Purpose
screen	Connect and disconnect from a session from multiple locations and allow long-running processes to persist without an active shell session.

Table 4: The screen command

Once you have the \mathbf{R} script and any associated files on the server you are ready to submit the job.

On the remote system you should use the screen command. This allows you to submit **R** (and other) jobs, then disconnect from your session. Your desktop computer can then be switched off or rebooted, without interrupting or stopping the **R** job on the remote system. To check the process of the your job you simply ssh again to the same server, and start the screen command again.

An example session would look like this.

```
ssh greywagtail
screen
R CMD BATCH mandel.R &
```

Don't forget run the job in the background. If you want to check that the job is running use tail -f mandel.Rout

Once you are happy the job is running use the sequence

CTRL-a d

to detach from the screen process. You should see a message like:

screen
[detached from 6422.pts-0.greywagtail]

You can then logout. To reattach the screen session log back into the server and use

```
screen -r
```

If you have multiple screen sessions on a server, then the command

```
screen -list
```

will display all your screen sessions. For example:

There are screens on: 7375.pts-0.greywagtail (Detached) 6422.pts-0.greywagtail (Detached) 2 Sockets in /var/run/screen/S-flint.

To attach a particular session use

```
screen -r 7375.pts-0.greywagtail
```

Once you have finished with a screen session reattach the session and type in

exit

You can use screen -list to check that it has closed. As ever, use man screen for full details.

There is a longer screen tutorial here: http://www.rackaid.com/blog/linux-screen-tutorial-and-how-to/.

There is an alternative to the screen command, tmux which is installed on all grey* servers.

5 Checkpointing your job

Command	Purpose
dmtcp_launch	Checkpoint your script

Table 5: The dmtcp command

To further protect your jobs against both unexpected events such as power failures, or scheduled reboots use

dmtcp_launch R CMD BATCH mandel.R &

This means that in the event of a reboot, your job will start at the point at which is was interrupted.

6 Remote working

6.1 Copy a single file from a system outside the department to a grey* server

If you need access to Statistics servers from anywhere other than a Statistics desktop computer use

ssh USEr@gate.stats.ox.ac.uk

from a terminal window (or PuTTY on Windows). Replace *user* with your Statistics username, and then

ssh greywagtail

to connect to the server of your choice.

Alternatively, connect to the Statistics VPN, and use ssh *user@greywagtail.stats.ox.ac.uk*.

Once on a remote system you will have access to your files in the /homes directory but *not* files in your /data/*host/user* directory on your desktop computer.

- Make sure you are in the directory where the file you want to copy is stored.
- Make sure you know the location on the grey* server where you will copy to file to.

The simplest approach is to first connect the VPN. To copy a single file use

scp file user@host.stats.ox.ac.uk:location

for example to copy the file mandel.R, keeping the same name, from your home directory to the directory /data/greywagtail/oxwasp/oxwasp18/flint/ ON greywagtail as the user flint use

scp mandel.R flint@greywagtail.stats.ox.ac.uk:/data/greywagtail/oxwasp/oxwasp18/flint/.

If you cannot connect to the VPN then you will need to copy the file or directory first to your home directory on gate.stats.ox.ac.uk and then to the appropriate server.

6.2 Copy a single file from a server to your local computer outside the department

- Make sure you are in the directory where the file you want to copy will be stored.
- Make sure you know the location on the grey* server where the file you want to copy is located.

The simplest approach is to first connect the VPN.

To copy the file ser.R in the directory /data/greywagtail/oxwasp/oxwasp18/flint/ On greywagtail as the user flint and using same file name on the local computer use

scp flint@greywagtail.stats.ox.ac.uk:/data/greywagtail/oxwasp/oxwasp18/flint/mandel.R .

Note the final space and dot "." which will preserve the name of the file that is being copied. To change the name replace the dot by a file name.

If you cannot connect to the VPN then you will need to copy the file or directory first to your home directory on gate.stats.ox.ac.uk and then to the appropriate server.

7 Further help and advice

7.1 Remote access from Windows

For Windows users there is two useful applications

- **PuTTY** ssh client for Windows used for a command line connection to Linux/Unix systems.
- **WinSCP** a graphical user interface (GUI) to manage your copies.

7.2 Advice for sharing servers

Our general rules for shared server usage are here:

https:http://internal.stats.ox.ac.uk/it-support/computation/compute-servers/

There are various links on that page which should help.