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1 Introduction

Mixed-effects models are frequently used to analyze grouped data, because they model
flexibly the within-group correlation often present in this type of data. Examples of
grouped data include longitudinal data, repeated measures data, multilevel data, and
split-plot designs. We consider only mixed-effects models for a continuous response,
assumed to have a Gaussian distribution. We describe a Sdtiattions, classes, and
methods for the analysis of linear and nonlinear mixed-effects models. These extend
the modeling facilities available in release 3®f(Chambers and Hastie, 1992) and
releases 3.4 (Unix) and 4.5 (Windows)®PLUS. The source code, written f& and

C, is available ahttp://nlme.stat.wisc.edu/.

The purpose of this document is to describe some of the capabilities in Version 3.0
of thenlme software and to give examples of their usage. A detailed description of the
various functions, classes, and methods can be found in the corresponding help files,
which are available on-line. The PostScript flelpFunc.psincluded with thenime
distribution, contains printed versions of the help files.

8@ presents a new class for representing grouped data and some of the methods for
this class. Functions and methods for fitting and analyzing linear mixed-effects models
are described i§3. The nonlinear mixed-effects functions and methods are described

in §@. 88 presents some future directions for the code development.

2 AgroupedData class

The datasets used for fitting mixed-effects models have several characteristics in com-
mon. They consist of measurements of a continuous response at several levels of a co-
variate, usuallyime , dose, ortreatment . Further, these measurements are grouped
according to one, or several, factors. Additional covariates may be present. Some of
these vary within a groupr(ner covariates) and some do noiuter covariates).

As a first example of grouped data, we consider the data from an orthodontic study
presented in Potthoff and Roy (1964). The data, displayed in Fjgure 1, consist of four

measurements of the distance (in millimeters) from the center of the pituitary to the
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pterygomaxillary fissure made at ages 8, 10, 12, and 14 years on 16 boys and 11 girls.
This is an example of balanced repeated measures data, with a single level of grouping
(Subject ).

F10 F09 FO6 FOL FO5 F08 FO7 F02

Distance from pituitary to pterygomaxillary fissure (mm)

Age (yn)

Figure 1: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14
years of age. Panels within each gender group are ordered by maximum response.

An example of grouped data for which the primary covariate is a categorical vari-
able is given by the data on an experiment to compare three brands of machines used
p. 285), are shown in Figufe 2. Six workers were randomly chosen from the employees
of a factory to operate each of three machines three times. The response is an overall

productivity score taking into account the number and quality of components produced.

As an example of grouped data with a nonlinear response, we consider an experi-

ment on the cold tolerance of a, @rass speciegchinochloa crus-gallidescribed in
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Worker

Productivity score

Figure 2: Productivity scores for three brands of machines. Scores take into account
number and quality of components produced.

Potvin, Lechowicz and Tardif (1990). The GQptake of six plants from G@bec and

six plants from Mississippi was measured at several levels of ambient@tentra-

tion. Half the plants of each type were chilled overnight before the experiment was
conducted. The data are shown in Figgre 3.

An example of grouped data with two levels of grouping is given by a study in
radiology consisting of repeated measures of mean pixel values from CT scans of the
right and the left lymphnodes in the axillary region of 10 dogs over a period of 14 days
after application of a contrast. The purpose of the experiment was to model the mean
pixel value as a function of time, so as to estimate the time where the maximum mean
pixel value was attained. The data are shown in Figure 4.

The choice of a data structure for this type of data will affect the ease and flexibility
with which we can display the data and fit models to the data. A natural way to repre-
sent such data i8-PLUS is as adata.frame  (i.e a rectangular array). For displaying
and modelling grouped data, it is often useful to incorporate a formula specifying some
of the roles of the variables in thfata.frame

At a minimum the data frame must contain the response, the primary covariate,
such agime , and the grouping factor(s), such&sbject , Plant , or Dog andSide .
Additional factors or continuous covariates can be present. For example

> names(Orthodont) # Orthodontic growth
[1] "distance" "age" "Subject" "Sex"
> names(Machines)
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Figure 3: CQ uptake versus ambient GOy treatment and type f@&chinochloa crus-
galli plants, six from Q&bec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.
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Figure 4. Mean pixel intensity of the right)and left ) lymphnodes in the axillary
region versus time from intravenous application of a contrast. The pixel intensities
were obtained from CT scans.

[1] "Worker" "Machine" "score"

> names(CO2) # CO2 uptake
[1] "Plant” "Type" "Treatment" "conc" "uptake"
> names(Pixel) # Pixel intensity

[1] "Dog"  "Side" “"day" = "pixel"

The different roles of the variables in the data frame (response, primary covariate,
and grouping factors) can be described by a formula of the fesponse ~ pri-
mary | groupingl/grouping?2/... which is similar to the display formula in a
Trellis plot (Becker, Cileveland and Shyu, 1996). For example

> formula(Orthodont)

distance ~ age | Subject

> formula(Machines)

score © 1 | Worker

> formula(CO2)

uptake ™ conc | Plant

> formula(Pixel)

pixel ~ day | Dog/Side
The most convenient way of packaging the formula with the data is to create a new class
of object (Chambers and Hastie, 1992, Appendix A) which we have calbeged-
Data .

The function used to create objects of a given class is called the constructor for that

class. The constructor fgroupedData takes a formula and data frame as described
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above. By default, the grouping factors are converted to ordered factors with the or-
der determined by a summary function applied to the response split according to the
groups, taking into account the nesting order (i.e. levels of a factor are sorted within the
levels of the factors that am@uterto it). (The default summary function is the maxi-
mum.) Additionally, labels can be given for the response and the primary covariate and
their units can be specified as arbitrary strings. The reason for separating the labels and
the units is to allow propagation of the units to derived quantities such as the residuals
from a fitted model.

For example, creatingroupedData objects for the examples above fralata.frames

is accomplished by

> Orthodont <- groupedData(distance
data = Orthodont, outer = ~ Sex,
labels = list(x = "Age",
y="Distance from pituitary to pterygomaxillary fissure"),
units = list(x = "(yn", y = "(mm)"))
plot(Orthodont, layout = c(8,4), # produces Figure 1 O
between = listly = c(0, 0.5, 0)))
Machines <- groupedData(score ~ Machine | Worker,
data = Machines,
labels = listly = "Productivity score"))

age | Subject,

plot(Machines) # produces Figure 2 O
CO2 <- groupedData(uptake ~ conc | Plant, data = COZ2,

outer = © Treatment * Type,

labels = list(x = "Ambient carbon dioxide concentration”,

y = "CO2 uptake rate"),
units = list(x = "(uL/L)", y = "(umol/m™2 s)")

plot(CO2) # produces Figure 3 O
Pixel <- groupedData(pixel ~ day | Dog/Side,
data = Pixel,

labels =list(x="Time post injection",y="Pixel intensity"),
units = list(x = "(days)"))
plot(Pixel, display = 1, inner = "Side) # produces Figure 4 O

V+H++VVF++++VV++V+V++++

The call to the constructor establishes the roles of the variables, converts the grouping
factors to ordered factors so panels in plots are ordered in a natural way and stores
descriptive labels for data plots and plots of derived quantities.

When outer factors are present, as in the Orthodont andda€, they are given as
a formula such asuter = © Sex andouter = ~ Treatment * Type or, when,
multiple grouping factors are present, as a list of such formulas. Inner factors are
described in a similar way. When establishing the order of the levels of the grouping

factor, and hence the order of panels in a plot, re-ordering is only permitted within
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combinations of levels for the outer factors. That is why the panels from boys and girls
are grouped together in Figure 1.

The plot method for thgroupedData class allows an optional argumemiter
which can be given a logical value or a formula. A logical valugRUE(or T) indi-
cates that the outer formula stored with the data should be used in the plot. The right
hand side of the explicit or inferred formula replaces the grouping factor in the trellis

formula. The grouping factor is then used to determine which points to join with lines.

For example
> plot(Orthodont, outer = T) # produces Figure 5 O
> plot(CO2, outer = T) # produces Figure 6 O

An inner factor is used to determine which points within a panel are joined by lines,

such in the plot of th@ixel data above.

Distance from pituitary to pterygomaxillary fissure (mm)

Age (yr)

Figure 5: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14
years of age, with different panels per gender.

When multiple levels of grouping are present, the& method allows two op-
tional argumentslisplayLevel andcollapseLevel , specifying, respectively, the
grouping level to be used to determine the panels of the Trellis plot and the grouping
level over which to collapse the data.

Another advantage of using a formula to describe the roles of the variables is that

this information can be used within the model-fitting functions to make the specifica-
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Figure 6: CQ uptake versus ambient GOy treatment and type fé&chinochloa crus-
galli plants, six from Q&bec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.
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tion of the model easier. For example, getting preliminary simple linear regression fits

by subject for the orthodontic growth example can be made as simple as
> Ortho.lis <- ImList(Orthodont)

3 Thelme class and related methods

The plot of the individual growth curves in Figue 1 suggests that a linear model ade-
quately explains the orthodontic distance as a function of age, but the intercept and the
slope seem to vary with the individual. The corresponding linear mixed-effects model
is

dij = (Bo + bio) + (81 + bi1) age; + €i; 1)

whered;; represents the distance for titk individual at agg, 3, and3; are the pop-
ulation average intercept and the population average shgpandb,, are the effects in
intercept and slope associated with ttreindividual, anck;; is the within-subject error
term. Itis assumed that tibg = (b;0, bﬂ)T are independent and identically distributed
with a (0, 02 D) distribution and the;; are independent and identically distributed
with a V{0, o2) distribution, independent of thg.

One of the questions of interest for these data is whether the curves show significant

differences between boys and girls. Modeél (1) can be modified as
dij = (Boo + Borsex; + bio) + (Bro + Brisex; + bi1) age; + €5 (2)

to test for sex related differences in intercept and slope. In mdel«®)js an indi-

cator variable assuming the value zero if tkte individual is a boy and one if she is

a girl. Byo and ;o represent the population average intercept and slope for the boys

and 3p; and 3;; are the changes in population average intercept and slope for girls.

Differences between boys and girls can be evaluated by testing whgthand 3,

are significantly different from zero. The remaining termgjn (2) are defined &s in (1).
In the Pixel example, a second order polynomial seems adequate to explain the

evolution of pixel intensity with time since the contrast was injected. Preliminary anal-

yses indicated that the intercept varies with dog, as well as with side within dog, and
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the linear term varies with dog, but not with side.

The corresponding multilevel linear mixed-effects model is
Vijk = (Bo + boi + boi ;) + (81 + b1i) tijr + ﬂ2t?jk + Eijks (3)

where: refers to the dog number (1 through 1@Yo the lymphnode side (1 — right, 2

— left), andk refers to time 5y, 31, and3s denote respectively the intercept, the linear
term, and the quadratic term fixed effechs; denotes the intercept random effect at
the dog levelby;; denotes the intercept random effect at the side within dog level,
and by; denotes the linear term random effect at the dog leyeadenotes the pixel
intensity,¢ denotes the time since contrast injection, ang denotes the error term.

It is assumed that the; = [bo;, bu]T are independent and identically distributed with
common diStfibUtiOW(0,0’le), thebd, ; = [bo; ;] are independent and identically
distributed with common distributio®/ (0, o> D,) and independent of thg, and the
e;j, are independent and identically distributed with common distributi§f, o2)

and independent of thig and theb; ;.

3.1 Thelme function

Thelme function is used to fit a linear mixed-effects model, as describéd in Laiid and
Ware (1982), or a multilevel linear mixed-effects model as described, for example, in
Longford (199B) or Goldstein (1995), using either maximum likelihood or restricted
maximum likelihood. It produces an object of clas®e . Several optional arguments
can be used with this function, but the typical call is

Ime(fixed, data, random)

Only the first argument is required. The argumeiitsd andrandom are gener-

ally given as formulas as illustrated below. Any linear model formula (Chambers and
Hastié, 1992, chapter 3) is allowed, giving the model formulation considerable flexi-
bility. For the Orthodont data these formulas would be written as

fixed = distance ~ age, random = ~ age

for model (1) and
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fixed = distance ~ age * Sex, random = " age

for model (2). Note that the response variable is given only in the formula for the
fixed argument. By default, all terms in the fixed effects formula are assumed to have
random effects.

Becauserthodont is agroupedData object, no grouping structure must be ex-
plicitly given in random, as it is extracted from thgroupedData display formula.
Alternatively, the grouping structure can be included in the formula as conditioning
expression.

random = " age | Subject

When multiple levels of grouping are present, as in the pixel intensity example,
random must be given as a list of formulas, as below.

fixed = pixel ~ day+day™2, random =list(Dog =" day, Side = 1)

Note that the names of the elements intlr&om list correspond to the names of the
grouping factors and are assumed to be in outermost to innermost order. A model with
a single intercept is represented by .

The optional argumentata specifies the data frame in which the variables used in
the model are available. A simple callltoe to fit model (1) is

> Ortho.fitl <- Ime(fixed = distance ~ age, data = Orthodont,

+ random = " age | Subject)

To fit model (2) we use
> ## set contrasts for desired parameterization
> options(contrasts = c("contr.treatment”, "contr.poly"))
> Ortho.fit2 <- update(Ortho.fitl, fixed = distance ~ age*Sex)
The multilevel model[(3) is fit by:
> Pixel.fitl <- Ime(fixed = pixel © day + day'2, data = Pixel,
+ random = list(Dog = ~ day, Side = 1))
There are several methods available for the fitted objects of ha&ssincluding

those for the generic functiorsmova , print , summary, andplot . These are illus-

trated in the next sections.
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3.2 Theprint ,summary, andanova methods

A brief description of the estimation results is returned byt method. It gives
estimates of the standard errors and correlations of the random effects, the within-group
variance, and the fixed effects. For theho.fitl object we get

> Ortho.fitl
Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-likelihood: -221.32
Fixed: distance ~ age
(Intercept) age
16.761 0.66019

Random effects:
Formula: "~ age | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 2.32704 (Inter
age 0.22643 -0.609
Residual 1.31004

Number of Observations: 108
Number of Groups: 27

A more complete description of the estimation results is returnesiioynary .

> summary(Ortho.fit2)
Linear mixed-effects model fit by REML
Data: Orthodont
AlC BIC logLik
448.58 469.74 -216.29

Random effects:
Formula: ~ age | Subject
Structure: General positive-definite
StdDev  Corr
(Intercept) 2.40549 (Inter
age 0.18034 -0.668
Residual 1.31004

Fixed effects: distance ™ age + Sex + age:Sex
Value Std.Error DF t-value p-value

(Intercept) 16.341 1.019 79 16.043  0.000
age 0.784 0.086 79 9.121  0.000
Sex  1.032 1596 25 0.647 0.524
age:Sex -0.305 0.135 79 -2.262 0.026
Correlation:
(Intr) age Sex
age -0.880

Sex -0.638 0.562
age:Sex 0.562 -0.638 -0.880
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Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.1681 -0.38594 0.007103 0.44516 3.8495

Number of Observations: 108

Number of Groups: 27
The approximate standard errors for the fixed effects are derived using the asymptotic
theory described in Pinheird (1994). The results above indicate that the measurement
increases faster in boys than in girls (significant, negatgeeSex fixed effect), but
the average intercept is common to boys and girls (non-signif@@nfixed effect).

Alternatively, a likelihood ratio test can be used to test the difference between the

fixed effects models represented 092.fit1 andCO2.fit2 . Theanova method
provides that capability. Because the default estimation methddeinis restricted
maximum likelihood (REML) and likelihood comparisons between REML fits with
different fixed effects structures are not meaningful, we need to refit the two objects
using maximum likelihood, before callirgnova .

> Ortho.fitl.ML <- update(Ortho.fitl, method
> Ortho.fit2.ML <- update(Ortho.fit2, method
> anova(Ortho.fit1.ML, Ortho.fit2.ML)

Model df AIC BIC logLik Test Lik.Ratio

"ML")
"ML")

Ortho fitl.ML 1 6 451.21 467.30 -219.61
Ortho.fit2.ML 2 8 443.81 465.26 -213.90 1 vs. 2 11.406
p-value

Ortho fitl.ML

Ortho.fit2.ML 0.0033365
The likelihood ratio test strongly rejects the null hypothesis of no sex differences. For
small sample sizes, likelihood ratio tests tend tadzeliberal when comparing models
with nested fixed effects structures and should be used with caution. We recommend
using the Wald-type tests provided by theova method with a single argument, as
these tend to have significance levels close to nominal, even for small samples.

The same methods can be used writh objects resulting from multilevel fits. To

summarize the estimation results for model (3) we use

> summary(Pixel.fitl)
Linear mixed-effects model fit by REML
Data: Pixel
AIC BIC logLik
841.21 861.97 -412.61



NLME 3.0 14

Random effects:
Formula: ~ day | Dog
Structure: General positive-definite
StdDev  Corr
(Intercept) 28.3699 (Inter
day 1.8437 -0.555

Formula: ~ 1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.824  8.9896

Fixed effects: pixel © day + day™2
Value Std.Error DF t-value p-value

(Intercept) 1073.3 10.2 80 105.5 0
day 6.1 0.9 80 7.0 0
I(day™2) -0.4 0.0 80 -10.8 0
Correlation:
(Intr) day
day -0.517

I(day’2) 0.186 -0.668

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.8291 -0.44918 0.025549 0.55722 2.752

Number of Observations: 102
Number of Groups:

Dog Side %in% Dog

10 20

3.3 Theplot method

Diagnostic plots for assessing the quality of the fitted model are obtained using the
plot method for clasne . This method takes several optional arguments, but a typical
call is of the form.

plot(object, formula)

where the first argument is thee object and the second is a display formula for the
Trellis plot to be produced. The fitted object can be referenced by the symbol “.” in the
formula argument. For example, to produce a plot of the standardized residuals versus
fitted values by gender for th@rtho.fit2 object included in Figurg 7, we use.

> plot(Ortho.fit2, # produces Figure 7 O

+ resid(., type = "p") ~ fitted(.) | Sex)
There is evidence that the variability of the orthodontic distance is greater in boys than

in girls and that some possible outliers are present in the data. To assess the predictive
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Figure 7: Standardized residuals versus fitted values by gender, faméhdit of
model (2).

power of the fitted model, we consider the plot of the observed versus fitted values by
individual, presented in Figufé 8 and obtained with.

> plot(Ortho.fit2, # produces Figure 8 O

+ distance ~ fitted(.) | Subject, layout = c(8, 4),

+ between = listty = c(0, 0.5, 0)), abline = ¢(0,1))
For most of the subjects, there is very good agreement between the observed and fitted
values, indicating that the fit is adequate.

Theformula argumentto thelot method gives virtually unlimited flexibility for
generating customized diagnostic plots. As one last example, we consider the plot of
the standardized residuals (at the side within dog level) foPtke. fit1 object by
dog.

> plot(Pixel.fitl, Dogresid(., type="p"))# produces Figure 9 O

The residuals seem symmetrically scattered around zero, with similar variabilities, ex-

cept, possibly, for dog number 4.

3.4 Other methods

StandardS methods for extracting components of fitted objects, such<siduals,
fited , andcoefficients , can be also be used dme objects. In addition, the

Ime includes the methodixed.effects andrandom.effects for extracting the
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fixed effects and the random effects estimates, respectively. Short names for the last

two functions ardixef andranef .
> coef(Ortho.fit2)

(Intercept) age Sex age:Sex
M16 15.557 0.69573 1.0321 -0.30483
MO5 14.695 0.77590 1.0321 -0.30483
Fo4 18.002 0.81259 1.0321 -0.30483
F11 18.537 0.88586 1.0321 -0.30483

> fixef(Pixel.fitl)
(Intercept) day I(day"2)
1073.3 6.1296 -0.36735

> ranef(Pixel .fitl, level = 1) # random effects at Dog level

(Intercept) day
-24.7142 -1.195371
19.3659 -0.099369
-23.5821 -0.432431
-27.0803 2.194756
-16.6585 3.095973
25.2998 -0.561271
10.8232 -1.037000
49.3539 -2.274458
-7.0540 0.990255
-5.7537 -0.681084

OCONOOUITRWNOPR

Predicted values are returned by tivedict method. For example, if we are
interested in predicting the average measurement for both boys and girls at ages 14, 15,
and 16, as well as for subjea#01 andF10 at age 13, based on modgl (2), we should

create a new data frame, saythodont.new , as follows,

> Orthodont.new <-

+ data.frame(Sex = c¢(1, 1, 1, 0, 0, 0, 1, 0),

+ age = c(14, 15, 16, 14, 15, 16, 13, 13),

+ Subject = c(NA, NA, NA, NA, NA, NA, "M01", "F10")

and then use

> predict(Ortho.fit2, Orthodont.new, level = c(0,1))
Subject predict.fixed predict.Subject

1 NA 24.086 NA
2 NA 24.566 NA
3 NA 25.045 NA
4 NA 27.322 NA
5 NA 28.106 NA
6 NA 28.891 NA
7 MO1 23.607 26.242

8 F10 26.537 22.738

to get the subject-specific and population predictions. [éw argument is used to

define the desired prediction levels, with(zero) referring to the population predic-
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tions.

3.5 Positive-definite matrix structures

Different positive-definite matrix structures can be used to represent the random effects
covariance matrix imrme . These are organized in the code as diffepeiMat classes.

Table[l lists the standagdiMat classes available iime .

Class Description

pdSymm general positive-definite
pdDiag diagonal

pdident multiple of an identity
pdCompSymm compound symmetry
pdBlocked block diagonal

Table 1: Classes of positive-definite matricesie .

By default, thepdSymmclass is used to represent a random effects covariance ma-
trix. The desiregpdMat class must be specified with trendom argument. For exam-
ple, to fit a model with independent intercept and slope random effects in nipdel (2),
one should use

> Ortho.fit3 <- update(Ortho.fit2, random = pdDiag(" age))
> Ortho.fit3
Linear mixed-effects model fit by REML

Data: Orthodont

Log-restricted-likelihood: -216.58

Fixed: distance ~ age + Sex + age:Sex

(Intercept) age Sex age:Sex

16.341 0.78437 1.0321 -0.30483

Random effects:

Formula: "~ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.5546 0.088016  1.3655

Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit2, Ortho.fit3)
Model df AIC BIC logLik Test Lik.Ratio

Ortho.fit2 1 8 448.58 469.74 -216.29

Ortho.fit3 2 7 447.15 465.66 -216.58 1 vs. 2 0.56928
p-value

Ortho.fit2

Ortho.fit3 0.45054
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Note that, because the two models have the same fixed effects structure, the likelihood
ratio test based on REML is meaningful.

The grouping structured is inferred from theupedData display formula. Al-
ternatively,random could have been passed to the function as

random = list(Subject = pdDiag(" age))

As evidenced by the large p-value for the likelihood ratio test inadt@/a method
output, the independence between the random effects seems plausible.

Users may define their ompdMat classes by specifying eonstructorfunction
and, at a minimum, methods for the functigm#Construct , pdMatrix andcoef .

For examples of these functions, see the methods for cladSgsmmandpdDiag .

3.6 Correlation and variance function structures

The within-group error covariance structure can be flexibly modelesiénby com-
bining correlation structures and variance functions. Similarly to the positive-definite
matrix structures described #B.5, the different correlation and variance functions
structures are organized intorStruct  andvarFunc classes, respectively. Tablés 2

and[B list the standard classes for each structure.

Class Description

corAR1 AR(1)

CorARMA ARMA(p,q)

corCARL1 continuous AR(1)
corCompSymm compound symmetry

COrExp exponential spatial correlation
corGaus Gaussian spatial correlation
corLin linear spatial correlation
corRation Rational quadratic spatial correlation
corSpher spherical spatial correlation
corSymm general correlation matrix

Table 2: Classes of correlation structuregme .

The optional argumertrrelation is used to specify a correlation structure and
the optional argumenteights is used for variance functions. By default, the within-

group errors are assumed to independent and homoscedastic.
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Class Description

varExp exponential of a variance covariate

varPower power of a variance covariate

varConstPower constant plus power of a variance covariate
varldent different variances per level of a factor

varFixed fixed weights, determined by a variance covariate
varComb combination of variance functions

Table 3: Classes of variance functionsnre .

The variance function structures are used to model heteroscedasticity in the within-
group errors. For example, the residual versus fitted values plot of the residuals on
Figure[T suggests that different variances should be allowed for boys and girls. We can
test that by updating the fit using therident  variance function structure.

> Ortho.fit4 <-
+ update(Ortho.fit3, weights = varldent(form = "1|Sex))
> Ortho.fit4
Linear mixed-effects model fit by REML

Data: Orthodont

Log-restricted-likelihood: -206.08

Fixed: distance ~ age + Sex + age:Sex

(Intercept) age Sex age:Sex

16.341 0.78438 1.0321 -0.30483

Random effects:

Formula: ~ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.4487 0.1094  1.6584

Variance function:
Structure: Different standard deviations per stratum
Formula: ~ 1 | Sex
Parameter estimates:
Male Female

1 0.42537
Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit3, Ortho.fit4)

Model df AIC BIC logLik Test Lik.Ratio

Ortho.fit3 1 7 447.15 465.66 -216.58

Ortho.fit4 2 8 428.17 449.32 -206.08 1 vs. 2 20.983
p-value

Ortho.fit3

Ortho.fit4 4.6342e-06

There is strong indication that the orthodontic distance is less variable in girls than

in boys. The fitted object can be referenced in fibven argument to thevarFunc
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constructors through the symbol “.”. For example, to use a variance function that is an

arbitrary power of the fitted values in modgl (3), one can reisiél. fitl as below.

> Pixel fit2 <-
+ update(Pixel.fitl, weights = varPower(form="fitted(.)))
> Pixel.fit2
Linear mixed-effects model fit by REML
Data: Pixel

Log-restricted-likelihood: -412.46

Fixed: pixel © day + day2

(Intercept) day I(day"2)
1073.3 6.1011 -0.36638

Random effects:
Formula: ~ day | Dog
Structure: General positive-definite
StdDev  Corr
(Intercept) 28.5049 (Inter
day 1.8734 -0.567

Formula: ~ 1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.66 4.217e-06

Variance function:

Structure: Power of variance covariate
Formula: ~ fitted(.)

Parameter estimates:

power

2.0845
Number of Observations: 102
Number of Groups:

Dog Side %in% Dog

10 20
> anova(Pixel.fitl, Pixel.fit2)

Model df AIC BIC logLik Test Lik.Ratio

Pixel.fitl 1 8 841.21 861.97 -412.61

Pixel.fit2 2 9 842.92 866.28 -412.46 1 vs. 2 0.29119
p-value

Pixel.fitl

Pixel.fit2 0.58946

There is no evidence of heteroscedasticity in this case, as evidenced by the large
p-value of the likelihood ratio test in thenova output. Because the default value for
form in varPower is ~fitted(.) , It suffices to useaveights = varPower() in
this example.

The correlation structures are used to model within-group correlations, not cap-
tured by the random effects. These are generally associated with temporal or spatial

dependencies. For example, we can test for the presence of an autocorrelation of lag 1
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in the orthodontic growth example by updati@gho.fit4 as below.

> Ortho.fit5 <- update(Ortho.fit4, corr = corARL())
> Ortho.fits
Linear mixed-effects model fit by REML

Data: Orthodont

Log-restricted-likelihood: -206.04

Fixed: distance ™ age + Sex + age:Sex
(Intercept) age Sex age:.Sex

16.317 0.78599 1.0608 -0.3069

Random effects:

Formula: ~ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.451 0.11211  1.6307

Correlation Structure: AR(1)
Parameter estimate(s):
Phi

-0.057025
Variance function:
Structure: Different standard deviations per stratum
Formula: = 1 | Sex
Parameter estimates:
Male Female

1 0.42506
Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit4, Ortho.fit5)

Model df AIC BIC logLik Test Lik.Ratio

Ortho.fit4 1 8 428.17 449.32 -206.08

Ortho.fit5 2 9 430.07 453.87 -206.04 1 vs. 2 0.094035
p-value

Ortho.fit4

Ortho.fit5 0.75911

The large p-value of the likelihood ratio test indicates that the autocorrelation is not
present. Note that the correlation structure is used together with the variance function,
ger,[1996). Because the two structures are defined and constructed separately, any
correlation structure can be combined with any variance function.

Users may define their own correlation and variance function classes by specifying
appropriateconstructorfunctions and a few method functions. For a new correlation
structure, method functions must be defined for at leag¥latrix  andcoef . For
examples of these functions, see the methods for class@&gmm andcorAR1 . A new

variance function structure requires methods for at leat , coef<- , andinitial-
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ize . For examples of these functions, see the methods for ¢iaBswer .

4 Thenlme class and related methods

We illustrate the use of the functions and methods for the nonlinear mixed-effects
model by analyzing th€0O2data of§f. These data come from a study of the cold
tolerance of &, grass speciegchinochloa crus-galli A total of twelve four-week-

old plants, six from Q&bec and six from Mississippi, were divided into two groups:
control plants that were kept a6°C and chilled plants that were subjectité h of
chilling at7°C. After 10 h of recovery aR0°C, CO, uptake rates (immol /m?s) were
measured for each plant at seven concentrations of amBient(100, 175, 250, 350,

500, 675, 1000uL/L). Each plant was subjected to the seven concentratiord$Oaf

in increasing, consecutive order. The objective of the experiment was to evaluate the
effect of plant type and chilling treatment on t6€©- uptake.

The model used in Potvin etjal. (1990) is

Uij = ¢1i {1 — exp [~ 2 (Cj — #3:)]} + €45, (4)

whereU;; denotes th€CO, uptake rate of théth plant at thejth CO, ambient con-
centrationjpy;, ¢2;, andegs,; denote respectively the asymptotic uptake rate, the uptake
growth rate, and the maximum ambi&n®, concentration at which no uptake is veri-
fied for theith plant;C; denotes thgth ambientCO,, level; and the;; are independent

and identically distributed error terms with distributiaf{o, o2).

4.1 Thenlme function

Thenlme function is used to fit nonlinear mixed-effects models, as definéd in]Lind-

strom and Bates (1990), using either maximum likelihood or restricted maximum like-
lihood. Several optional arguments can be used with this function, but a typical call
is

nime(model, data, fixed, random, start)
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The model argument is required and consists of a formula specifying the nonlinear
model to be fitted. AnyS nonlinear formula can be used, giving the function con-
siderable flexibility. From[{4) we have that for tki&- uptake data this argument is
declared as

uptake © A * (1 - exp(-B * (conc - C)))

where we have used the notatidn= ¢;, B = ¢, andC' = ¢3. To enforce the rate
parameterp, to be positive, while preserving an unrestricted parametrization, we can
re-parametrize the model above usif)= log(B)

uptake = A * (1 - exp(-exp(IB) * (conc - C)))

Alternatively, we can define ad function, sayCO2.func , as

> CO2.func <-

+  function(conc, A, IB, C) A*(1 - exp(-exp(IB)*(conc - C)))
then write themodel argument as

uptake = CO2.func(conc, A, IB, C)

The advantage of this latter approach is that the analytic derivatives of the model func-
tion can be passed to théne function as thgradient  attribute of the returned value
from CO2.func and used in the optimization algorithm. T8dunctionderiv. can be
used to create expressions for the derivatives.

> CO2.func <- deriv(" A * (1 - exp(-exp(IB) * ( conc - C))),

+ c("A", "IB", "C"), function(conc, A, 1B, C))
If the value returned by the model function does not hageadient  attribute, nu-
merical derivatives are used in the optimization.

The argumentixed andrandom are formulas, or lists of formulas, that define the
structures of the fixed and random effects in the model. The first argument is required.
In these formulas & on the right hand side of a formula indicates that a single param-
eter is associated with the effect, but any linear formul& ioould be used instead.
This gives considerable flexibility to the model, as time-dependent parameters can be
easily incorporated (e.g. when a formulafixed involves a covariate that changes
with time). Usually every parameter in the model will have an associated fixed effect,

but it may, or may not, have an associated random effect. Since we assumed that all
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random effects have mean zero, the inclusion of a random effect without a correspond-
ing fixed effect would be unusual. Note that thed andrandom formulas could be
directly incorporated in the model declaration. The approach useithin allows for
more efficient calculation of derivatives.

For theCO5 uptake data, if we want to fit a model in which all parameters are
random and no covariates are included we use

fixed = A +IB+C ™1 random = A+ 1B+ C "1

By default,random = fixed , sotherandom argument can be omitted. Because?2
is agroupedData object, no grouping structure must be explicitly giverrandom ,
as it is extracted from thgroupedData display formula. Alternatively, the grouping
structure can be included in the formula as conditioning expression.

random = A + IB + C ~ 1 | Plant

If we want to estimate the (fixed) effects of plant type and chilling treatment on the
parameters in the model we can use

fixed = A + IB + C ~ Type * Treatment, random = A + IB + C 7 1

Data is an optional argument that names a data frame in which the variables in
model , fixed , andrandom are found, andtart provides a list of starting values
for the iterative algorithm. Only the fixed effects starting estimates are required. The
default starting estimates for the random effects are zero.

A simple call tonime to fit model (4), without any covariates and with all parame-
ters as mixed effects is

> CO2.fitl <-

+ nlme(model = uptake = CO2.func(conc, A, 1B, C),
+ fixed = A+ 1B+ C "~ 1, data = CO2,

+ start = c(30, log(0.01), 50))

The initial values for the fixed effects were obtained from Potvin ef al. (1990).

4.2 Methods fornlme objects

Objects returned by th@me function are of clasalme which inherits fromime . All

methods described in sectigh 3 are also available fombine class. In fact, with
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the exception of th@redict method, all methods are common to both classes. We
illustrate their use here with tHeéO, uptake data.

Theprint method provides a brief description of the estimation results. It gives
estimates of the standard errors and correlations of the random effects, of the within-
group variance, and of the fixed effects.

> CO2.fitl
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ co2.func(conc, A, IB, C)
Data: CO2
Log-likelihood: -201.29
Fixed: A+IB+C "1
A IB C
32.468 -4.6323 43.827

Random effects:
Formula: listtA ~ 1, 1B " 1, C ™ 1)
Level: Plant
Structure: General positive-definite
StdDev Corr

A 9.5052 A B

IB 0.1465 -0.129

C 11.9562 0.883 0.125
Residual 1.7427

Number of Observations: 84
Number of Groups: 12
Note that there is a moderately strong correlation betweed thied theC' random
effects and that these have small correlations with theandom effect. The scatter
plot matrix of the random effects, obtained using pags method

> pairs(CO2.fitl, “ranef(.))

and shown in Figurg10, gives a graphical description of the random effects correlation
structure.

The correlation betweeA andC' may be due to the fact that the plant type and the
chilling treatment, which were not included in t®2.fitl model, are affectingd
andC' in the similar ways.

Theplot method for theanef.lme  class can be used to explore the dependence
of the individual parameterd, [ B, andC' in model (%) on plant type and chilling factor.

> plot(ranef(CO2.fitl, augFrame = T), outer = “Treatment*Type,
+ layout = ¢(3,1)) # produces Figure 11 1
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Figure 10: Scatter plot matrix of the estimated random effects in mpdel (4).
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Figure 11: Estimated random effects versus plant type and chilling treatment.
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These plots indicate that chilled plants tend to have smaller valugsasfd C,
but the Mississippi plants seem to be much more affected than tlbeQuplants,
suggesting an interaction effect between plant type and chilling treatment. There is no
clear pattern of dependence betwéBnand the treatment factors, suggesting that this
parameter is not significantly affected by either plant type or chilling treatment.

We can then update the fitted object letting thandC fixed effects depend on the

treatment factors, as below.

> CO2.fit2 <- update(COZ2.fit1,
+ fixed = list(A+C ~ Treatment * Type, IB = 1),
+ start = ¢(32.55, 0, 0, 0, 41.56, 0, 0, 0, -4.6))

Thesummary method provides more detailed information on the new fitted object.

> summary(CO2.fit2)
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ™ co2.func(conc, A, 1B, C)
Data: CO2
AIC BIC logLik
392.41 431.3 -180.2

Random effects:
Formula: listtA ~ 1, IB " 1, C ™ 1)
Level: Plant
Structure: General positive-definite
StdDev  Corr
A.(Intercept) 2.37058 A.(In) IB
IB 0.14749 -0.336
C.(Intercept) 8.16451 0.356 0.761
Residual 1.71134

Fixed effects: list(tA + C = Treatment * Type, IB ™ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 42.249 1.498 64 28.212 0.000

A.Treatment -3.692 2.058 64 -1.794 0.078
A.Type -11.078 2.065 64 -5.366  0.000

A.Treatment:Type -9.575 2.943 64 -3.254 0.002

C.(Intercept) 46.300 6.436 64 7.194  0.000
C.Treatment 8.830 7.230 64 1.221 0.226
C.Type 3.010 8.048 64 0.374 0.710

C.Treatment:Type -49.019 17.679 64 -2.773 0.007
IB -4.651 0.080 64 -58.069  0.000

The small p-values of the t-statistics associated withTieatment:Type  effects
indicate that both factors have a significant effect on parameteasd C' and their
joint effect is not just the sum of the individual effects. We can investigate the joint

effect of Treatment andType on A andC using theanova method.
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> anova(CO2.fit2,
+ terms = c("A.Treatment", "A.Type", "A.Treatment:Type"))
F-test for: A.Treatment, A.Type, A.Treatment:Type
numDF denDF F-value P-value
1 3 64 51.782 0
> anova(CO2.fit2,
+ terms = c("C.Treatment", "C.Type", "C.Treatment:Type"))
F-test for: C.Treatment, C.Type, C.Treatment:Type
numDF denDF F-value P-value
1 3 64 2.94 0.04

The p-values of the Wald F-tests suggest th@atment andType have a stronger
influence onA than onC'.

Diagnostic plots can be obtained using the plot method, in the exact same way as
for Ime objects. For example, plots of the standardized residuals versus fitted values

broken up byrreatment andType, shown in Figuré 12, are obtained with

> plot(CO2.fit2,
+ resid(., type = "p") ~ fitted(.) | Treatment * Type)
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Figure 12: Standardized residuals versus fitted values foco®fit2 fit, by plant
type and chilling treatment.

The plots do not indicate any departures from the assumptions in the model — no

outliers seem to be present and the residuals are symmetrically scattered around the
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y = 0 line, with constant spread for different levels of the fitted values.

Predictions are returned by thesdict method. For example, to obtain the pop-
ulation predictions of th€ZO, uptake rate for Qebec and Mississippi plants under
chilling and no chilling, at ambieritO- concentrations of5, 100, 200, and500u.L/ L,
we would first define

> CO2.new <-
+ data.frame(Type = rep(c("Quebec","Mississippi”), c(8, 8)),
+ Treatment =rep(rep(c("chilled","nonchilled"),c(4,4)),2),
+ conc = rep(c(75, 100, 200, 500), 4))
and then use

> predict(CO2.fit2, CO2.new, level = 0)
[1] 6.7850 11.9669 23.7850 30.7508 8.3637 10.3910 15.0145
[8] 17.7397 10.1335 16.9579 32.5219 41.6956 6.6677 13.4441
[15] 28.8986 38.0078
attr(, "label):
[1] "Predicted values (umol/m™2 s)"

to obtain the predictions.

TheaugPred method can be used for plotting smooth fitted curves by calculating
fitted values at closely spaced concentrations. Fifure 13 presents the individual fitted
curves for all twelve plants evaluated at 51 concentrations between 50 ang 1000
obtained with

> plot(augPred(CO2.fit2))

TheCoO2.fit2 model explains the data reasonably well, as evidenced by the close

agreement between its fitted values and the observed uptake rates.

4.3 pdMat, corStruct , andvarFunc 0objects

All classes of positive-definite matrices, correlation structures, and variance functions
described i35 andsB3.6 can be used with theme function, in the exact same way
as withime . For example, to test if the random effectsd02.fit2 can be assumed
to be independent, we can use
> CO2.fit3 <- update(COZ2.fit2, random = pdDiag(A+IB+C"1))

> anova(CO2.fit2, CO2.fit3)
Model df AIC BIC logLik Test Lik.Ratio
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Figure 13: Individual fitted curves for the twelve plants in @, uptake data based
on theCO2.fit2  object.

CO2.fit2 1 16 392.41 431.30 -180.2

CO2.fit3 2 13 391.39 422.99 -182.7 1 vs. 2 4.9846
p-value

CO2.fit2

CO2.fit3 0.17293

The large p-value of the likelihood ratio test suggests that the assumption of indepen-
dence is reasonable.
To test for the presence of serial correlation in the within-group errors, we can use

> CO2.fit4 <- update(CO2.fit3, correlation = corAR1())
> anova(CO2.fit3, CO2.fit4)
Model df AIC BIC logLik Test Lik.Ratio

CO2.fit3 1 13 391.39 422.99 -182.70

CO2.fit4 2 14 393.30 427.33 -182.65 1 vs. 2 0.092787
p-value

CO2.fit3

CO2.fit4 0.76066

There does not appear to be evidence of within-group serial correlation.
Methods for extracting components from a fittéghie object are also available and
parallel those fotme objects. Some of the most commonly used aref |, fitted

fixef ,ranef , andresid
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5 Conclusion

The functions, classes, and methods described here provide a comprehensive set of
tools for analyzing linear and nonlinear mixed-effects models with an arbitrary num-
ber of nested grouping levels. As they are defined withinShenvironment, all the
powerful analytical and graphical machinery preserfs iis simultaneously available.

The analyses of th@rthodont , Pixel andCO2data illustrate some of the available

features, but many other features are available.
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