
Functions and Methods for Mixed-Effects Models

Help Files
Version 3.3
June 2000

by Jośe C. Pinheiro and Douglas M. Bates

Bell Labs, Lucent Technologies and University of Wisconsin — Madison

[.pdMat Subscript a pdMat Object [.pdMat

This method function extracts sub-matrices from the positive-definite matrix rep-
resented byx .

x[i, j, drop]
x[i, j] <- value

ARGUMENTS

x: an object inheriting from classpdMat representing a positive-definite matrix.

i, j: optional subscripts applying respectively to the rows and columns of the positive-
definite matrix represented byobject . Wheni (j) is omitted, all rows (columns)
are extracted.

drop: a logical value. IfTRUE, single rows or columns are converted to vectors. If
FALSE the returned value retains its matrix representation.

value: a vector, or matrix, with the replacement values for the relevant piece of the
matrix represented byx .

VALUE
if i and j are identical, the returned value will bepdMat object with the same
class asx . Otherwise, the returned value will be a matrix. In the case a single
row (or column) is selected, the returned value may be converted to a vector,
according to the rules above.

SEE ALSO
[, pdMat

EXAMPLE

pd1 <- pdSymm(diag(3))
pd1[1, , drop = F]
pd1[1:2, 1:2] <- 3 * diag(2)

2

ACF Autocorrelation Function ACF

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
gls andlme .

ACF(object, maxLag, ...)

ARGUMENTS

object: any object from which an autocorrelation function can be obtained. Generally
an object resulting from a model fit, from which residuals can be extracted.

maxLag: maximum lag for which the autocorrelation should be calculated.

...: some methods for this generic require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

SEE ALSO
ACF.gls , ACF.lme

EXAMPLE

see the method function documentation

3

ACF.gls Autocorrelation Function for gls Residuals ACF.gls

This method function calculates the empirical autocorrelation function for the
residuals from angls fit. If a grouping variable is specified inform , the auto-
correlation values are calculated using pairs of residuals within the same group;
otherwise all possible residual pairs are used. The autocorrelation function is
useful for investigating serial correlation models for equally spaced data.

ACF(object, maxLag, resType, form, na.action)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted model.

maxLag: an optional integer giving the maximum lag for which the autocorrelation should
be calculated. Defaults to maximum lag in the residuals.

resType: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"pearson" .

form: an optional one sided formula of the form∼t , or ∼t | g , specifying a time
covariatet and, optionally, a grouping factorg. The time covariate must be
integer valued. When a grouping factor is present inform , the autocorrelations
are calculated using residual pairs within the same group. Defaults to∼1, which
corresponds to using the order of the observations in the data as a covariate, and
no groups.

na.action: a function that indicates what should happen when the data containNAs.
The default action (na.fail) causesACF.gls to print an error message and
terminate if there are any incomplete observations.

VALUE
a data frame with columnslag andACF representing, respectively, the lag be-
tween residuals within a pair and the corresponding empirical autocorrelation.
The returned value inherits from classACF.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

SEE ALSO
ACF.gls , plot.ACF

4

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
ACF(fm1, form = ∼ 1 | Mare)

ACF.lme Autocorrelation Function for lme Residuals ACF.lme

This method function calculates the empirical autocorrelation function for the
within-group residuals from anlme fit. The autocorrelation values are calculated
using pairs of residuals within the innermost group level. The autocorrelation
function is useful for investigating serial correlation models for equally spaced
data.

ACF(object, maxLag, resType)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

maxLag: an optional integer giving the maximum lag for which the auntocorrelation
should be calculated. Defaults to maximum lag in the withnin-group residuals.

resType: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"pearson" .

VALUE
a data frame with columnslag andACF representing, respectively, the lag be-
tween residuals within a pair and the corresponding empirical autocorrelation.
The returned value inherits from classACF.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

SEE ALSO
ACF.gls , plot.ACF

EXAMPLE

fm1 <- lme(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
random = ∼ sin(2*pi*Time) | Mare)

ACF(fm1, maxLag = 11)

5

AIC Akaike Information Criterion AIC

This generic function calculates the Akaike information criterion for one or sev-
eral fitted model objects for which a log-likelihood value can be obtained, ac-
cording to the formula−2logLik+ 2npar, wherenpar represents the number of
parameters in the fitted model. When comparing fitted objects, the smaller the
AIC, the better the fit.

AIC(object, ...)

ARGUMENTS

object: a fitted model object, for which there exists alogLik method to extract the
corresponding log-likelihood, or an object inheriting from classlogLik .

...: optional fitted model objects.

VALUE
if just one object is provided, returns a numeric value with the corresponding
AIC; if more than one object are provided, returns adata.frame with rows
corresponding to the objects and columns representing the number of parameters
in the model (df) and the AIC.

REFERENCES
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986) ”Akaike Information Cri-
terion Statistics”, D. Reidel Publishing Company.

SEE ALSO
logLik , BIC , AIC.logLik

EXAMPLE

fm1 <- lm(distance ∼ age, data = Orthodont) # no random effects
fm2 <- lme(distance ∼ age, data = Orthodont) # random is ∼ age
AIC(fm1, fm2)

6

AIC.logLik AIC of a logLik Object AIC.logLik

This function calculates the Akaike information criterion for an object inheriting
from classlogLik , according to the formula−2logLik + 2npar, wherenpar
represents the number of parameters in the fitted model. When comparing fitted
objects, the smaller the AIC, the better the fit.

AIC(object)

ARGUMENTS

object: an object inheriting from classlogLik , usually resulting from applying alog-

Lik method to a fitted model object.

VALUE
a numeric value with the corresponding AIC.

REFERENCES
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986) ”Akaike Information Cri-
terion Statistics”, D. Reidel Publishing Company.

SEE ALSO
AIC , logLik , BIC

EXAMPLE

fm1 <- lm(distance ∼ age, data = Orthodont)
AIC(logLik(fm1))

allCoef Extract Coefficients from a Set of Objects allCoef

The extractor function is applied to each object in... , with the result being
converted to a vector. Amapattribute is included to indicate which pieces of the
returned vector correspond to the original objects in... .

allCoef(..., extract)

ARGUMENTS

...: objects to whichextract will be applied. Generally these will be model com-
ponents, such ascorStruct andvarFunc objects.

extract: an optional extractor function. Defaults tocoef .

VALUE
a vector with all elements, generally coefficients, obtained by applyingextract

to the objects in... .

SEE ALSO
modelStruct

7

EXAMPLE

cs1 <- corAR1(0.1)
vf1 <- varPower(0.5)
allCoef(cs1, vf1)

anova.gls Compare Likelihoods of Fitted Objects anova.gls

When only one fitted model object is present, a data frame with the sums of
squares, numerator degrees of freedom, F-values, and P-values for Wald tests
for the terms in the model (whenterms and L are NULL), a combination of
model terms (whenterms in not NULL), or linear combinations of the model
coefficients (whenL is not NULL). Otherwise, when multiple fitted objects are
being compared, a data frame with the degrees of freedom, the (restricted) log-
likelihood, the Akaike Information Criterion (AIC), and the Bayesian Informa-
tion Criterion (BIC) of each object is returned. Iftest=TRUE , whenever two
consecutive objects have different number of degrees of freedom, a likelihood
ratio statistic, with the associated p-value is included in the returned data frame.

anova(object, ..., test, type, adjustSigma, Terms, L, verbose)

ARGUMENTS

object: a fitted model object inheriting from classgls , representing a generalized least
squares fit.

...: other optional fitted model objects inheriting from classesgls , gnls , lm , lme ,
lmList , nlme , nlsList , or nls .

test: an optional logical value controlling whether likelihood ratio tests should be
used to compare the fitted models represented byobject and the objects in
... . Defaults toTRUE.

type: an optional character string specifying the type of sum of squares to be used in
F-tests for the terms in the model. If"sequential" , the sequential sum of
squares obtained by including the terms in the order they appear in the model is
used; else, if"marginal" , the marginal sum of squares obtained by deleting a
term from the model at a time is used. This argument is only used when a single
fitted object is passed to the function. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults to"sequential" .

adjustSigma: an optional logical value. IfTRUEand the estimation method used to ob-
tain object was maximum likelihood, the residual standard error is multiplied
by
√
nobs/(nobs − npar), wherenpar represents the number of coefficients and

nobs the number of observations in the fitted model, converting it to a REML-
like estimate. This argument is only used when a single fitted object is passed to
the function. Default isTRUE.

8

Terms: an optional integer or character vector specifying which terms in the model
should be jointly tested to be zero using a Wald F-test. If given as a character
vector, its elements must correspond to term names; else, if given as an integer
vector, its elements must correspond to the order in which terms are included in
the model. This argument is only used when a single fitted object is passed to
the function. Default isNULL.

L: an optional numeric vector or array specifying linear combinations of the coeffi-
cients in the model that should be tested to be zero. If given as an array, its rows
define the linear combinations to be tested. If names are assigned to the vector
elements (array columns), they must correspond to coefficients names and will
be used to map the linear combination(s) to the coefficients; else, if no names are
available, the vector elements (array columns) are assumed in the same order as
the coefficients appear in the model. This argument is only used when a single
fitted object is passed to the function. Default isNULL.

verbose: an optional logical value. IfTRUE, the calling sequences for each fitted model
object are printed with the rest of the output, being omitted ifverbose = FALSE .
Defaults toFALSE.

VALUE
a data frame inheriting from classanova.lme .

NOTE
Likelihood comparisons are not meaningful for objects fit using restricted maxi-
mum likelihood and with different fixed effects.

SEE ALSO
gls , gnls , lme , AIC , BIC , print.anova.lme

EXAMPLE

AR(1) errors within each Mare
fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ∼ 1 | Mare))
anova(fm1)
variance changes with a power of the absolute fitted values?
fm2 <- update(fm1, weights = varPower())
anova(fm1, fm2)

9

anova.lme Compare Likelihoods of Fitted Objects anova.lme

When only one fitted model object is present, a data frame with the sums of
squares, numerator degrees of freedom, denominator degrees of freedom, F-
values, and P-values for Wald tests for the terms in the model (whenterms

and L are NULL), a combination of model terms (whenterms in not NULL),
or linear combinations of the model coefficients (whenL is not NULL). Other-
wise, when multiple fitted objects are being compared, a data frame with the
degrees of freedom, the (restricted) log-likelihood, the Akaike Information Cri-
terion (AIC), and the Bayesian Information Criterion (BIC) of each object is
returned. Iftest=TRUE , whenever two consecutive objects have different num-
ber of degrees of freedom, a likelihood ratio statistic, with the associated p-value
is included in the returned data frame.

anova(object, ..., test, type, adjustSigma, Terms, L, verbose)

ARGUMENTS

object: a fitted model object inheriting from classlme , representing a mixed-effects
model.

...: other optional fitted model objects inheriting from classesgls , gnls , lm , lme ,
lmList , nlme , nlsList , or nls .

test: an optional logical value controlling whether likelihood ratio tests should be
used to compare the fitted models represented byobject and the objects in
... . Defaults toTRUE.

type: an optional character string specifying the type of sum of squares to be used in
F-tests for the terms in the model. If"sequential" , the sequential sum of
squares obtained by including the terms in the order they appear in the model is
used; else, if"marginal" , the marginal sum of squares obtained by deleting a
term from the model at a time is used. This argument is only used when a single
fitted object is passed to the function. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults to"sequential" .

adjustSigma: an optional logical value. IfTRUEand the estimation method used to ob-
tain object was maximum likelihood, the residual standard error is multiplied
by
√
nobs/(nobs − npar), wherenpar represents the number of coefficients and

nobs the number of observations in the fitted model, converting it to a REML-
like estimate. This argument is only used when a single fitted object is passed to
the function. Default isTRUE.

Terms: an optional integer of character vector specifying which terms in the model
should be jointly tested to be zero using a Wald F-test. If given as a character
vector, its elements must correspond to term names; else, if given as an integer
vector, its elements must correspond to the order in which terms are included in

10

the model. This argument is only used when a single fitted object is passed to
the function. Default isNULL.

L: an optional numeric vector or array specifying linear combinations of the coeffi-
cients in the model that should be tested to be zero. If given as an array, its rows
define the linear combinations to be tested. If names are assigned to the vector
elements (array columns), they must correspond to coefficients names and will
be used to map the linear combination(s) to the coefficients; else, if no names are
available, the vector elements (array columns) are assumed in the same order as
the coefficients appear in the model. This argument is only used when a single
fitted object is passed to the function. Default isNULL.

verbose: an optional logical value. IfTRUE, the calling sequences for each fitted model
object are printed with the rest of the output, being omitted ifverbose = FALSE .
Defaults toFALSE.

VALUE
a data frame inheriting from classanova.lme .

NOTE
Likelihood comparisons are not meaningful for objects fit using restricted maxi-
mum likelihood and with different fixed effects.

SEE ALSO
gls , gnls , nlme , lme , AIC , BIC , print.anova.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
anova(fm1)
fm2 <- update(fm1, random = pdDiag(∼ age))
anova(fm1, fm2)

as.matrix.corStruct Matrix of a corStruct Object as.matrix.corStruct

This method function extracts the correlation matrix, or list of correlation matri-
ces, associated withobject .

as.matrix(x)

ARGUMENTS

x: an object inheriting from classcorStruct , representing a correlation structure.

VALUE
If the correlation structure includes a grouping factor, the returned value will be
a list with components given by the correlation matrices for each group. Oth-
erwise, the returned value will be a matrix representing the correlation structure
associated withobject .

SEE ALSO
corClasses , corMatrix

11

EXAMPLE

cst1 <- corAR1(form = ∼ 1|Subject)
cst1 <- initialize(cst1, data = Orthodont)
as.matrix(cst1)

as.matrix.pdMat Matrix of a pdMat Object as.matrix.pdMat

This method function extracts the positive-definite matrix represented byx .

as.matrix(x)

ARGUMENTS

x: an object inheriting from classpdMat , representing a positive-definite matrix.

VALUE
a matrix corresponding to the positive-definite matrix represented byx .

SEE ALSO
pdMat , corMatrix

EXAMPLE

as.matrix(pdSymm(diag(4)))

as.matrix.reStruct Matrices of an reStruct Object as.matrix.reStruct

This method function extracts the positive-definite matrices corresponding to the
pdMat elements ofobject .

as.matrix(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a list with components given by the positive-definite matrices corresponding to
the elements ofobject .

SEE ALSO
as.matrix.pdMat , reStruct , pdMat

EXAMPLE

rs1 <- reStruct(pdSymm(diag(3), form= ∼ Sex+age, data=Orthodont))
as.matrix(rs1)

12

asNatural Convert to Natural Parameterization asNatural

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
pdMat , corStruct andvarFunc . See the appropriate method documentation
for a description of the arguments.

asNatural(object, ...)

ARGUMENTS

object: an object whose representation is to be converted to a natural parameterization.
Generally a model structure such aspdMat , corStruct , or varFunc objects.

...: some methods for this generic function may require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
asNatural.pdMat , asNatural.corStruct , asNatural.varFunc

asNatural.corBand corBand Object in Natural ParameterizationasNatural.corBand

This method function convertsobject to a corBandNat object, represented
in a ”natural” parameterization. Ifunconstrained = TRUE , an unconstrained
parameterization based on the logit of the correlations (log((1 + r)/(1 − r)),
with r denoting the correlation) is used. Ifunconstrained is set toFALSE, the
(constrained) correlations are used to parameterize the returnedcorBandNat

object.

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classcorBand , representing a banded correlation
structure, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
an object of classcorBandNat representing a banded correlation structure in
natural parameterization.

SEE ALSO
asNatural.corStruct , corBand , corBandNat

13

EXAMPLE

cst1 <- corBand(form = ∼ 1|Subject)
cst1 <- initialize(cst1, data = Orthodont)
asNatural(cst1)

asNatural.corStruct corStruct Object in Natural ParameterizationasNatural.corStruct

This method function convertsobject to anothercorStruct object repre-
sented in a ”natural” parameterization. Ifunconstrained is set toTRUE, the
natural unconstrained parameterization used is the same as the one used forob-

ject , which is returned unchanged. The exceptions are thecorSymm andcor-

Band classes (see the documentation on the appropriateasNatural method). If
unconstrained is set toFALSE, a constrained natural parameterization is used
to represent the object. In this case, a constructor with the nameNat appended to
the end of the originalobject constructor is called (e.g.,corAR1Nat is called
for corAR1 objects).corStruct objects with constrained natural parameteri-
zation are represented by the coefficients returned bycoef(object, uncons

= FALSE) , except forcorSymm andcorBand objects (see the documentation
on corSymmNat andcorBandNat , respectively).

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure,
whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
If unconstrained = TRUE , object is returned unchanged (except forcorSymm

andcorBand objects), else, ifunconstrained = FALSE , a corStruct ob-
ject parameterized according to the constrained coefficients corresponding to
object (except forcorSymm andcorBand objects) – the class corresponding
to these objects is obtained by appending the nameNat to the end of the original
class ofobject .

SEE ALSO
asNatural.corSymm , asNatural.corBand , corBandNat , corSymmNat

EXAMPLE

cst1 <- corCompSymm(0.5, form = ∼ 1|Subject)
cst1 <- initialize(cst1, data = Orthodont)
asNatural(cst1, unc = F)

14

asNatural.corSymmcorSymm Object in Natural ParameterizationasNatural.corSymm

This method function convertsobject to a corSymmNat object, represented
in a ”natural” parameterization. Ifunconstrained = TRUE , an unconstrained
parameterization based on the logit of the correlations (log((1 + r)/(1 − r)),
with r denoting the correlation) is used. Ifunconstrained is set toFALSE, the
(constrained) correlations are used to parameterize the returnedcorSymmNat

object.

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classcorSymm, representing a general correlation
structure, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
an object of classcorSymmNat representing a general correlation structure in
natural parameterization.

SEE ALSO
asNatural.corStruct , corSymm, corSymmNat

EXAMPLE

cst1 <- corSymm(form = ∼ 1|Subject)
cst1 <- initialize(cst1, data = Orthodont)
asNatural(cst1)

15

asNatural.pdBand pdBand Object in Natural ParameterizationasNatural.pdBand

This method function convertsobject to a pdBandNat object, represented in
a ”natural” parameterization. Ifunconstrained = TRUE , an unconstrained
parameterization based on the logarithm of the standard deviations and the logit
of the correlations (log((1+r)/(1−r)), with r denoting the correlation) is used.
If unconstrained is set toFALSE, the variances and covariances are used to
parameterize the returnedpdBandNat object.

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classpdBand , representing a banded positive-definite
matrix, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
an object of classpdBandNat representing a banded positive-definite matrix in
natural parameterization.

SEE ALSO
asNatural.pdMat , pdBand , pdBandNat

EXAMPLE

pd1 <- pdBand(diag(1:3), form = ∼ age + ageˆ2, data = Orthodont)
asNatural(pd1)

16

asNatural.pdMat pdMat Object in Natural Parameterization asNatural.pdMat

This method function convertsobject to anotherpdMat object represented in
a ”natural” parameterization. Ifunconstrained is set toTRUE, the natural un-
constrained parameterization used is the same as the one used forobject , which
is returned unchanged. The exceptions are thepdSymmandpdBand classes (see
the documentation on the appropriateasNatural method). Ifunconstrained

is set toFALSE, a constrained natural parameterization is used to represent the
object. In this case, a constructor with the nameNat appended to the end of the
originalobject constructor is called (e.g.,pdDiagNat is called forpdDiag ob-
jects).pdMat objects with constrained natural parameterization are represented
by the variances and, when appropriate, the covariances of the positive-definite
matrix they represent.

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive-definite matrix,
whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
If unconstrained = TRUE , object is returned unchanged (except forpdSymm

andpdBand objects), else, ifunconstrained = FALSE , a pdMat object pa-
rameterized according to the variances and covariances of the positive-definite
matrix they represent - the class corresponding to these objects is obtained by
appending the nameNat to the end of the original class ofobject .

SEE ALSO
asNatural.pdSymm , asNatural.pdBand , pdBandNat , pdSymmNat

EXAMPLE

pd1 <- pdDiag(diag(1:3), form = ∼ age+ageˆ2, data = Orthodont)
asNatural(pd1, unc = F)

17

asNatural.pdSymm pdSymm Object in Natural ParameterizationasNatural.pdSymm

This method function convertsobject to apdSymmNat object, represented in a
”natural” parameterization. Ifunconstrained = TRUE , an unconstrained pa-
rameterization based on the logarithm of the standard deviations and the logit
of the correlations (log((1+r)/(1-r)), with r denoting the correlation) is used. If
unconstrained is set toFALSE, the variances and covariances are used to pa-
rameterize the returnedpdSymmNat object.

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classpdSymm, representing a general positive-definite
matrix, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
an object of classpdSymmNat representing a general positive-definite matrix in
natural parameterization.

SEE ALSO
asNatural.pdMat , pdSymm, pdSymmNat

EXAMPLE

pd1 <- pdSymm(diag(1:3), form = ∼ age + ageˆ2, data = Orthodont)
asNatural(pd1)

18

asNatural.varFunc varFunc Object in Natural ParameterizationasNatural.varFunc

This method function convertsobject to anothervarFunc object represented
in a ”natural” parameterization. Ifunconstrained is set toTRUE, the natural
unconstrained parameterization used is the same as the one used forobject ,
which is returned unchanged. Ifunconstrained is set toFALSE, a constrained
natural parameterization is used to represent the object. In this case, a construc-
tor with the nameNat appended to the end of the originalobject constructor
is called (e.g.,varPowerNat is called forvarPower objects).varFunc objects
with constrained natural parameterization are represented by the coefficients re-
turned bycoef(object, uncons = FALSE) .

asNatural(object, unconstrained)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
If unconstrained = TRUE , object is returned unchanged, else, ifuncon-

strained = FALSE , a varFunc object parameterized according to the con-
strained coefficients corresponding toobject - the class corresponding to these
objects is obtained by appending the nameNat to the end of the original class of
object .

EXAMPLE

vf1 <- varConstPower(2, 0.5, form = ∼ age)
vf1 <- initialize(vf1, data = Orthodont)
asNatural(vf1, unc = F)

19

asOneFormula Combine Formulas of a Set of Objects asOneFormula

The names of all variables used in the formulas extracted from the objects de-
fined in... are converted into a single linear formula, with the variables names
separated by+.

asOneFormula(..., omit)

ARGUMENTS

...: objects, or lists of objects, from which a formula can be extracted.

omit: an optional character vector with the names of variables to be omitted from the
returned formula. Defaults toc(".", "pi") .

VALUE
a one-sided linear formula with all variables named in the formulas extracted
from the objects in... , except the ones listed inomit .

SEE ALSO
formula , all.vars

EXAMPLE

asOneFormula(y ∼ x + z | g, list(∼ w, ∼ t * sin(2 * pi)))

asOneSidedFormula Convert to One-Sided Formula asOneSidedFormula

Names, expressions, and strings are converted to one-sided formulas. Ifobject

is a formula, it must be one-sided, in which case it is returned unaltered.

asOneSidedFormula(object)

ARGUMENTS

object: a one-sided formula, an expression, a numeric value, or a character string.

VALUE
a one-sided formula representingobject

SEE ALSO
formula

EXAMPLE

asOneSidedFormula("age")
asOneSidedFormula(∼ age)

20

asTable Convert groupedData to a matrix asTable

Create a tabular representation of the response in a balanced groupedData object.

asTable(object)

ARGUMENTS

object: A balancedgroupedData object

VALUE
A matrix. The data in the matrix are the values of the response. The columns
correspond to the distinct values of the primary covariate and are labelled as
such. The rows correspond to the distinct levels of the grouping factor and are
labelled as such.

SEE ALSO
groupedData , isBalanced , balancedGrouped

EXAMPLE

asTable(Orthodont)

augPred Augmented Predictions augPred

Predicted values are obtained at the specified values ofprimary . If object has
a grouping structure (i.e.getGroups(object) is not NULL), predicted values
are obtained for each group. Iflevel has more than one element, predictions
are obtained for each level of themax(level) grouping factor. If other covari-
ates besidesprimary are used in the prediction model, their average (numeric
covariates) or most frequent value (categorical covariates) are used to obtain the
predicted values. The original observations are also included in the returned
object.

augPred(object, primary, minimum, maximum, length.out, level, ...)

ARGUMENTS

object: a fitted model object from which predictions can be extracted, using apredict

method.

primary: an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generateobject (usinggetCovariate), it will be used
asprimary .

minimum: an optional lower limit for the primary covariate. Defaults tomin(primary) .

maximum: an optional upper limit for the primary covariate. Defaults tomax(primary) .

21

length.out: an optional integer with the number of primary covariate values at which
to evaluate the predictions. Defaults to 51.

level: an optional integer vector specifying the desired prediction levels. Levels in-
crease from outermost to innermost grouping, with level 0 representing the pop-
ulation (fixed effects) predictions. Defaults to the innermost level.

...: some methods for the generic may require additional arguments.

VALUE
a data frame with four columns representing, respectively, the values of the pri-
mary covariate, the groups (ifobject does not have a grouping structure, all
elements will be1), the predicted or observed values, and the type of value in
the third column:original for the observed values andpredicted (single or
no grouping factor) orpredict.groupVar (multiple levels of grouping), with
groupVar replaced by the actual grouping variable name (fixed is used for
population predictions). The returned object inherits from classaugPred .

NOTE
This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
gls , lme , andlmList .

SEE ALSO
plot.augPred , getGroups , predict

EXAMPLE

fm1 <- lme(Orthodont)
augPred(fm1, length.out = 2, level = c(0,1))

balancedGrouped Create a groupedData object from a matrixbalancedGrouped

Create agroupedData object from a data matrix. This function can be used
only with balanced data. The opposite conversion, from agroupedData object
to amatrix , is performed byasTable .

balancedGrouped(form, data, labels=NULL, units=NULL)

ARGUMENTS

form: A formula of the formy ∼x | g giving the name of the response, the primary
covariate, and the grouping factor.

data: A matrix or data frame containing the values of the response grouped according
to the levels of the grouping factor (rows) and the distinct levels of the primary
covariate (columns). Thedimnames of the matrix are used to construct the levels
of the grouping factor and the primary covariate.

22

labels: an optional list of character strings giving labels for the response and the pri-
mary covariate. The label for the primary covariate is namedx and that for the
response is namedy . Either label can be omitted.

units: an optional list of character strings giving the units for the response and the
primary covariate. The units string for the primary covariate is namedx and that
for the response is namedy . Either units string can be omitted.

VALUE
A balancedgroupedData object.

SEE ALSO
groupedData ,isBalanced ,asTable

EXAMPLE

OrthoMat <- asTable(Orthodont)
Orth2 <- balancedGrouped(distance ˜ age | Subject, data = Or-
thoMat,

labels = list(x = "Age",
y = "Distance from pituitary to pterygomaxillary fis-

sure"),
units = list(x = "(yr)", y = "(mm)"))

Orth2[1:10,] ## check the first few entries

BIC Bayesian Information Criterion BIC

This generic function calculates the Bayesian information criterion, also known
as Schwarz’s Bayesian criterion (SBC), for one or several fitted model objects for
which a log-likelihood value can be obtained, according to the formula−2logLik+
npar log(nobs), wherenpar represents the number of parameters andnobs the
number of observations in the fitted model.

BIC(object, ...)

ARGUMENTS

object: a fitted model object, for which there exists alogLik method to extract the
corresponding log-likelihood, or an object inheriting from classlogLik .

...: optional fitted model objects.

VALUE
if just one object is provided, returns a numeric value with the corresponding
BIC; if more than one object are provided, returns adata.frame with rows
corresponding to the objects and columns representing the number of parameters
in the model (df) and the BIC.

REFERENCES
Schwarz, G. (1978) ”Estimating the Dimension of a Model”, Annals of Statistics,
6, 461-464.

23

SEE ALSO
logLik , AIC , BIC.logLik

EXAMPLE

fm1 <- lm(distance ∼ age, data = Orthodont) # no random effects
fm2 <- lme(distance ∼ age, data = Orthodont) # random is ∼ age
BIC(fm1, fm2)

BIC.logLik BIC of a logLik Object BIC.logLik

This function calculates the Bayesian information criterion, also known as Schwarz’s
Bayesian criterion (SBC) for an object inheriting from classlogLik , according
to the formula−2logLik + npar log(nobs), wherenpar represents the number
of parameters andnobs the number of observations in the fitted model. When
comparing fitted objects, the smaller the BIC, the better the fit.

BIC(object)

ARGUMENTS

object: an object inheriting from classlogLik , usually resulting from applying alog-

Lik method to a fitted model object.

VALUE
a numeric value with the corresponding BIC.

REFERENCES
Schwarz, G. (1978) ”Estimating the Dimension of a Model”, Annals of Statistics,
6, 461-464.

SEE ALSO
BIC , logLik , AIC

EXAMPLE

fm1 <- lm(distance ∼ age, data = Orthodont)
BIC(logLik(fm1))

24

coef.corStruct Coefficients of a corStruct Object coef.corStruct

This method function extracts the coefficients associated with the correlation
structure represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the coefficients
are returned in ”natural”, possibly constrained, form. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector with the same length ofcoef(object) and must be given
in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value . Object must be initialized (usinginitialize) before new values
can be assigned to its coefficients.

SEE ALSO
corClasses , initialize

EXAMPLE

cst1 <- corARMA(p = 1, q = 1)
coef(cst1)

25

coef.gnls Extract gnls Coefficients coef.gnls

The estimated coefficients for the nonlinear model represented byobject are
extracted.

coef(object)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

VALUE
a vector with the estimated coefficients for the nonlinear model represented by
object .

SEE ALSO
gnls

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

coef(fm1)

coef.lmList Extract lmList Coefficients coef.lmList

The coefficients of eachlm object in theobject list are extracted and organized
into a data frame, with rows corresponding to thelm components and columns
corresponding to the coefficients. Optionally, the returned data frame may be
augmented with covariates summarized over the groups associated with thelm

components.

coef(object, augFrame, data, which, FUN, omitGroupingFactor)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

augFrame: an optional logical value. IfTRUE, the returned data frame is augmented with
variables defined in the data frame used to produceobject ; else, ifFALSE, only
the coefficients are returned. Defaults toFALSE.

data: an optional data frame with the variables to be used for augmenting the returned
data frame whenaugFrame = TRUE. Defaults to the data frame used to fitob-

ject .

26

which: an optional positive integer or character vector specifying which columns of the
data frame used to produceobject should be used in the augmentation of the
returned data frame. Defaults to all variables in the data.

FUN: an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing the data by groups. Group-invariant
variables are always summarized by the unique value that they assume within
that group. IfFUN is a single function it will be applied to each non-invariant
variable by group to produce the summary for that variable. IfFUN is a list
of functions, the names in the list should designate classes of variables in the
frame such asordered , factor , or numeric . The indicated function will be
applied to any group-varying variables of that class. The default functions to be
used aremean for numeric factors, andMode for both factor andordered .
TheMode function, defined internally ingsummary , returns the modal or most
popular value of the variable. It is different from themode function that returns
the S-language mode of the variable.

omitGroupingFactor: an optional logical value. WhenTRUEthe grouping factor itself
will be omitted from the group-wise summary ofdata but the levels of the
grouping factor will continue to be used as the row names for the returned data
frame. Defaults toFALSE.

VALUE
a data frame inheriting from classcoef.lmList with the estimated coefficients
for eachlm component ofobject and, optionally, other covariates summarized
over the groups corresponding to thelm components. The returned object also
inherits from classesranef.lmList anddata.frame .

SEE ALSO
lmList , fixef.lmList , ranef.lmList , plot.ranef.lmList , gsummary

EXAMPLE

fm1 <- lmList(distance ∼ age|Subject, data = Orthodont)
coef(fm1)
coef(fm1, augFrame = TRUE)

27

coef.lme Extract lme Coefficients coef.lme

The estimated coefficients at level i are obtained by adding together the fixed
effects estimates and the corresponding random effects estimates at grouping
levels less or equal to i. The resulting estimates are returned as a data frame,
with rows corresponding to groups and columns to coefficients. Optionally, the
returned data frame may be augmented with covariates summarized over groups.

coef(object, augFrame, level, data, which, FUN, omitGroupingFactor)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

augFrame: an optional logical value. IfTRUE, the returned data frame is augmented with
variables defined indata ; else, if FALSE, only the coefficients are returned.
Defaults toFALSE.

level: an optional positive integer giving the level of grouping to be used in extracting
the coefficients from an object with multiple nested grouping levels. Defaults to
the highest or innermost level of grouping.

data: an optional data frame with the variables to be used for augmenting the returned
data frame whenaugFrame = TRUE. Defaults to the data frame used to fitob-

ject .

which: an optional positive integer or character vector specifying which columns of
data should be used in the augmentation of the returned data frame. Defaults to
all columns indata .

FUN: an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsingdata by groups. Group-invariant vari-
ables are always summarized by the unique value that they assume within that
group. IfFUNis a single function it will be applied to each non-invariant variable
by group to produce the summary for that variable. IfFUNis a list of functions,
the names in the list should designate classes of variables in the frame such as
ordered , factor , or numeric . The indicated function will be applied to any
group-varying variables of that class. The default functions to be used aremean

for numeric factors, andMode for both factor andordered . TheMode func-
tion, defined internally ingsummary , returns the modal or most popular value
of the variable. It is different from themode function that returns the S-language
mode of the variable.

omitGroupingFactor: an optional logical value. WhenTRUEthe grouping factor itself
will be omitted from the group-wise summary ofdata but the levels of the
grouping factor will continue to be used as the row names for the returned data
frame. Defaults toFALSE.

28

VALUE
a data frame inheriting from classcoef.lme with the estimated coefficients
at level level and, optionally, other covariates summarized over groups. The
returned object also inherits from classesranef.lme anddata.frame .

SEE ALSO
lme , fixef.lme , ranef.lme , plot.ranef.lme , gsummary

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
coef(fm1)
coef(fm1, augFrame = TRUE)

coef.modelStruct Extract modelStruct Coefficients coef.modelStruct

This method function extracts the coefficients associated with each component
of themodelStruct list.

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the coefficients
are returned in ”natural”, possibly constrained, form. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector with the same length ofcoef(object) and must be given
in unconstrained form.

VALUE
a vector with all coefficients corresponding to the components ofobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value . Object must be initialized (usinginitialize) before new values
can be assigned to its coefficients.

SEE ALSO
initialize

EXAMPLE

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ∼ age)),
corStruct = corAR1(0.3))

coef(lms1)

29

coef.pdCompSymm pdCompSymm Coefficients coef.pdCompSymm

This method function extracts the coefficients associated with the positive-definite
matrix represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classpdCompSymm, representing a positive-definite
matrix with compound symmetry structure.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the standard de-
viation and the correlation coefficient of the compound symmetry of positive-
definite matrix represented byobject are returned. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector of length two and must be given in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value . Object must be initialized (usinginitialize) before new values
can be assigned to its coefficients.

SEE ALSO
coef.pdMat , pdMat

EXAMPLE

coef(pdCompSymm(diag(3)), F)

30

coef.pdDiag pdDiag Coefficients coef.pdDiag

This method function extracts the coefficients associated with the positive-definite
matrix represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classpdDiag , representing a positive-definite matrix
with diagonal structure.

unconstrained: a logical value. IfTRUEthe logarithm of the standard deviations corre-
sponding to the variance-covariance matrix represented byobject are returned.
If FALSE the standard deviations are returned. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector with the same length ofcoef(object) and must be given
in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value . Object must be initialized (usinginitialize) before new values
can be assigned to its coefficients.

SEE ALSO
coef.pdMat , pdMat

EXAMPLE

coef(pdDiag(diag(3)))

31

coef.pdIdent pdIdent Coefficients coef.pdIdent

This method function extracts the coefficients associated with the positive-definite
matrix represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classpdIdent , representing a multiple of the identity
positive-definite matrix.

unconstrained: a logical value. IfTRUEthe logarithm of the standard deviation corre-
sponding to the variance-covariance matrix represented byobject is returned.
If FALSE the standard deviation is returned. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a numeric value given in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value . Object must be initialized (usinginitialize) before new values
can be assigned to its coefficients.

SEE ALSO
coef.pdMat , pdMat

EXAMPLE

coef(pdIdent(diag(3)))

32

coef.pdMat pdMat Coefficients coef.pdMat

This method function extracts the coefficients associated with the positive-definite
matrix represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive-definite matrix.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the upper triangu-
lar elements of the positive-definite matrix represented byobject are returned.
Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector with the same length ofcoef(object) and must be given
in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value .

REFERENCES
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.

SEE ALSO
pdMat

EXAMPLE

coef(pdSymm(diag(3)))

33

coef.reStruct reStruct Coefficients coef.reStruct

This method function extracts the coefficients associated with the positive-definite
matrix represented byobject .

coef(object, unconstrained)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the coefficients
are returned in ”natural”, possibly constrained, form. Defaults toTRUE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be a vector with the same length ofcoef(object) and must be given
in unconstrained form.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value .

SEE ALSO
coef.pdMat , reStruct , pdMat

EXAMPLE

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ∼ Score),
B = pdDiag(2 * diag(4), form = ∼ Educ)))

coef(rs1)

34

coef.varFunc varFunc Coefficients coef.varFunc

This method function extracts the coefficients associated with the variance func-
tion structure represented byobject .

coef(object, unconstrained, allCoef)
coef(object) <- value

ARGUMENTS

object: an object inheriting from classvarFunc representing a variance function struc-
ture.

unconstrained: a logical value. IfTRUEthe coefficients are returned in unconstrained
form (the same used in the optimization algorithm). IfFALSE the coefficients
are returned in ”natural”, generally constrained form. Defaults toTRUE.

allCoef: a logical value. IfFALSE only the coefficients which may vary during the
optimization are returned. IfTRUEall coefficients are returned. Defaults to
FALSE.

value: a vector with the replacement values for the coefficients associated withobject .
It must be have the same length ofcoef(object) and must be given in uncon-
strained form.Object must be initialized before new values can be assigned to
its coefficients.

VALUE
a vector with the coefficients corresponding toobject .

SIDE EFFECTS
On the left side of an assignment, sets the values of the coefficients ofobject

to value .

SEE ALSO
varFunc

EXAMPLE

vf1 <- varPower(1)
coef(vf1)
coef(vf1) <- 2

35

coef<- Assign Values to Coefficients coef<-

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
all pdMat , corStruct , andvarFunc classes,reStruct , andmodelStruct .

coef(object, ...) <- value

ARGUMENTS

object: any object representing a fitted model, or, by default, any object with acoef

component.

...: some methods for this generic function may require additional arguments.

value: a value to be assigned to the coefficients associated withobject .

VALUE
will depend on the method function; see the appropriate documentation.

SEE ALSO
coef

EXAMPLE

see the method function documentation

collapse Collapse According to Groups collapse

This function is generic; method functions can be written to handle specific
classes of objects. Currently, only agroupedData method is available.

collapse(object, ...)

ARGUMENTS

object: an object to be collapsed, usually a data frame.

...: some methods for the generic may require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
collapse.groupedData

EXAMPLE

see the method function documentation

36

collapse.groupedData Collapse groupedData collapse.groupedData

If object has a single grouping factor, it is returned unchanged. Else, it is
summarized by the values of thedisplayLevel grouping factor (or the combi-
nation of its values and the values of the covariate indicated inpreserve , if any
is present). The collapsed data is used to produce a newgroupedData object,
with grouping factor given by thedisplayLevel factor.

collapse(object, collapseLevel, displayLevel, outer, inner,
preserve, FUN, subset)

ARGUMENTS

object: an object inheriting from classgroupedData , generally with multiple grouping
factors.

collapseLevel: an optional positive integer or character string indicating the grouping
level to use when collapsing the data. Level values increase from outermost to
innermost grouping. Default is the highest or innermost level of grouping.

displayLevel: an optional positive integer or character string indicating the grouping
level to use as the grouping factor for the collapsed data. Default iscollapse-

Level .

outer: an optional logical value or one-sided formula, indicating covariates that are
outer to thedisplayLevel grouping factor. If equal toTRUE, thedisplayLevel

elementattr(object, "outer") is used to indicate the outer covariates. An
outer covariate is invariant within the sets of rows defined by the grouping factor.
Ordering of the groups is done in such a way as to preserve adjacency of groups
with the same value of the outer variables. Defaults toNULL, meaning that no
outer covariates are to be used.

inner: an optional logical value or one-sided formula, indicating a covariate that is in-
ner to thedisplayLevel grouping factor. If equal toTRUE, attr(object,

"inner") is used to indicate the inner covariate. An inner covariate can change
within the sets of rows defined by the grouping factor. Defaults toNULL, mean-
ing that no inner covariate is present.

preserve: an optional one-sided formula indicating a covariate whose levels should be
preserved when collapsing the data according to thecollapseLevel grouping
factor. The collapsing factor is obtained by pasting together the levels of the
collapseLevel grouping factor and the values of the covariate to be preserved.
Default isNULL, meaning that no covariates need to be preserved.

FUN: an optional summary function or a list of summary functions to be used for
collapsing the data. The function or functions are applied only to variables in
object that vary within the groups defined bycollapseLevel . Invariant vari-
ables are always summarized by group using the unique value that they assume

37

within that group. IfFUN is a single function it will be applied to each non-
invariant variable by group to produce the summary for that variable. IfFUNis
a list of functions, the names in the list should designate classes of variables in
the data such asordered , factor , or numeric . The indicated function will
be applied to any non-invariant variables of that class. The default functions to
be used aremean for numeric factors, andMode for bothfactor andordered .
TheMode function, defined internally ingsummary , returns the modal or most
popular value of the variable. It is different from themode function that returns
the S-language mode of the variable.

subset: an optional named list. Names can be either positive integers representing
grouping levels, or names of grouping factors. Each element in the list is a
vector indicating the levels of the corresponding grouping factor to be preserved
in the collapsed data. Default isNULL, meaning that all levels are used.

VALUE
agroupedData object with a single grouping factor given by thedisplayLevel

grouping factor, resulting from collapsingobject over the levels of thecol-

lapseLevel grouping factor.

REFERENCES
Pinheiro, J.C. and Bates, D.M. (1997) ”Future Directions in Mixed-Effects Soft-
ware: Design of NLME 3.0” available at http://nlme.stat.wisc.edu.

SEE ALSO
groupedData , plot.nmGroupedData

EXAMPLE

collapsing by Dog
same as collapse(Pixel, collapse = "Dog")
collapse(Pixel, collapse = 1)

38

compareFits Compare Fitted Objects compareFits

The columns inobject1 andobject2 are put together in matrices which allow
direct comparison of the individual elements for each object. Missing columns
in either object are replaced byNAs.

compareFits(object1, object2, which)

ARGUMENTS

object1,object2: data frames, or matrices, with the same row names, but possibly
different column names. These will usually correspond to coefficients from fitted
objects with a grouping structure (e.g.lme andlmList objects).

which: an optional integer or character vector indicating which columns inobject1

andobject2 are to be used in the returned object. Defaults to all columns.

VALUE
a three-dimensional array, with the third dimension given by the number of
unique column names in eitherobject1 or object2 . To each column name
there corresponds a matrix with as many rows as the rows inobject1 and two
columns, corresponding toobject1 andobject2 . The returned object inherits
from classcompareFits .

SEE ALSO
plot.compareFits , pairs.compareFits , comparePred , coef , ranef

EXAMPLE

fm1 <- lmList(Orthodont)
fm2 <- lme(fm1)
compareFits(coef(fm1), coef(fm2))

39

comparePred Compare Predictions comparePred

Predicted values are obtained at the specified values ofprimary for each object.
If eitherobject1 or object2 have a grouping structure (i.e.getGroups(object)

is not NULL), predicted values are obtained for each group. When both objects
determine groups, the group levels must be the same. If other covariates besides
primary are used in the prediction model, their group-wise averages (numeric
covariates) or most frequent values (categorical covariates) are used to obtain
the predicted values. The original observations are also included in the returned
object.

comparePred(object1, object2, primary, minimum, maximum,
length.out, level, ...)

ARGUMENTS

object1,object2: fitted model objects, from which predictions can be extracted using
thepredict method.

primary: an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generate the objects (usinggetCovariate), it will be
used asprimary .

minimum: an optional lower limit for the primary covariate. Defaults tomin(primary) .

maximum: an optional upper limit for the primary covariate. Defaults tomax(primary) .

length.out: an optional integer with the number of primary covariate values at which
to evaluate the predictions. Defaults to 51.

level: an optional integer specifying the desired prediction level. Levels increase from
outermost to innermost grouping, with level 0 representing the population (fixed
effects) predictions. Only one level can be specified. Defaults to the innermost
level.

...: some methods for the generic may require additional arguments.

VALUE
a data frame with four columns representing, respectively, the values of the pri-
mary covariate, the groups (ifobject does not have a grouping structure, all
elements will be1), the predicted or observed values, and the type of value in
the third column: the objects’ names are used to classify the predicted values
and original is used for the observed values. The returned object inherits
from classescomparePred andaugPred .

NOTE
This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
gls , lme , andlmList .

40

SEE ALSO
augPred , getGroups

EXAMPLE

fm1 <- lme(distance ∼ age * Sex, data = Orthodont, random = ∼ age)
fm2 <- update(fm1, distance ∼ age)
comparePred(fm1, fm2, length.out = 2)

corAR1 AR(1) Correlation Structure corAR1

This function is a constructor for thecorAR1 class, representing an autocorre-
lation structure of order 1. Objects created using this constructor must be later
initialized using the appropriateinitialize method.

corAR1(value, form, fixed)

ARGUMENTS

value: the value of the lag 1 autocorrelation, which must be between -1 and 1. Defaults
to 0 (no autocorrelation).

form: a one sided formula of the form∼t , or∼t | g , specifying a time covariatet
and, optionally, a grouping factorg. A covariate for this correlation structure
must be integer valued. When a grouping factor is present inform , the correla-
tion structure is assumed to apply only to observations within the same grouping
level; observations with different grouping levels are assumed to be uncorrelated.
Defaults to∼1, which corresponds to using the order of the observations in the
data as a covariate, and no groups.

fixed: an optional logical value indicating whether the coefficient should be allowed to
vary in the optimization, or kept fixed at its initial value. Defaults toFALSE, in
which case the coefficient is allowed to vary.

VALUE
an object of classcorAR1 , representing an autocorrelation structure of order 1.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

SEE ALSO
initialize.corStruct

EXAMPLE

covariate is observation order and grouping factor is Mare
cs1 <- corAR1(0.2, form = ∼ 1 | Mare)

41

corARMA ARMA(p,q) Correlation Structure corARMA

This function is a constructor for thecorARMAclass, representing an autocorrelation-
moving average correlation structure of order (p, q). Objects created using this
constructor must be later initialized using the appropriateinitialize method.

corARMA(value, form, p, q, fixed)

ARGUMENTS

value: a vector with the values of the autoregressive and moving average parameters,
which must have lengthp + q and all elements between -1 and 1. Defaults to a
vector of zeros, corresponding to uncorrelated observations.

form: a one sided formula of the form∼t , or∼t | g , specifying a time covariatet
and, optionally, a grouping factorg. A covariate for this correlation structure
must be integer valued. When a grouping factor is present inform , the correla-
tion structure is assumed to apply only to observations within the same grouping
level; observations with different grouping levels are assumed to be uncorrelated.
Defaults to∼1, which corresponds to using the order of the observations in the
data as a covariate, and no groups.

p, q: non-negative integers specifying respectively the autoregressive order and the
moving average order of theARMAstructure. Both default to 0.

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorARMA, representing an autocorrelation-moving average cor-
relation structure.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

SEE ALSO
initialize.corStruct

EXAMPLE

ARMA(1,2) structure, with observation order as a covariate and
Mare as grouping factor
cs1 <- corARMA(c(0.2, 0.3, -0.1), form = ∼ 1 | Mare, p = 1, q = 2)

42

corBand Banded Correlation Structure corBand

This function is a constructor for thecorBand class, representing a banded cor-
relation structure. The internal representation of this structure, in terms of un-
constrained parameters, uses the spherical parameterization defined in Pinheiro
and Bates (1996). Objects created using this constructor must later be initialized
using the appropriateinitialize method.

corBand(value, form, fixed, ord)

ARGUMENTS

value: an optional vector with the parameter values. Default isnumeric(0) , which
results in a vector of zeros of appropriate dimension being assigned to the pa-
rameters whenobject is initialized (corresponding to an identity correlation
structure).

form: a one sided formula of the form∼t , or∼t | g , specifying a time covariatet
and, optionally, a grouping factorg. A covariate for this correlation structure
must such that its unique values form a sequence of consecutive integers. When
a grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

fixed: an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults toFALSE,
in which case the coefficients are allowed to vary.

ord: an optional integer specifying the order of the banded matrix represented by the
returnedcorBand object, defined as the number of nonzero diagonals in the
upper-triangular part of the matrix. Defaults to 2.

VALUE
an object of classcorBand representing a banded correlation structure.

REFERENCES
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.

SEE ALSO
initialize.corStruct

EXAMPLE

covariate is observation order and grouping factor is Subject
cs1 <- corBand(form = ∼ 1 | Subject)

43

corCAR1 Continuous AR(1) Correlation Structure corCAR1

This function is a constructor for thecorCAR1 class, representing an autocorrela-
tion structure of order 1, with a continuous time covariate. Objects created using
this constructor need to be later initialized using the appropriateinitialize

method.

corCAR1(value, form, fixed)

ARGUMENTS

value: the correlation between two observations one unit of time apart. Must be be-
tween 0 and 1. Defaults to 0.2.

form: a one sided formula of the form∼t , or∼t | g , specifying a time covariatet
and, optionally, a grouping factorg. Covariates for this correlation structure need
not be integer valued. When a grouping factor is present inform , the correlation
structure is assumed to apply only to observations within the same grouping
level; observations with different grouping levels are assumed to be uncorrelated.
Defaults to∼1, which corresponds to using the order of the observations in the
data as a covariate, and no groups.

fixed: an optional logical value indicating whether the coefficient should be allowed to
vary in the optimization, or kept fixed at its initial value. Defaults toFALSE, in
which case the coefficient is allowed to vary.

VALUE
an object of classcorCAR1 , representing an autocorrelation structure of order 1,
with a continuous time covariate.

REFERENCES
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.

Jones, R.H. (1993) ”Longitudinal Data with Serial Correlation: A State-space
Approach”, Chapman and Hall

SEE ALSO
initialize.corStruct

EXAMPLE

covariate is Time and grouping factor is Mare
cs1 <- corCAR1(0.2, form = ∼ Time | Mare)

44

corClasses Correlation Structure Classes corClasses

Standard classes of correlation structures (corStruct) available in thenlme

library.

STANDARD CLASSES

corAR1: autoregressive process of order 1.

corARMA: autoregressive moving average process, with arbitrary orders for the autore-
gressive and moving average components.

corBand: banded correlation structure.

corCAR1: continuous autoregressive process (AR(1) process for a continuous time co-
variate).

corBand: banded correlation structure.

corCompSymm: compound symmetry structure corresponding to a constant correlation.

corExp: exponential spatial correlation.

corGaus: Gaussian spatial correlation.

corLin: linear spatial correlation.

corRatio: Rational Quadratic spatial correlation.

corSpher: spherical spatial correlation.

corSymm: general correlation matrix, with no additional structure.

NOTE
Users may define their owncorStruct classes by specifying aconstruc-

tor function and, at a minimum, methods for the functionscorMatrix and
coef . For examples of these functions, see the methods for classescorSymm

andcorAR1 .

SEE ALSO
corAR1 , corARMA, corBand , corCAR1 , corCompSymm, corExp , corGaus ,
corLin , corRatio , corSpher , corSymm

45

corCompSymm Compound Symmetry Correlation Structure corCompSymm

This function is a constructor for thecorCompSymmclass, representing a com-
pound symmetry structure corresponding to uniform correlation. Objects created
using this constructor must be later initialized using the appropriateinitial-

ize method.

corCompSymm(value, form, fixed)

ARGUMENTS

value: the correlation between any two correlated observations. Defaults to 0.

form: a one sided formula of the form∼t , or ∼t | g , specifying a time covariate
t and, optionally, a grouping factorg. When a grouping factor is present in
form , the correlation structure is assumed to apply only to observations within
the same grouping level; observations with different grouping levels are assumed
to be uncorrelated. Defaults to∼1, which corresponds to using the order of the
observations in the data as a covariate, and no groups.

fixed: an optional logical value indicating whether the coefficient should be allowed to
vary in the optimization, or kept fixed at its initial value. Defaults toFALSE, in
which case the coefficient is allowed to vary.

VALUE
an object of classcorCompSymm, representing a compound symmetry correla-
tion structure.

REFERENCES
Milliken, G. A. and Johnson, D. E. (1992) ”Analysis of Messy Data, Volume I:
Designed Experiments”, Van Nostrand Reinhold.

SEE ALSO
initialize.corStruct

EXAMPLE

covariate is observation order and grouping factor is Subject
cs1 <- corCompSymm(0.5, form = ∼ 1 | Subject)

46

corExp Exponential Correlation Structure corExp

This function is a constructor for thecorExp class, representing an exponential
spatial correlation structure. Lettingd denote the range andn denote the nugget
effect, the correlation between two observations a distancer apart isexp(−r/d)
when no nugget effect is present andn exp(−r/d) when a nugget effect is as-
sumed. Objects created using this constructor must be later initialized using the
appropriateinitialize method.

corExp(value, form, nugget, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget is
FALSE, value can have only one element, corresponding to the ”range” of the
Exponential correlation structure, which must be greater than zero. Ifnugget

is TRUE, meaning that a nugget effect is present,value can contain one or two
elements, the first being the ”range” and the second the ”nugget effect” (one
minus the correlation between observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults tonumeric(0) , which results in a range of 90% of the minimum dis-
tance and a nugget ratio of 0.9 being assigned to the parameters whenobject

is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorExp , also inheriting from classcorSpatial , representing
an exponential spatial correlation structure.

47

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
initialize.corStruct , dist

EXAMPLE

sp1 <- corExp(form = ∼ x + y + z)

corFactor Factor of a Correlation Matrix corFactor

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
all corStruct classes.

corFactor(object, ...)

ARGUMENTS

object: an object from which a correlation matrix can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

EXAMPLE

see the method function documentation

48

corFactor.corStruct Factor of a corStruct Matrix corFactor.corStruct

This method function extracts a transpose inverse square-root factor, or a series
of transpose inverse square-root factors, of the correlation matrix, or list of corre-
lation matrices, represented byobject . LettingΣ denote a correlation matrix, a
square-root factor ofΣ is any square matrixL such thatΣ = LtL. This method
extractsL−t.

corFactor(object)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure,
which must have been initialized (usinginitialize).

VALUE
If the correlation structure does not include a grouping factor, the returned value
will be a vector with a transpose inverse square-root factor of the correlation
matrix associated withobject stacked column-wise. If the correlation structure
includes a grouping factor, the returned value will be a vector with transpose
inverse square-root factors of the correlation matrices for each group, stacked by
group and stacked column-wise within each group.

NOTE
This method function is used intensively in optimization algorithms and its value
is returned as a vector for efficiency reasons. ThecorMatrix method function
can be used to obtain transpose inverse square-root factors in matrix form.

SEE ALSO
corMatrix.corStruct , recalc.corStruct , initialize.corStruct

EXAMPLE

cs1 <- corAR1(form = ∼ 1 | Subject)
cs1 <- initialize(cs1, data = Orthodont)
corFactor(cs1)

49

corGaus Gaussian Correlation Structure corGaus

This function is a constructor for thecorGaus class, representing a Gaussian
spatial correlation structure. Lettingd denote the range andn denote the nugget
effect, the correlation between two observations a distancer apart isexp(−(r/d)2)
when no nugget effect is present andn exp(−(r/d)2) when a nugget effect is as-
sumed. Objects created using this constructor need to be later initialized using
the appropriateinitialize method.

corGaus(value, form, nugget, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget is
FALSE, value can have only one element, corresponding to the ”range” of the
Gaussian correlation structure, which must be greater than zero. Ifnugget is
TRUE, meaning that a nugget effect is present,value can contain one or two
elements, the first being the ”range” and the second the ”nugget effect” (one
minus the correlation between observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults tonumeric(0) , which results in a range of 90% of the minimum dis-
tance and a nugget ratio of 0.9 being assigned to the parameters whenobject

is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorGaus , also inheriting from classcorSpatial , represent-
ing a Gaussian spatial correlation structure.

50

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
initialize.corStruct , dist

EXAMPLE

sp1 <- corGaus(form = ∼ x + y + z)

corLin Linear Correlation Structure corLin

This function is a constructor for thecorLin class, representing a linear spatial
correlation structure. Lettingd denote the range andn denote the nugget effect,
the correlation between two observations a distancer < d apart is1−(r/d) when
no nugget effect is present andn(1 − (r/d)) when a nugget effect is assumed.
If r ≥ d the correlation is zero. Objects created using this constructor must be
later initialized using the appropriateinitialize method.

corLin(value, form, nugget, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget is
FALSE, value can have only one element, corresponding to the ”range” of the
Linear correlation structure, which must be greater than zero. Ifnugget is TRUE,
meaning that a nugget effect is present,value can contain one or two elements,
the first being the ”range” and the second the ”nugget effect” (one minus the
correlation between observations taken arbitrarily close together); the first must
be greater than zero and the second must be between zero and one. Defaults to
numeric(0) , which results in a range of 90% of the minimum distance and a
nugget ratio of 0.9 being assigned to the parameters whenobject is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

51

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorLin , also inheriting from classcorSpatial , representing
a linear spatial correlation structure.

REFERENCES
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
initialize.corStruct , dist

EXAMPLE

sp1 <- corLin(form = ∼ x + y)

corMatrix Extract Correlation Matrix corMatrix

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
all corStruct classes.

corMatrix(object, ...)

ARGUMENTS

object: an object for which a correlation matrix can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

EXAMPLE

see the method function documentation

52

corMatrix.corStruct corStruct Correlation Matrix corMatrix.corStruct

This method function extracts the correlation matrix (or its transpose inverse
square-root factor), or list of correlation matrices (or their transpose inverse
square-root factors) corresponding tocovariate andobject . Letting Σ de-
note a correlation matrix, a square-root factor ofΣ is any square matrixL such
thatΣ = LtL. Whencorr = FALSE , this method extractsL−t.

corMatrix(object, covariate, corr)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure.

covariate: an optional covariate vector (matrix), or list of covariate vectors (matrices),
at which values the correlation matrix, or list of correlation matrices, are to be
evaluated. Defaults togetCovariate(object) .

corr: a logical value. IfTRUEthe function returns the correlation matrix, or list of
correlation matrices, represented byobject . If FALSE the function returns a
transpose inverse square-root of the correlation matrix, or a list of transpose
inverse square-root factors of the correlation matrices.

VALUE
If covariate is a vector (matrix), the returned value will be an array with the
corresponding correlation matrix (or its transpose inverse square-root factor).
If the covariate is a list of vectors (matrices), the returned value will be a
list with the correlation matrices (or their transpose inverse square-root factors)
corresponding to each component ofcovariate .

SEE ALSO
corFactor.corStruct , initialize.corStruct

EXAMPLE

cs1 <- corAR1(0.3)
corMatrix(cs1, covariate = 1:4)
corMatrix(cs1, covariate = 1:4, corr = F)

53

corMatrix.pdMat pdMat Correlation Matrix corMatrix.pdMat

The correlation matrix corresponding to the positive-definite matrix represented
by object is obtained.

corMatrix(object)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

VALUE
the correlation matrix corresponding to the positive-definite matrix represented
by object .

SEE ALSO
as.matrix.pdMat , pdMatrix

EXAMPLE

pd1 <- pdSymm(diag(1:4))
corMatrix(pd1)

corMatrix.reStruct reStruct Correlation Matrix corMatrix.reStruct

This method function extracts the correlation matrices corresponding to thepdMat

elements ofobject .

corMatrix(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a list with components given by the correlation matrices corresponding to the
elements ofobject .

SEE ALSO
as.matrix.reStruct , reStruct , pdMat

EXAMPLE

rs1 <- reStruct(pdSymm(diag(3), form= ∼ Sex+age, data=Orthodont))
corMatrix(rs1)

54

corRatio Rational Quadratic Correlation Structure corRatio

This function is a constructor for thecorRatio class, representing a Rational
Quadratic spatial correlation structure. Lettingd denote the range andn denote
the nugget effect, the correlation between two observations a distance r apart is
(r/d)2/

(
1 + (r/d)2

)
when no nugget effect is present and(1−n)(r/d)2/

(
1 + (r/d)2

)
when a nugget effect is assumed. Objects created using this constructor must be
later initialized using the appropriateinitialize method.

corRatio(value, form, nugget, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget

is FALSE, value can have only one element, corresponding to the ”range” of
the Rational Quadratic correlation structure, which must be greater than zero. If
nugget is TRUE, meaning that a nugget effect is present,value can contain one
or two elements, the first being the ”range” and the second the ”nugget effect”
(one minus the correlation between two observations taken arbitrarily close to-
gether); the first must be greater than zero and the second must be between zero
and one. Defaults tonumeric(0) , which results in a range of 90being assigned
to the parameters whenobject is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorRatio , also inheriting from classcorSpatial , represent-
ing a rational quadratic spatial correlation structure.

55

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
initialize.corStruct , dist

EXAMPLE

sp1 <- corRatio(form = ∼ x + y + z)

corSpatial Spatial Correlation Structure corSpatial

This function is a constructor for thecorSpatial class, representing a spatial
correlation structure. This class is ”virtual”, having four ”real” classes, corre-
sponding to specific spatial correlation structures, associated with it:corExp ,
corGaus , corLin , corRatio , andcorSpher . The returned object will inherit
from one of these ”real” classes, determined by thetype argument, and from
the ”virtual” corSpatial class. Objects created using this constructor need to
be later initialized using the appropriateinitialize method.

corSpatial(value, form, nugget, type, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget is
FALSE, value can have only one element, corresponding to the ”range” of the
spatial correlation structure, which must be greater than zero. Ifnugget is TRUE,
meaning that a nugget effect is present,value can contain one or two elements,
the first being the ”range” and the second the ”nugget effect” (one minus the
correlation between observations taken arbitrarily close together); the first must
be greater than zero and the second must be between zero and one. Defaults to
numeric(0) , which results in a range of 90% of the minimum distance and a
nugget ratio of 0.9 being assigned to the parameters whenobject is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

56

type: an optional character string specifying the desired type of correlation struc-
ture. Available types include"spherical" , "exponential" , "gaussian" ,
and "linear" . See the documentation on the functionscorSpher , corExp ,
corGaus , andcorLin for a description of these correlation structures. Partial
matching of arguments is used, so only the first character needs to be provided.
Defaults to"spherical" .

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of class determined by thetype argument and also inheriting from
classcorSpatial , representing a spatial correlation structure.

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
corExp , corGaus , corLin , corSpher , initialize.corStruct , dist

EXAMPLE

sp1 <- corSpatial(form = ∼ x + y + z, type = "g", metric = "man")

57

corSpher Spherical Correlation Structure corSpher

This function is a constructor for thecorSpher class, representing a spheri-
cal spatial correlation structure. Lettingd denote the range andn denote the
nugget effect, the correlation between two observations a distancer < d apart is
1−1.5(r/d)+0.5(r/d)3 when no nugget effect is present andn(1−1.5(r/d)+
0.5(r/d)3) when a nugget effect is assumed. Ifr ≥ d the correlation is zero. Ob-
jects created using this constructor must be later initialized using the appropriate
initialize method.

corSpher(value, form, nugget, metric, fixed)

ARGUMENTS

value: an optional vector with the parameter values in constrained form. Ifnugget is
FALSE, value can have only one element, corresponding to the ”range” of the
Spherical correlation structure, which must be greater than zero. Ifnugget is
TRUE, meaning that a nugget effect is present,value can contain one or two
elements, the first being the ”range” and the second the ”nugget effect” (one
minus the correlation between observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults tonumeric(0) , which results in a range of 90% of the minimum dis-
tance and a nugget ratio of 0.9 being assigned to the parameters whenobject

is initialized.

form: a one sided formula of the form∼S1+...+Sp , or∼S1+...+Sp | g , specify-
ing spatial covariatesS1 throughSp and, optionally, a grouping factorg. When a
grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget: an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

58

VALUE
an object of classcorSpher , also inheriting from classcorSpatial , represent-
ing a spherical spatial correlation structure.

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.
Littel, Milliken, Stroup, and Wolfinger (1996) ”SAS Systems for Mixed Mod-
els”, SAS Institute.

SEE ALSO
initialize.corStruct , dist

EXAMPLE

sp1 <- corSpher(form = ∼ x + y)

corStrat Stratified Correlation Structure corStrat

This function is a constructor for thecorStrat class, representing a set of corre-
lation structures corresponding to different strata, defined bystrata . Different
corStruct classes can be used for different strata. The number of coefficients
associated with this class is equal to the sum of the number of coefficients of
eachcorStruct object it includes. Objects created using this constructor must
later be initialized using the appropriateinitialize method.

corStrat(value, form, strata)

ARGUMENTS

value: acorStruct object, or a list ofcorStruct objects. If given as a single object,
it is repeated for all strata.

strata: a one-sided formula specifying the stratification variable for the differentcorStruct

objects represented byobject . Its right hand side must evaluate to a factor or
an integer.

form: an optional one sided formula of the form∼t , or ∼t | g , specifying a time
covariatet and, optionally, a grouping factorg. The same formula is used for
all corStruct represented inobject . When a grouping factor is present, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated.

VALUE
a corStrat object representing a set of correlation structures corresponding to
different strata.

SEE ALSO
initialize.corStruct

59

EXAMPLE

cs1 <- corStrat(corAR1(0.2, form = ∼ 1 | Subject), strata = ∼ Sex)
cs1 <- corStrat(list(Male = corAR1(), Female = corARMA(p=2)),

form = ∼ 1 | Subject, strata = ∼ Sex)

corSymm General Correlation Structure corSymm

This function is a constructor for thecorSymm class, representing a general cor-
relation structure. The internal representation of this structure, in terms of un-
constrained parameters, uses the spherical parametrization defined in Pinheiro
and Bates (1996). Objects created using this constructor must be later initialized
using the appropriateinitialize method.

corSymm(value, form, fixed)

ARGUMENTS

value: an optional vector with the parameter values. Default isnumeric(0) , which
results in a vector of zeros of appropriate dimension being assigned to the pa-
rameters whenobject is initialized (corresponding to an identity correlation
structure).

form: a one sided formula of the form∼t , or∼t | g , specifying a time covariatet
and, optionally, a grouping factorg. A covariate for this correlation structure
must such that its unique values form a sequence of consecutive integers. When
a grouping factor is present inform , the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to∼1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

fixed: an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial values. Defaults toFALSE,
in which case the coefficients are allowed to vary.

VALUE
an object of classcorSymm representing a general correlation structure.

REFERENCES
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.

SEE ALSO
initialize.corStruct

EXAMPLE

covariate is observation order and grouping factor is Subject
cs1 <- corSymm(form = ∼ 1 | Subject)

60

corSymmNat General Correlation in Natural Parameterization corSymmNat

This method function convertsobject to a corSymmNat object, represented
in a ”natural” parameterization. Ifunconstrained = TRUE , an unconstrained
parameterization based on the logit of the correlations (log((1 + r)/(1 − r)),
with r denoting the correlation) is used. Ifunconstrained is set toFALSE, the
(constrained) correlations are used to parameterize the returnedcorSymmNat

object. ThiscorStruct class does not define an unrestricted parameterization
and, thus, should NOT be used for optimization. It is mostly used for deriving
approximate confidence intervals on parameters following the optimization of an
objective function.

corSymmNat(object, unconstrained)

ARGUMENTS

object: an object inheriting from classcorSymm, representing a general correlation
structure, whose representation is to be converted to a natural parameterization.

unconstrained: an optional logical value indicating whether the natural parameteriza-
tion should be unconstrained. Defaults toTRUE.

VALUE
an object of classcorSymmNat representing a general correlation structure in
natural parameterization.

SEE ALSO
asNatural.corSymmNat , corSymm

EXAMPLE

cst1 <- corSymm(form = ∼ 1|Subject)
cst1 <- initialize(cst1, data = Orthodont)
corSymmNat(cst1)

61

covariate<- Assign Covariate Values covariate<-

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
all varFunc classes.

covariate(object) <- value

ARGUMENTS

object: any object with acovariate component.

value: a value to be assigned to the covariate associated withobject .

VALUE
will depend on the method function; see the appropriate documentation.

SEE ALSO
getCovariate

EXAMPLE

see the method function documentation

covariate<- .varFunc Assign varFunc Covariate covariate<- .varFunc

The covariate(s) used in the calculation of the weights of the variance function
represented byobject is (are) replaced byvalue . If object has been initial-
ized,value must have the same dimensions asgetCovariate(object) .

covariate(object) <- value

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

value: a value to be assigned to the covariate associated withobject .

VALUE
a varFunc object similar toobject , but with itscovariate attribute replaced
by value .

SEE ALSO
getCovariate.varFunc

EXAMPLE

vf1 <- varPower(1.1, form = ∼ age)
covariate(vf1) <- Orthodont[["age"]]

62

Dim Extract Dimensions from an Object Dim

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function in-
clude: corSpatial , corStruct , pdCompSymm, pdDiag , pdIdent , pdMat ,
andpdSymm.

Dim(object, ...)

ARGUMENTS

object: any object for which dimensions can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

NOTE
If dim allowed more than one argument, there would be no need for this generic
function.

SEE ALSO
Dim.pdMat , Dim.corStruct

EXAMPLE

see the method function documentation

Dim.corSpatial Dimensions of a corSpatial Object Dim.corSpatial

if groups is missing, it returns theDim attribute ofobject ; otherwise, calcu-
lates the dimensions associated with the grouping factor.

Dim(object, groups)

ARGUMENTS

object: an object inheriting from classcorSpatial , representing a spatial correlation
structure.

groups: an optional factor defining the grouping of the observations; observations within
a group are correlated and observations in different groups are uncorrelated.

VALUE
a list with components:

N: length ofgroups

63

M: number of groups

spClass: an integer representing the spatial correlation class; 0 = user defined class, 1 =
corSpher , 2 = corExp , 3 = corGaus , 4 = corLin

sumLenSq: sum of the squares of the number of observations per group

len: an integer vector with the number of observations per group

start: an integer vector with the starting position for the distance vectors in each group,
beginning from zero

SEE ALSO
Dim, Dim.corStruct

EXAMPLE

Dim(corGaus(), getGroups(Orthodont))

Dim.corStruct Dimensions of a corStruct Object Dim.corStruct

if groups is missing, it returns theDim attribute ofobject ; otherwise, calcu-
lates the dimensions associated with the grouping factor.

Dim(object, groups)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

groups: an optional factor defining the grouping of the observations; observations within
a group are correlated and observations in different groups are uncorrelated.

VALUE
a list with components:

N: length ofgroups

M: number of groups

maxLen: maximum number of observations in a group

sumLenSq: sum of the squares of the number of observations per group

len: an integer vector with the number of observations per group

start: an integer vector with the starting position for the observations in each group,
beginning from zero

SEE ALSO
Dim, Dim.corSpatial

64

EXAMPLE

Dim(corAR1(), getGroups(Orthodont))

Dim.pdMat Dimensions of a pdMat Object Dim.pdMat

This method function returns the dimensions of the matrix represented byob-

ject .

Dim(object)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive-definite matrix.

VALUE
an integer vector with the number of rows and columns of the matrix represented
by object .

SEE ALSO
Dim

EXAMPLE

Dim(pdSymm(diag(3)))

fitted.gls Extract gls Fitted Values fitted.gls

The fitted values for the linear model represented byobject are extracted.

fitted(object)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

VALUE
a vector with the fitted values for the linear model represented byobject .

SEE ALSO
gls , residuals.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

fitted(fm1)

65

fitted.glsStruct Calculate glsStruct Fitted Values fitted.glsStruct

The fitted values for the linear model represented byobject are extracted.

fitted(object, glsFit)

ARGUMENTS

object: an object inheriting from classglsStruct , representing a list of linear model
components, such ascorStruct andvarFunc objects.

glsFit: an optional list with componentslogLik (log-likelihood),beta (coefficients),
sigma (standard deviation for error term),varBeta (coefficients’ covariance
matrix),fitted (fitted values), andresiduals (residuals). Defaults toattr(object,

"glsFit") .

VALUE
a vector with the fitted values for the linear model represented byobject .

NOTE
This method function is primarily used insidegls andfitted.gls .

SEE ALSO
gls , fitted.gls , residuals.glsStruct

fitted.gnls Extract gnls Fitted Values fitted.gnls

The fitted values for the nonlinear model represented byobject are extracted.

fitted(object)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

VALUE
a vector with the fitted values for the nonlinear model represented byobject .

SEE ALSO
gnls , residuals.gnls

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

fitted(fm1)

66

fitted.gnlsStruct Calculate gnlsStruct Fitted Values fitted.gnlsStruct

The fitted values for the nonlinear model represented byobject are extracted.

fitted(object)

ARGUMENTS

object: an object inheriting from classgnlsStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

VALUE
a vector with the fitted values for the nonlinear model represented byobject .

NOTE
This method function is primarily used insidegnls andfitted.gnls .

SEE ALSO
gnls , fitted.gnls , residuals.gnlsStruct

fitted.lmList Extract lmList Fitted Values fitted.lmList

The fitted values are extracted from eachlm component ofobject and arranged
into a list with as many components asobject , or combined into a single vector.

fitted(object, subset, asList)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

subset: an optional character or integer vector naming thelm components ofobject

from which the fitted values are to be extracted. Default isNULL, in which case
all components are used.

asList: an optional logical value. IfTRUE, the returned object is a list with the fitted
values split by groups; else the returned value is a vector. Defaults toFALSE.

VALUE
a list with components given by the fitted values of eachlm component ofob-

ject , or a vector with the fitted values for alllm components ofobject .

SEE ALSO
lmList , residuals.lmList

67

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
fitted(fm1)

fitted.lmList Extract lmList Fitted Values fitted.lmList

The fitted values are extracted from eachlm component ofobject and arranged
into a list with as many components asobject , or combined into a single vector.

fitted(object, subset, asList)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

subset: an optional character or integer vector naming thelm components ofobject

from which the fitted values are to be extracted. Default isNULL, in which case
all components are used.

asList: an optional logical value. IfTRUE, the returned object is a list with the fitted
values split by groups; else the returned value is a vector. Defaults toFALSE.

VALUE
a list with components given by the fitted values of eachlm component ofob-

ject , or a vector with the fitted values for alllm components ofobject .

SEE ALSO
lmList , residuals.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age, Orthodont, groups = ∼ Subject)
fitted(fm1)

68

fitted.lme Extract lme Fitted Values fitted.lme

The fitted values at level i are obtained by adding together the population fitted
values (based only on the fixed effects estimates) and the estimated contributions
of the random effects to the fitted values at grouping levels less or equal to i. The
resulting values estimate the best linear unbiased predictions (BLUPs) at level i.

fitted(object, level, asList)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values fromobject . Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

asList: an optional logical value. IfTRUEand a single value is given inlevel , the re-
turned object is a list with the fitted values split by groups; else the returned value
is either a vector or a data frame, according to the length oflevel . Defaults to
FALSE.

VALUE
if a single level of grouping is specified inlevel , the returned value is either
a list with the fitted values split by groups (asList = TRUE) or a vector with
the fitted values (asList = FALSE); else, when multiple grouping levels are
specified inlevel , the returned object is a data frame with columns given by
the fitted values at different levels and the grouping factors.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at
http://nlme.stat.wisc.edu

SEE ALSO
lme , residuals.lme

EXAMPLE

fm1 <- lme(distance ∼ age + Sex, data = Orthodont, random = ∼ 1)
fitted(fm1, level = 0:1)

69

fitted.lmeStruct Calculate lmeStruct Fitted Values fitted.lmeStruct

The fitted values at level i are obtained by adding together the population fitted
values (based only on the fixed effects estimates) and the estimated contributions
of the random effects to the fitted values at grouping levels less or equal to i. The
resulting values estimate the best linear unbiased predictions (BLUPs) at level i.

fitted(object, levels, lmeFit, conLin)

ARGUMENTS

object: an object inheriting from classlmeStruct , representing a list of linear mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values fromobject . Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

lmeFit: an optional list with componentsbeta andb containing respectively the fixed
effects estimates and the random effects estimates to be used to calculate the
fitted values. Defaults toattr(object, "lmeFit") .

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying lme
model. Defaults toattr(object, "conLin") .

VALUE
if a single level of grouping is specified inlevel , the returned value is a vector
with the fitted values at the desired level; else, when multiple grouping levels are
specified inlevel , the returned object is a matrix with columns given by the
fitted values at different levels.

NOTE
This method function is primarily used insidelme andfitted.lme .

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
lme , fitted.lme , residuals.lmeStruct

70

fitted.nlmeStruct Calculate nlmeStruct Fitted Values fitted.nlmeStruct

The fitted values at level i are obtained by adding together the contributions from
the estimated fixed effects and the estimated random effects at levels less or equal
to i and evaluating the model function at the resulting estimated parameters. The
resulting values estimate the predictions at level i.

fitted(object, levels, nlmeFit, conLin)

ARGUMENTS

object: an object inheriting from classnlmeStruct , representing a list of mixed-effects
model components, such asreStruct , corStruct , andvarFunc objects, plus
attributes specifying the underlying nonlinear model and the response variable.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values fromobject . Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying nlme
model. Defaults toattr(object, "conLin") .

VALUE
if a single level of grouping is specified inlevel , the returned value is a vector
with the fitted values at the desired level; else, when multiple grouping levels are
specified inlevel , the returned object is a matrix with columns given by the
fitted values at different levels.

NOTE
This method function is primarily used insidenlme andfitted.nlme

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
nlme , fitted.nlme , residuals.nlmeStruct

71

fixed.effects Extract Fixed Effects fixed.effects

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
lmList andlme .

fixed.effects(object, ...)
fixef(object, ...)

ARGUMENTS

object: any fitted model object from which fixed effects estimates can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
fixef.lmList ,fixef.lme

EXAMPLE

see the method function documentation

fixef Extract Fixed Effects fixef

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
lmList andlme .

fixef(object, ...)
fixed.effects(object, ...)

ARGUMENTS

object: any fitted model object from which fixed effects estimates can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
fixef.lmList ,fixef.lme

EXAMPLE

see the method function documentation

72

fixef.lmList Extract lmList Fixed Effects fixef.lmList

The average of the coefficients corresponding to thelm components ofobject

is calculated.

fixef(object)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

VALUE
a vector with the average of the individuallm coefficients inobject .

SEE ALSO
lmList , ranef.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
fixef(fm1)

fixef.lme Extract lme Fixed Effects fixef.lme

The fixed effects estimates corresponding to the linear mixed-effects model rep-
resented byobject are returned.

fixef(object)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

VALUE
a vector with the fixed effects estimates corresponding toobject .

SEE ALSO
coef.lme , ranef.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
fixef(fm1)

73

formula.corStruct Extract corStruct Formula formula.corStruct

This method function extracts the formula associated with acorStruct object,
in which the covariate and the grouping factor, if any is present, are defined.

formula(object)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure.

VALUE
an object of classformula specifying the covariate and the grouping factor, if
any is present, associated withobject .

SEE ALSO
formula

EXAMPLE

cs1 <- corCAR1(form = ∼ Time | Mare)
formula(cs1)

formula.gls Extract gls Formula formula.gls

This method function extracts the linear model formula associated withobject .

formula(object)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

VALUE
a two-sided linear formula specifying the linear model used to obtainobject .

SEE ALSO
gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

formula(fm1)

74

formula.gnls Extract gnls Object Formula formula.gnls

This method function extracts the nonlinear model formula associated withob-

ject .

formula(object)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

VALUE
a two-sided formula specifying the nonlinear model used to obtainobject .

SEE ALSO
gnls

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

formula(fm1)

formula.groupedData Extract groupedData Formula formula.groupedData

This method function extracts the display formula associated with agrouped-

Data object. This is a two-sided formula of the formresp ∼cov | group ,
where resp is the response,cov is the primary covariate, andgroup is the
grouping structure.

formula(object)

ARGUMENTS

object: an object inheriting from classgroupedData .

VALUE
a two-sided formula with a conditioning expression, representing the display
formula forobject .

SEE ALSO
groupedData

EXAMPLE

formula(Orthodont)

75

formula.lmList Extract lmList Object Formula formula.lmList

This method function extracts the common linear model formula associated with
eachlm component ofobject .

formula(object)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

VALUE
a two-sided linear formula specifying the linear model used to obtain thelm

components ofobject .

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
formula(fm1)

formula.lme Extract lme Formula formula.lme

This method function extracts the fixed effects model formula associated with
object .

formula(object)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

VALUE
a two-sided linear formula specifying the fixed effects model used to obtainob-

ject .

SEE ALSO
lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
formula(fm1)

76

formula.modelStruct Extract modelStructFormula formula.modelStruct

This method function extracts a formula from each of the components ofob-

ject , returning a list of formulas.

formula(object)

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

VALUE
a list with the formulas of each component ofobject .

SEE ALSO
formula

EXAMPLE

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ∼ age)),
corStruct = corAR1(0.3))

formula(lms1)

formula.nlme Extract nlme Object Formula formula.nlme

This method function extracts the nonlinear model formula associated withob-

ject .

formula(object)

ARGUMENTS

object: an object inheriting from classnlme , representing a fitted nonlinear mixed-
effects model.

VALUE
a two-sided nonlinear formula specifying the model used to obtainobject .

SEE ALSO
nlme

EXAMPLE

fm1 <- nlme(weight ∼ SSlogis(Time, Asym, xmid, scal),
data = Soybean, fixed = Asym + xmid + scal ∼ 1,
start = c(18, 52, 7.5))

formula(fm1)

77

formula.nlsList Extract nlsList Object Formula formula.nlsList

This method function extracts the common nonlinear model formula associated
with eachnls component ofobject .

formula(object)

ARGUMENTS

object: an object inheriting from classnlsList , representing a list ofnls objects with
a common model.

VALUE
a two-sided nonlinear formula specifying the model used to obtain thenls com-
ponents ofobject .

SEE ALSO
nlsList

EXAMPLE

fm1 <- nlsList(weight ∼ SSlogis(Time, Asym, xmid, scal)|Plot,
data=Soybean)

formula(fm1)

formula.nls Extract Model Formula from nls Object formula.nls

Returns the model used to fitobject .

formula(object)

ARGUMENTS

object: an object inheriting from classnls , representing a non-linear least squares fit.

VALUE
a formula representing the model used to obtainobject .

SEE ALSO
nls , formula

EXAMPLE

fm1 <- nls(circumference ∼ A/(1+exp((B-age)/C)), Orange,
start = list(A=160, B=700, C = 350))

formula(fm1)

78

formula.pdBlocked Extract pdBlocked Formula formula.pdBlocked

The formula attributes of thepdMat elements ofobject are extracted and re-
turned as a list, in caseasList=TRUE , or converted to a single one-sided formula
whenasList=FALSE . If the pdMat elements do not have aformula attribute,
a NULLvalue is returned.

formula(object, asList)

ARGUMENTS

object: an object inheriting from classpdBlocked , representing a positive definite
block diagonal matrix.

asList: an optional logical value. IfTRUE, a list with the formulas for the individual
block diagonal elements ofobject is returned; else, ifFALSE, a one-sided for-
mula combining all individual formulas is returned. Defaults toFALSE.

VALUE
a list of one-sided formulas, or a single one-sided formula, orNULL.

SEE ALSO
pdBlocked , pdMat

EXAMPLE

pd1 <- pdBlocked(list(∼ age, ∼ Sex - 1))
formula(pd1)
formula(pd1, asList = TRUE)

formula.pdMat Extract pdMat Formula formula.pdMat

This method function extracts the formula associated with apdMat object, in
which the column and row names are specified.

formula(object)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

VALUE
if object has aformula attribute, its value is returned, elseNULL is returned.

NOTE
Because factors may be present informula(object) , thepdMat object needs
to have access to a data frame where the variables named in the formula can be
evaluated, before it can resolve its row and column names from the formula.

SEE ALSO
pdMat

79

EXAMPLE

pd1 <- pdSymm(∼ Sex*age)
formula(pd1)

formula.reStruct Extract reStruct Formula formula.reStruct

This method function extracts a formula from each of the components ofob-

ject , returning a list of formulas.

formula(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a list with the formulas of each component ofobject .

SEE ALSO
formula

EXAMPLE

rs1 <- reStruct(list(A = pdDiag(diag(2), ∼ age), B = ∼ 1))
formula(rs1)

formula.varFunc Extract varFunc Formula formula.varFunc

This method function extracts the formula associated with avarFunc object, in
which covariates and grouping factors are specified.

formula(object)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

VALUE
if object has aformula attribute, its value is returned; elseNULL is returned.

EXAMPLE

formula(varPower(form = ∼ fitted(.) | Sex))

80

gapply Apply a Function by Groups gapply

Applies the function to the distinct sets of rows of the data frame defined by
groups .

gapply(object, which, FUN, form, level, groups, ...)

ARGUMENTS

object: an object to which the function will be applied - usually agroupedData object
or adata.frame .

which: an optional character or positive integer vector specifying which columns ofob-

ject should be used withFUN. Defaults to all columns inobject .

FUN: function to apply to the distinct sets of rows of the data frameobject defined
by the values ofgroups .

form: an optional one-sided formula that defines the groups. When this formula is
given the right-hand side is evaluated inobject , converted to a factor if nec-
essary, and the unique levels are used to define the groups. Defaults tofor-

mula(object) .

level: an optional positive integer giving the level of grouping to be used in an object
with multiple nested grouping levels. Defaults to the highest or innermost level
of grouping.

groups: an optional factor that will be used to split the rows into groups. Defaults to
getGroups(object, form, level) .

...: optional additional arguments to the summary functionFUN. Often it is helpful
to specifyna.rm = TRUE .

VALUE
Returns a data frame with as many rows as there are levels in thegroups argu-
ment.

SEE ALSO
gsummary

EXAMPLE

Find number of non-missing "conc" observations for each Subject
gapply(Quinidine, FUN = function(x) sum(!is.na(x$conc)))

81

getCovariate Extract Covariate from an Object getCovariate

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
corStruct , corSpatial , data.frame , andvarFunc .

getCovariate(object, form, data)

ARGUMENTS

object: any object with acovariate component

form: an optional one-sided formula specifying the covariate(s) to be extracted. De-
faults toformula(object) .

data: a data frame in which to evaluate the variables defined inform .

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
getCovariate.corStruct , getCovariate.data.frame , getCovariate.varFunc ,
getCovariateFormula

EXAMPLE

see the method function documentation

getCovariate.corStruct corStruct Covariate getCovariate.corStruct

This method function extracts the covariate(s) associated withobject .

getCovariate(object, form, data)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure.

form: this argument is included to make the method function compatible with the
generic. It will be assigned the value offormula(object) and should not
be modified.

data: an optional data frame in which to evaluate the variables defined inform , in case
object is not initialized and the covariate needs to be evaluated.

VALUE
when the correlation structure does not include a grouping factor, the returned
value will be a vector or a matrix with the covariate(s) associated withobject .
If a grouping factor is present, the returned value will be a list of vectors or
matrices with the covariate(s) corresponding to each grouping level.

SEE ALSO
getCovariate

82

EXAMPLE

cs1 <- corAR1(form = ∼ 1 | Subject)
getCovariate(cs1, data = Orthodont)

getCovariate.data.frame Data Frame Covariate getCovariate.data.frame

The right hand side ofform , stripped of any conditioning expression (i.e. an
expression following a| operator), is evaluated inobject .

getCovariate(object, form)

ARGUMENTS

object: an object inheriting from classdata.frame .

form: an optional formula specifying the covariate to be evaluated inobject . Defaults
to formula(object) .

VALUE
the value of the right hand side ofform , stripped of any conditional expression,
evaluated inobject .

SEE ALSO
getCovariateFormula

EXAMPLE

getCovariate(Orthodont)

getCovariate.varFunc Extract varFunc Covariate getCovariate.varFunc

This method function extracts the covariate(s) associated with the variance func-
tion represented byobject , if any is present.

getCovariate(object)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

VALUE
if object has acovariate attribute, its value is returned; elseNULLis returned.

SEE ALSO
covariate<-.varFunc

83

EXAMPLE

vf1 <- varPower(1.1, form = ∼ age)
covariate(vf1) <- Orthodont[["age"]]
getCovariate(vf1)

getCovariateFormula Extract Covariates Formula getCovariateFormula

The right hand side offormula(object) , without any conditioning expres-
sions (i.e. any expressions after a| operator) is returned as a one-sided formula.

getCovariateFormula(object)

ARGUMENTS

object: any object from which a formula can be extracted.

VALUE
a one-sided formula describing the covariates associated withformula(object) .

SEE ALSO
getCovariate

EXAMPLE

getCovariateFormula(y ∼ x | g)
getCovariateFormula(y ∼ x)

getData Extract Data from an Object getData

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
gls , lme , andlmList .

getData(object)

ARGUMENTS

object: an object from which a data.frame can be extracted, generally a fitted model
object.

VALUE
will depend on the method function used; see the appropriate documentation.

EXAMPLE

see the method function documentation

84

getData.gls Extract gls Object Data getData.gls

If present in the calling sequence used to produceobject , the data frame used
to fit the model is obtained.

getData(object)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

VALUE
if a data argument is present in the calling sequence that producedobject , the
corresponding data frame (withna.action andsubset applied to it, if also
present in the call that producedobject) is returned; else,NULL is returned.

SEE ALSO
gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

getData(fm1)

getData.lmList Extract lmList Object Data getData.lmList

If present in the calling sequence used to produceobject , the data frame used
to fit the model is obtained.

getData(object)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

VALUE
if a data argument is present in the calling sequence that producedobject , the
corresponding data frame (withna.action andsubset applied to it, if also
present in the call that producedobject) is returned; else,NULL is returned.

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
getData(fm1)

85

getData.lme Extract lme Object Data getData.lme

If present in the calling sequence used to produceobject , the data frame used
to fit the model is obtained.

getData(object)

ARGUMENTS

object: an object inheriting from classlme , representing a linear mixed-effects fitted
model.

VALUE
if a data argument is present in the calling sequence that producedobject , the
corresponding data frame (withna.action andsubset applied to it, if also
present in the call that producedobject) is returned; else,NULL is returned.

SEE ALSO
lme

EXAMPLE

fm1 <- lme(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
random = ∼ sin(2*pi*Time))

getData(fm1)

getGroups Extract Grouping Factors from an Object getGroups

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
corStruct , data.frame , gls , lme , lmList , andvarFunc .

getGroups(object, form, level, data)

ARGUMENTS

object: any object

form: an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the| operator). Defaults toformula(object) .

level: a positive integer vector with the level(s) of grouping to be used when multi-
ple nested levels of grouping are present. This argument is optional for most
methods of this generic function and defaults to all levels of nesting.

data: a data frame in which to interpret the variables named inform . Optional for
most methods.

86

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
getGroupsFormula , getGroups.data.frame , getGroups.gls , getGroups.lmList ,
getGroups.lme

EXAMPLE

see the method function documentation

getGroups.corStruct Extract corStruct Groups getGroups.corStruct

This method function extracts the grouping factor associated withobject , if
any is present.

getGroups(object, form, data, level)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure.

form: this argument is included to make the method function compatible with the
generic. It will be assigned the value offormula(object) and should not
be modified.

data: an optional data frame in which to evaluate the variables defined inform , in case
object is not initialized and the grouping factor needs to be evaluated.

level: this argument is included to make the method function compatible with the
generic and is not used.

VALUE
if a grouping factor is present in the correlation structure represented byobject ,
the function returns the corresponding factor vector; else the function returns
NULL.

SEE ALSO
getGroups

EXAMPLE

cs1 <- corAR1(form = ∼ 1 | Subject)
getGroups(cs1, data = Orthodont)

87

getGroups.data.frame Groups from Data Frame getGroups.data.frame

Each variable named in the expression after the| operator on the right hand side
of form is evaluated inobject . If more than one variable is indicated inlevel

they are combined into a data frame; else the selected variable is returned as a
vector. When multiple grouping levels are defined inform andlevel > 1 , the
levels of the returned factor are obtained by pasting together the levels of the
grouping factors of level greater or equal tolevel , to ensure their uniqueness.

getGroups(object, form, level)

ARGUMENTS

object: an object inheriting from classdata.frame .

form: an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the| operator). Defaults toformula(object) .

level: a positive integer vector with the level(s) of grouping to be used when multiple
nested levels of grouping are present. Defaults to all levels of nesting.

VALUE
either a data frame with columns given by the grouping factors indicated in
level , from outer to inner, or, when a single level is requested, a factor rep-
resenting the selected grouping factor.

SEE ALSO
getGroupsFormula

EXAMPLE

getGroups(Pixel)
getGroups(Pixel, level = 2)

88

getGroups.gls Extract gls Object Groups getGroups.gls

If present, the grouping factor associated to the correlation structure for the linear
model represented byobject is extracted.

getGroups(object)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

VALUE
if the linear model represented byobject incorporates a correlation structure
and the correspondingcorStruct object has a grouping factor, a vector with
the group values is returned; else,NULL is returned.

SEE ALSO
gls , corClasses

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

getGroups(fm1)

getGroups.lmList Extract lmList Object Groups getGroups.lmList

The grouping factor determining the partitioning of the observations used to pro-
duce thelm components ofobject is extracted.

getGroups(object)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

VALUE
a vector with the grouping factor corresponding to thelm components ofob-

ject .

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
getGroups(fm1)

89

getGroups.lme Extract lme Object Groups getGroups.lme

The grouping factors corresponding to the linear mixed-effects model repre-
sented byobject are extracted. If more than one level is indicated inlevel , the
corresponding grouping factors are combined into a data frame; else the selected
grouping factor is returned as a vector.

getGroups(object, form, level)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

form: this argument is included to make the method function compatible with the
generic and is ignored in this method.

level: an optional integer vector giving the level(s) of grouping to be extracted from
object . Defaults to the highest or innermost level of grouping.

VALUE
either a data frame with columns given by the grouping factors indicated in
level , or, when a single level is requested, a factor representing the selected
grouping factor.

SEE ALSO
lme

EXAMPLE

fm1 <- lme(pixel ∼ day + dayˆ2, Pixel,
random = list(Dog = ∼ day, Side = ∼ 1))

getGroups(fm1, level = 1:2)

getGroups.varFunc Extract varFunc Groups getGroups.varFunc

This method function extracts the grouping factor associated with the variance
function represented byobject , if any is present.

getGroups(object)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

VALUE
if object has agroups attribute, its value is returned; elseNULL is returned.

90

EXAMPLE

vf1 <- varPower(form = ∼ age | Sex)
vf1 <- initialize(vf1, Orthodont)
getGroups(vf1)

getGroupsFormula Extract Grouping Formula getGroupsFormula

The conditioning expression associated withformula(object) (i.e. an expres-
sion after the| operator) is returned either as a named list of one-sided formulas,
or a single one-sided formula, depending on the value ofasList . The compo-
nents of the returned list are ordered from outermost to innermost level and are
named after the grouping factor expression.

getGroupsFormula(object, asList)

ARGUMENTS

object: any object from which a formula can be extracted.

asList: an optional logical value. IfTRUEthe returned value with be a list of formulas;
else, ifFALSEthe returned value will be a one-sided formula. Defaults toFALSE.

VALUE
a one-sided formula, or a list of one-sided formulas, with the grouping structure
associated withformula(object) . If no conditioning expression is present in
formula(object) a NULLvalue is returned.

SEE ALSO
getGroupsFormula.gls , getGroupsFormula.lmList , getGroupsFormula.lme ,
getGroupsFormula.reStruct , getGroups

EXAMPLE

getGroupsFormula(y ∼ x | g1/g2)

91

getGroupsFormula.gls gls Grouping Formula getGroupsFormula.gls

If present, the grouping formula associated with the correlation structure (corStruct)
of object is returned either as a named list with a single one-sided formula, or
a single one-sided formula, depending on the value ofasList . If object does
not include a correlation structure, or if the correlation structure does not include
groups,NULL is returned.

getGroupsFormula(object, asList)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

asList: an optional logical value. IfTRUEthe returned value with be a list of formulas;
else, ifFALSEthe returned value will be a one-sided formula. Defaults toFALSE.

VALUE
if a correlation structure with groups is included inobject , a one-sided for-
mula, or a list with a single one-sided formula, with the corresponding grouping
structure, elseNULL.

SEE ALSO
corClasses , getGroups.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

getGroupsFormula(fm1)

92

getGroupsFormula.lmList lmList Grouping Formula getGroupsFormula.lmList

A formula representing the grouping factor determining the partitioning of the
observations used to produce thelm components ofobject is obtained and
returned as a list with a single component, or as a one-sided formula.

getGroupsFormula(object, asList)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

asList: an optional logical value. IfTRUEthe returned value with be a list of formulas;
else, ifFALSEthe returned value will be a one-sided formula. Defaults toFALSE.

VALUE
a one-sided formula, or a list with a single one-sided formula, representing the
grouping factor corresponding to thelm components ofobject .

SEE ALSO
lmList , getGroups.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
getGroupsFormula(fm1)

getGroupsFormula.lme lme Grouping Formula getGroupsFormula.lme

The grouping formula associated with the random effects structure (reStruct)
of object is returned either as a named list of one-sided formulas, or a single
one-sided formula, depending on the value ofasList . The components of the
returned list are ordered from outermost to innermost level and are named after
the grouping factor expression.

getGroupsFormula(object, asList)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

asList: an optional logical value. IfTRUEthe returned value with be a list of formulas;
else, ifFALSEthe returned value will be a one-sided formula. Defaults toFALSE.

VALUE
a one-sided formula, or a list of one-sided formulas, with the grouping structure
associated with the random effects structure ofobject .

SEE ALSO
reStruct , getGroups.lme

93

EXAMPLE

fm1 <- lme(distance ∼ age + Sex, data = Orthodont, random = ∼ 1)
getGroupsFormula(fm1)

getGroupsFormula.reStruct reStruct Grouping FormulagetGroupsFormula.reStruct

The names of theobject components are used to construct a one-sided formula,
or a named list of formulas, depending on the value ofasList . The components
of the returned list are ordered from outermost to innermost level.

getGroupsFormula(object, asList)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

asList: an optional logical value. IfTRUEthe returned value with be a list of formulas;
else, ifFALSEthe returned value will be a one-sided formula. Defaults toFALSE.

VALUE
a one-sided formula, or a list of one-sided formulas, with the grouping structure
associated withobject .

SEE ALSO
reStruct , getGroups

EXAMPLE

rs1 <- reStruct(list(A = pdDiag(diag(2), ∼ age), B = ∼ 1))
getGroupsFormula(rs1)

94

getInitial Get Initial Parameter Estimates getInitial

This function evaluates initial parameter estimates for a nonlinear regression
model. If data is a parameterized data frame orpframe object, itsparame-

ters attribute is returned. Otherwise the object is examined to see if it contains
a call to aselfStart object whoseinitial attribute can be evaluated.

getInitial(object, data, ...)

ARGUMENTS

object: a formula or aselfStart model that defines a nonlinear regression model

data: a data frame in which the expressions in the formula or arguments to theself-

Start model can be evaluated

...: optional additional arguments

VALUE
A named numeric vector or list of starting estimates for the parameters. The
construction of manyselfStart models is such that these ”starting” estimates
are, in fact, the converged parameter estimates.

SEE ALSO
nls , nlsList , selfStart , selfStart.default , selfStart.formula

EXAMPLE

PurTrt <- Puromycin[Puromycin$state == "treated",]
getInitial(vel ∼ SSmicmen(conc, Vm, K), PurTrt)

getResponse Extract Response Variable from an Object getResponse

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
data.frame , gls , lme , andlmList .

getResponse(object, form, data)

ARGUMENTS

object: any object

form: an optional two-sided formula. Defaults toformula(object) .

data: a data frame in which to interpret the variables named inform . Optional for
most methods.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
getResponseFormula

95

EXAMPLE

see the method function documentation

getResponse.data.frame Response from Data Frame getResponse.data.frame

The left hand side ofform is evaluated inobject .

getResponse(object, form)

ARGUMENTS

object: an object inheriting from classdata.frame .

form: an optional formula specifying the response to be evaluated inobject . Defaults
to formula(object) .

VALUE
the value of the left hand side ofform evaluated inobject .

SEE ALSO
getResponseFormula

EXAMPLE

getResponse(Orthodont)

getResponse.gls Extract gls Object Response getResponse.gls

This method function extracts the response variable used in fitting the linear
model corresponding toobject .

getResponse(object)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

VALUE
a vector with the response variable corresponding to the linear model represented
by object .

SEE ALSO
gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

getResponse(fm1)

96

getResponse.lmList Extract lmList Object Response getResponse.lmList

The response vectors from each of thelm components ofobject are extracted
and combined into a single vector.

getResponse(object)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

VALUE
a vector with the response vectors corresponding to thelm components ofob-

ject .

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
getResponse(fm1)

getResponse.lme Extract lme Object Response getResponse.lme

This method function extracts the response variable used in fitting the linear
mixed-effects model corresponding toobject .

getResponse(object)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

VALUE
a vector with the response variable corresponding to the linear mixed-effects
model represented byobject .

SEE ALSO
lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
getResponse(fm1)

97

getResponseFormula Response Formula getResponseFormula

The left hand side offormula(object) is returned as a one-sided formula.

getResponseFormula(object)

ARGUMENTS

object: any object from which a formula can be extracted.

VALUE
a one-sided formula with the response variable associated withformula(object) .

SEE ALSO
getResponse

EXAMPLE

getResponseFormula(y ∼ x | g)

getStrata Extract Stratification Variable getStrata

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
data.frame .

getStrata(object, ...)

ARGUMENTS

object: any object

...: some methods for this generic function may require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
getStrataFormula , getStrata.data.frame

EXAMPLE

see the method function documentation

98

getStrata.data.frame Extract Strata from a Data Frame getStrata.data.frame

The right hand side ofform , or of each element ofform , when given as a list, is
evaluated indata and must result in a factor, or an integer vector. In the latter
case, the unique elements of the stratification variable, when sorted, must form
a sequence of consecutive integers.

getStrata(object, form)

ARGUMENTS

object: an object inheriting from classdata.frame .

form: a one-sided formula specifying an stratification variable, or a list of one-sided
formulas specifying stratification variables.

VALUE
either an integer vector with values ranging from zero to the number of strata
minus one, or, whenform is given as a list, a list of such integer vectors.

SEE ALSO
getStrataFormula

EXAMPLE

getStrata(Orthodont, ∼ Sex)
getStrata(Pixel, list(∼ Dog, ∼ Side))

getStrataFormula Extract Stratification Formula getStrataFormula

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
corStruct , pdMat andreStruct .

getStrataFormula(object, ...)

ARGUMENTS

object: any object from which a formula representing a stratification variable can be
extracted.

...: some methods for this generic function may require additional arguments.

VALUE
a one-sided formula with the stratification variable associated withobject . For
most methods, if no stratification variable is present, aNULLvalue is returned.

SEE ALSO
corStrat , pdStrat

99

EXAMPLE

pd1 <- pdStrat(∼ age, data = Orthodont, strata = ∼ Sex)
getStrataFormula(pd1)

gls Fit Linear Model Using Generalized Least Squares gls

This function fits a linear model using generalized least squares. The errors are
allowed to be correlated and/or have unequal variances.

gls(model, data, correlation, weights, subset, method, na.action,
control, verbose)

ARGUMENTS

model: a two-sided linear formula object describing the model, with the response on the
left of a∼ operator and the terms, separated by+ operators, on the right.

data: an optional data frame containing the variables named inmodel , correlation ,
weights , andsubset . By default the variables are taken from the environment
from whichgls is called.

correlation: an optionalcorStruct object describing the within-group correlation
structure. See the documentation ofcorClasses for a description of the avail-
ablecorStruct classes. If a grouping variable is to be used, it must be specified
in the form argument to thecorStruct constructor. Defaults toNULL, corre-
sponding to uncorrelated errors.

weights: an optionalvarFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed , corresponding to fixed variance weights. See the documentation
on varClasses for a description of the availablevarFunc classes. Defaults to
NULL, corresponding to homocesdatic errors.

subset: an optional expression indicating the subset of the rows ofdata that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method: a character string. If"REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to"REML" .

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causesgls to print an error message and terminate if
there are any incomplete observations.

control: a list of control values for the estimation algorithm to replace the default values
returned by the functionglsControl . Defaults to an empty list.

100

verbose: an optional logical value. IfTRUEinformation on the evolution of the iterative
algorithm is printed. Default isFALSE.

VALUE
an object of classgls representing the linear model fit. Generic functions such
asprint , plot , andsummary have methods to show the results of the fit. See
glsObject for the components of the fit. The functionsresid , coef , and
fitted can be used to extract some of its components.

REFERENCES
The different correlation structures available for thecorrelation argument are
described in Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C.,
Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996), and Venables, W.N.
and Ripley, B.D. (1997). The use of variance functions for linear and nonlinear
models is presented in detail in Carrol, R.J. and Ruppert, D. (1988) and David-
ian, M. and Giltinan, D.M. (1995).
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Carrol, R.J. and Ruppert, D. (1988) ”Transformation and Weighting in Regres-
sion”, Chapman and Hall.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
glsControl , glsObject , corClasses , varClasses , corClasses , var-

Classes

EXAMPLE

AR(1) errors within each Mare
fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ∼ 1 | Mare))
variance increases as a power of the absolute fitted values
fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

weights = varPower())

101

glsControl Control Values for gls Fit glsControl

The values supplied in the function call replace the defaults and a list with all
possible arguments is returned. The returned list is used as thecontrol argu-
ment to thegls function.

glsControl(maxIter, msMaxIter, tolerance, msTol, msScale,
msVerbose, singular.ok, qrTol, returnObject,
apVar, .relStep, natural, natUnconstrained, sigma)

ARGUMENTS

maxIter: maximum number of iterations for thegls optimization algorithm. Default is
50.

msMaxIter: maximum number of iterations for thems optimization step inside thegls

optimization. Default is 50.

tolerance: tolerance for the convergence criterion in thegls algorithm. Default is 1e-6.

msTol: tolerance for the convergence criterion inms, passed as therel.tolerance

argument to the function (see documentation onms). Default is 1e-7.

msScale: scale function passed as thescale argument to thems function (see documen-
tation on that function). Default islmeScale .

msVerbose: a logical value passed as thetrace argument toms (see documentation on
that function). Default isFALSE.

singular.ok: a logical value indicating whether non-estimable coefficients (resulting
from linear dependencies among the columns of the regression matrix) should
be allowed. Default isFALSE.

qrTol: a tolerance for detecting linear dependencies among the columns of the regres-
sion matrix in its QR decomposition. Default is.Machine$single.eps .

returnObject: a logical value indicating whether the fitted object should be returned
when the maximum number of iterations is reached without convergence of the
algorithm. Default isFALSE.

apVar: a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default isTRUE.

.relStep: relative step for numerical derivatives calculations. Default is
.Machine$double.eps 1/3.

natural: a logical value, or a named list of logical values, indicating whether a natural
parameterization should be used for the model structures, when the approximate
covariance matrix of the estimators is calculated. If given as a single logical
value, it is used for all model structures (corStruct andvarFunc objects) used

102

in the fit. If given as a list, it must have namescorStruct , andvarStruct

corresponding to the model structures used in the fit. Default isTRUE.

natUnconstrained: a logical value, or a named list of logical values, indicating whether
an unconstrained parameterization should be used for the natural parameters of
the model structures. If given as a single logical value, it is used for all model
structures (corStruct andvarFunc objects) used in the fit. If given as a list,
it must have namescorStruct and varStruct corresponding to the model
structures used in the fit. Default isTRUE.

sigma: a numeric value indicating the value at which the residual standard error should
be kept fixed during the optmization of the objective function. Defaults toNULL,
in which case the residual standard error is estimated together with the other
model parameters. Must be a non-negative numeric value - setting it to zero has
the same effect as the default (NULL).

VALUE
a list with components for each of the possible arguments.

SEE ALSO
gls , ms, lmeScale

EXAMPLE

decrease the maximum number iterations in the ms call and
request that information on the evolution of the ms iterations
be printed
glsControl(msMaxIter = 20, msVerbose = TRUE)

glsObject Fitted gls Object glsObject

An object returned by thegls function, inheriting from classgls and repre-
senting a generalized least squares fitted linear model. Objects of this class
have methods for the generic functionsanova , coef , fitted , formula , get-

Groups , getResponse , intervals , logLik , plot , predict , print , resid-

uals , summary, andupdate .

VALUE
The following components must be included in a legitimategls object.

COMPONENTS

apVar: an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the list of control values used in the call togls , this com-
ponent is equal toNULL.

call: a list containing an image of thegls call that produced the object.

coefficients: a vector with the estimated linear model coefficients.

103

contrasts: a list with the contrasts used to represent factors in the model formula. This
information is important for making predictions from a new data frame in which
not all levels of the original factors are observed. If no factors are used in the
model, this component will be an empty list.

dims: a list with basic dimensions used in the model fit, including the componentsN -
the number of observations in the data andp - the number of coefficients in the
linear model.

fitted: a vector with the fitted values..

glsStruct: an object inheriting from classglsStruct , representing a list of linear
model components, such ascorStruct andvarFunc objects.

groups: a vector with the correlation structure grouping factor, if any is present.

logLik: the log-likelihood at convergence.

method: the estimation method: either"ML" for maximum likelihood, or"REML" for
restricted maximum likelihood.

numIter: the number of iterations used in the iterative algorithm.

residuals: a vector with the residuals.

sigma: the estimated residual standard error.

varBeta: an approximate covariance matrix of the coefficients estimates.

SEE ALSO
gls , glsStruct

104

glsStruct Generalized Least Squares Structure glsStruct

A generalized least squares structure is a list of model components represent-
ing different sets of parameters in the linear model. AglsStruct may con-
tain corStruct andvarFunc objects.NULLarguments are not included in the
glsStruct list.

glsStruct(corStruct, varStruct)

ARGUMENTS

corStruct: an optionalcorStruct object, representing a correlation structure. Default
is NULL.

varStruct: an optionalvarFunc object, representing a variance function structure. De-
fault is NULL.

VALUE
a list of model variance-covariance components determining the parameters to
be estimated for the associated linear model.

SEE ALSO
gls , corClasses , varClasses

EXAMPLE

gls1 <- glsStruct(corAR1(), varPower())

gnls Fit Nonlinear Model Using Generalized Least Squares gnls

This function fits a nonlinear model using generalized least squares. The errors
are allowed to be correlated and/or have unequal variances.

gnls(model, data, params, start, correlation, weights, subset,
na.action, naPattern, control, verbose)

ARGUMENTS

model: a two-sided formula object describing the model, with the response on the left
of a∼ operator and a nonlinear expression involving parameters and covariates
on the right. Ifdata is given, all names used in the formula should be defined
as parameters or variables in the data frame.

data: an optional data frame containing the variables named inmodel , correlation ,
weights , subset , andnaPattern . By default the variables are taken from the
environment from whichgnls is called.

105

params: an optional two-sided linear formula of the formp1+...+pn ∼x1+...+xm , or
list of two-sided formulas of the formp1∼x1+...+xm , with possibly different
models for each parameter. Thep1,...,pn represent parameters included on
the right hand side ofmodel andx1+...+xm define a linear model for the pa-
rameters (when the left hand side of the formula contains several parameters,
they are all assumed to follow the same linear model described by the right hand
side expression). A1 on the right hand side of the formula(s) indicates a single
fixed effects for the corresponding parameter(s). By default, the parameters are
obtained from the names ofstart .

start: an optional named list, or numeric vector, with the initial values for the param-
eters inmodel . It can be omitted when aselfStarting function is used in
model , in which case the starting estimates will be obtained from a single call
to thenls function.

correlation: an optionalcorStruct object describing the within-group correlation
structure. See the documentation ofcorClasses for a description of the avail-
ablecorStruct classes. If a grouping variable is to be used, it must be specified
in the form argument to thecorStruct constructor. Defaults toNULL, corre-
sponding to uncorrelated errors.

weights: an optionalvarFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed , corresponding to fixed variance weights. See the documentation
on varClasses for a description of the availablevarFunc classes. Defaults to
NULL, corresponding to homocesdatic errors.

subset: an optional expression indicating the subset of the rows ofdata that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causesgnls to print an error message and terminate if
there are any incomplete observations.

naPattern: an expression or formula object, specifying which returned values are to be
regarded as missing.

control: a list of control values for the estimation algorithm to replace the default values
returned by the functiongnlsControl . Defaults to an empty list.

verbose: an optional logical value. IfTRUEinformation on the evolution of the iterative
algorithm is printed. Default isFALSE.

VALUE
an object of classgnls , also inheriting from classgls , representing the non-
linear model fit. Generic functions such asprint , plot and summary have
methods to show the results of the fit. SeegnlsObject for the components of

106

the fit. The functionsresid , coef , andfitted can be used to extract some of
its components.

REFERENCES
The different correlation structures available for thecorrelation argument are
described in Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C.,
Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996), and Venables, W.N.
and Ripley, B.D. (1997). The use of variance functions for linear and nonlinear
models is presented in detail in Carrol, R.J. and Ruppert, D. (1988) and David-
ian, M. and Giltinan, D.M. (1995).
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Carrol, R.J. and Ruppert, D. (1988) ”Transformation and Weighting in Regres-
sion”, Chapman and Hall.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
gnlsControl , gnlsObject , corClasses , varClasses , corClasses , var-

Classes

EXAMPLE

variance increases with a power of the absolute fitted values
fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,

weights = varPower())
errors follow an auto-regressive process of order 1
fm2 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,

correlation = corAR1())

107

gnlsControl Control Values for gnls Fit gnlsControl

The values supplied in the function call replace the defaults and a list with all
possible arguments is returned. The returned list is used as thecontrol argu-
ment to thegnls function.

gnlsControl(maxIter,nlsMaxIter,msMaxIter,minScale,tolerance,
nlsTol,msTol,msScale,returnObject,msVerbose,
apVar,.relStep,natural,natUnconstrained,sigma)

ARGUMENTS

maxIter: maximum number of iterations for thegnls optimization algorithm. Default
is 50.

nlsMaxIter: maximum number of iterations for thenls optimization step inside the
gnls optimization. Default is 7.

msMaxIter: maximum number of iterations for themsoptimization step inside thegnls

optimization. Default is 50.

minScale: minimum factor by which to shrink the default step size in an attempt to
decrease the sum of squares in thenls step. Default 0.001.

tolerance: tolerance for the convergence criterion in thegnls algorithm. Default is
1e - 6.

nlsTol: tolerance for the convergence criterion innls step. Default is 1e-3.

msTol: tolerance for the convergence criterion inms, passed as therel.tolerance

argument to the function (see documentation onms). Default is 1e-7.

msScale: scale function passed as thescale argument to thems function (see documen-
tation on that function). Default islmeScale .

returnObject: a logical value indicating whether the fitted object should be returned
when the maximum number of iterations is reached without convergence of the
algorithm. Default isFALSE.

msVerbose: a logical value passed as thetrace argument toms (see documentation on
that function). Default isFALSE.

apVar: a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default isTRUE.

.relStep: relative step for numerical derivatives calculations. Default is
.Machine$double.eps 1/3.

108

natural: a logical value, or a named list of logical values, indicating whether a natural
parameterization should be used for the model structures, when the approximate
covariance matrix of the estimators is calculated. If given as a single logical
value, it is used for all model structures (corStruct andvarFunc objects) used
in the fit. If given as a list, it must have namescorStruct , andvarStruct

corresponding to the model structures used in the fit. Default isTRUE.

natUnconstrained: a logical value, or a named list of logical values, indicating whether
an unconstrained parameterization should be used for the natural parameters of
the model structures. If given as a single logical value, it is used for all model
structures (corStruct andvarFunc objects) used in the fit. If given as a list,
it must have namescorStruct and varStruct corresponding to the model
structures used in the fit. Default isTRUE.

sigma: a numeric value indicating the value at which the residual standard error should
be kept fixed during the optmization of the objective function. Defaults toNULL,
in which case the residual standard error is estimated together with the other
model parameters. Must be a non-negative numeric value - setting it to zero has
the same effect as the default (NULL).

VALUE
a list with components for each of the possible arguments.

SEE ALSO
gnls , ms, lmeScale

EXAMPLE

decrease the maximum number iterations in the ms call and
request that information on the evolution of the ms iterations
be printed
gnlsControl(msMaxIter = 20, msVerbose = TRUE)

109

gnlsObject Fitted gnls Object gnlsObject

An object returned by thegnls function, inheriting from classgnls and also
from classgls , and representing a generalized nonlinear least squares fitted
model. Objects of this class have methods for the generic functionsanova ,
coef , fitted , formula , getGroups , getResponse , intervals , logLik ,
plot , predict , print , residuals , summary, andupdate .

VALUE
The following components must be included in a legitimategnls object.

COMPONENTS

apVar: an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the list of control values used in the call tognls , this com-
ponent is equal toNULL.

call: a list containing an image of thegnls call that produced the object.

coefficients: a vector with the estimated nonlinear model coefficients.

contrasts: a list with the contrasts used to represent factors in the model formula. This
information is important for making predictions from a new data frame in which
not all levels of the original factors are observed. If no factors are used in the
model, this component will be an empty list.

dims: a list with basic dimensions used in the model fit, including the componentsN -
the number of observations used in the fit andp - the number of coefficients in
the nonlinear model.

fitted: a vector with the fitted values.

modelStruct: an object inheriting from classgnlsStruct , representing a list of model
components, such ascorStruct andvarFunc objects.

groups: a vector with the correlation structure grouping factor, if any is present.

logLik: the log-likelihood at convergence.

numIter: the number of iterations used in the iterative algorithm.

residuals: a vector with the residuals.

sigma: the estimated residual standard error.

varBeta: an approximate covariance matrix of the coefficients estimates.

SEE ALSO
gnls , gnlsStruct

110

gnlsStruct Generalized Nonlinear Least Squares Structure gnlsStruct

A generalized nonlinear least squares structure is a list of model components rep-
resenting different sets of parameters in the nonlinear model. AgnlsStruct

may containcorStruct and varFunc objects. NULL arguments are not in-
cluded in thegnlsStruct list.

gnlsStruct(corStruct, varStruct)

ARGUMENTS

corStruct: an optionalcorStruct object, representing a correlation structure. Default
is NULL.

varStruct: an optionalvarFunc object, representing a variance function structure. De-
fault is NULL.

VALUE
a list of model variance-covariance components determining the parameters to
be estimated for the associated nonlinear model.

SEE ALSO
gnls , corClasses , varClasses

EXAMPLE

gnls1 <- gnlsStruct(corAR1(), varPower())

groupedData Construct a groupedData Object groupedData

An object of thegroupedData class is constructed from theformula anddata

by attaching theformula as an attribute of the data, along with any ofouter ,
inner , labels , and units that are given. Iforder.groups is TRUE the
grouping factor is converted to an ordered factor with the ordering determined
by FUN. Depending on the number of grouping levels and the type of primary
covariate, the returned object will be of one of three classes:nfnGroupedData

- numeric covariate, single level of nesting;nffGroupedData - factor covariate,
single level of nesting; andnmGroupedData - multiple levels of nesting. Several
modeling and plotting functions can use the formula stored with agroupedData

object to construct default plots and models.

groupedData(formula, data, order.groups, FUN, outer, inner,
labels, units)

ARGUMENTS

111

formula: a formula of the formresp ∼cov | group whereresp is the response,cov

is the primary covariate, andgroup is the grouping factor. The expression1

can be used for the primary covariate when there is no other suitable candidate.
Multiple nested grouping factors can be listed separated by the/ symbol as in
fact1/fact2 . In an expression like this thefact2 factor is nested within the
fact1 factor.

data: a data frame in which the expressions informula can be evaluated. The result-
ing groupedData object will consist of the same data values in the same order
but with additional attributes.

order.groups: an optional logical value, or list of logical values, indicating if the group-
ing factors should be converted to ordered factors according to the functionFUN

applied to the response from each group. If multiple levels of grouping are
present, this argument can be either a single logical value (which will be repeated
for all grouping levels) or a list of logical values. If no names are assigned to the
list elements, they are assumed in the same order as the group levels (outermost
to innermost grouping). Ordering within a level of grouping is done within the
levels of the grouping factors which are outer to it. Changing the grouping factor
to an ordered factor does not affect the ordering of the rows in the data frame but
it does affect the order of the panels in a trellis display of the data or models
fitted to the data. Defaults toTRUE.

FUN: an optional summary function that will be applied to the values of the response
for each level of the grouping factor, whenorder.groups = TRUE , to deter-
mine the ordering. Defaults to themax function.

outer: an optional one-sided formula, or list of one-sided formulas, indicating covari-
ates that are outer to the grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-sided formula, or a list of one-
sided formulas. If no names are assigned to the list elements, they are assumed in
the same order as the group levels (outermost to innermost grouping). An outer
covariate is invariant within the sets of rows defined by the grouping factor. Or-
dering of the groups is done in such a way as to preserve adjacency of groups
with the same value of the outer variables. When plotting a groupedData object,
the argumentouter = TRUE causes the panels to be determined by theouter

formula. The points within the panels are associated by level of the grouping
factor. Defaults toNULL, meaning that no outer covariates are present.

inner: an optional one-sided formula, or list of one-sided formulas, indicating covari-
ates that are inner to the grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-sided formula, or a list of one-
sided formulas. If no names are assigned to the list elements, they are assumed in
the same order as the group levels (outermost to innermost grouping). An inner
covariate can change within the sets of rows defined by the grouping factor. An
inner formula can be used to associate points in a plot of a groupedData object.
Defaults toNULL, meaning that no inner covariates are present.

112

labels: an optional list of character strings giving labels for the response and the pri-
mary covariate. The label for the primary covariate is namedx and that for the
response is namedy . Either label can be omitted.

units: an optional list of character strings giving the units for the response and the
primary covariate. The units string for the primary covariate is namedx and that
for the response is namedy . Either units string can be omitted.

VALUE
an object inheriting from one of the classesnfnGroupedData , nffGrouped-

Data , or nmGroupedData , and also inheriting from classesgroupedData and
data.frame .

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1997), ”Software Design for Longitudinal Data”,
in ”Modeling Longitudinal and Spatially Correlated Data: Methods, Applica-
tions and Future Directions”, T.G. Gregoire (ed.), Springer-Verlag, New York.
Pinheiro, J.C. and Bates, D.M. (1997) ”Future Directions in Mixed-Effects Soft-
ware: Design of NLME 3.0” available at http://nlme.stat.wisc.edu.

SEE ALSO
formula , gapply , gsummary , lme

EXAMPLE

Orth.new <- # create a new copy of the groupedData object
groupedData(distance ∼ age | Subject,

data = as.data.frame(Orthodont),
FUN = mean, outer = ∼ Sex,
labels = list(x = "Age",
y="Distance from pituitary to pterygomaxillary fissure"),
units = list(x = "(yr)", y = "(mm)"))

plot(Orth.new) # trellis plot by Subject
formula(Orth.new) # extractor for the formula
gsummary(Orth.new) # apply summary by Subject
fm1 <- lme(Orth.new) # fixed and groups formulae extracted

from object

113

gsummary Summarize by Groups gsummary

Provide a summary of the variables in a data frame by groups of rows. This is
most useful with agroupedData object to examine the variables by group.

gsummary(object, FUN, omitGroupingFactor, form, level,
groups, invariantsOnly, ...)

ARGUMENTS

object: an object to be summarized - usually agroupedData object or adata.frame .

FUN: an optional summary function or a list of summary functions to be applied to
each variable in the frame. The function or functions are applied only to variables
in object that vary within the groups defined bygroups . Invariant variables
are always summarized by group using the unique value that they assume within
that group. IfFUN is a single function it will be applied to each non-invariant
variable by group to produce the summary for that variable. IfFUN is a list
of functions, the names in the list should designate classes of variables in the
frame such asordered , factor , or numeric . The indicated function will be
applied to any non-invariant variables of that class. The default functions to be
used aremean for numeric factors, andMode for both factor andordered .
TheMode function, defined internally ingsummary , returns the modal or most
popular value of the variable. It is different from themode function that returns
the S-language mode of the variable.

omitGroupingFactor: an optional logical value. WhenTRUEthe grouping factor itself
will be omitted from the group-wise summary but the levels of the grouping fac-
tor will continue to be used as the row names for the data frame that is produced
by the summary. Defaults toFALSE.

form: an optional one-sided formula that defines the groups. When this formula is
given, the right-hand side is evaluated inobject , converted to a factor if nec-
essary, and the unique levels are used to define the groups. Defaults tofor-

mula(object) .

level: an optional positive integer giving the level of grouping to be used in an object
with multiple nested grouping levels. Defaults to the highest or innermost level
of grouping.

groups: an optional factor that will be used to split the rows into groups. Defaults to
getGroups(object, form, level) .

invariantsOnly: an optional logical value. WhenTRUEonly those covariates that are
invariant within each group will be summarized. The summary value for the
group is always the unique value taken on by that covariate within the group.
The columns in the summary are of the same class as the corresponding columns
in object . By definition, the grouping factor itself must be an invariant. When

114

combined withomitGroupingFactor = TRUE , this option can be used to dis-
cover is there are invariant covariates in the data frame. Defaults toFALSE.

...: optional additional arguments to the summary functions that are invoked on the
variables by group. Often it is helpful to specifyna.rm = TRUE .

VALUE
A data.frame with one row for each level of the grouping factor. The number
of columns is at most the number of columns inobject .

SEE ALSO
summary, groupedData , getGroups

EXAMPLE

gsummary(Orthodont) # default summary by Subject
gsummary with invariantsOnly = TRUE and
omitGroupingFactor = TRUE determines whether there
are covariates like Sex that are invariant
within the repeated observations on the same Subject.
gsummary(Orthodont, inv = TRUE, omit = TRUE)

initialize Initialize Object initialize

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
corStruct , lmeStruct , reStruct , andvarFunc .

initialize(object, data, ...)

ARGUMENTS

object: any object requiring initialization, e.g. ”plug-in” structures such ascorStruct

andvarFunc objects.

data: a data frame to be used in the initialization procedure.

...: some methods for this generic function require additional arguments.

VALUE
an initialized object with the same class asobject . Changes introduced by
the initialization procedure will depend on the method function used; see the
appropriate documentation.

EXAMPLE

see the method function documentation

115

initialize.corStruct Initialize corStruct Object initialize.corStruct

This method initializesobject by evaluating its associated covariate(s) and
grouping factor, if any is present, indata , calculating various dimensions and
constants used by optimization algorithms involvingcorStruct objects (see
the appropriateDim method documentation), and assigning initial values for the
coefficients inobject , if none were present.

initialize(object, data, ...)

ARGUMENTS

object: an object inheriting from classcorStruct representing a correlation structure.

data: a data frame in which to evaluate the variables defined informula(object) .

...: this argument is included to make this method compatible with the generic.

VALUE
an initialized object with the same class asobject representing a correlation
structure.

SEE ALSO
Dim.corStruct

EXAMPLE

cs1 <- corAR1(form = ∼ 1 | Subject)
cs1 <- initialize(cs1, data = Orthodont)

initialize.glsStruct Initialize a glsStruct Object initialize.glsStruct

The individual linear model components of theglsStruct list are initialized.

initialize(object, data, control)

ARGUMENTS

object: an object inheriting from classglsStruct , representing a list of linear model
components, such ascorStruct andvarFunc objects.

data: a data frame in which to evaluate the variables defined informula(object) .

control: an optional list with control parameters for the initialization and optimization
algorithms used ingls . Defaults tolist(singular.ok = FALSE, qrTol

= .Machine$single.eps) , implying that linear dependencies are not allowed
in the model and that the tolerance for detecting linear dependencies among the
columns of the regression matrix is.Machine$single.eps .

116

VALUE
a glsStruct object similar toobject , but with initialized model components.

SEE ALSO
gls , initialize.corStruct , initialize.varFunc

initialize.lmeStruct Initialize an lmeStruct Object initialize.lmeStruct

The individual linear mixed-effects model components of thelmeStruct list
are initialized.

initialize(object, data, groups, conLin, control)

ARGUMENTS

object: an object inheriting from classlmeStruct , representing a list of linear mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

data: a data frame in which to evaluate the variables defined informula(object) .

groups: a data frame with the grouping factors corresponding to the lme model asso-
ciated withobject as columns, sorted from innermost to outermost grouping
level.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying lme
model. Defaults toattr(object, "conLin") .

control: an optional list with control parameters for the initialization and optimization
algorithms used inlme . Defaults tolist(niterEM=20, gradHess=TRUE) ,
implying that 20 EM iterations are to be used in the derivation of initial estimates
for the coefficients of thereStruct component ofobject and, if possible,
numerical gradient vectors and Hessian matrices for the log-likelihood function
are to be used in the optimization algorithm.

VALUE
anlmeStruct object similar toobject , but with initialized model components.

SEE ALSO
lme , initialize.reStruct , initialize.corStruct , initialize.varFunc

117

initialize.reStruct Initialize reStruct Object initialize.reStruct

Initial estimates for the parameters in thepdMat objects formingobject , which
have not yet been initialized, are obtained using the methodology described in
Bates and Pinheiro (1998). These estimates may be refined using a series of
EM iterations, as described in Bates and Pinheiro (1998). The number of EM
iterations to be used is defined incontrol .

initialize(object, data, conLin, control)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

data: a data frame in which to evaluate the variables defined informula(object) .

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

control: an optional list with a single componentniterEM controlling the number of
iterations for the EM algorithm used to refine initial parameter estimates. It is
given as a list for compatibility with otherinitialize methods. Defaults to
list(niterEM = 20) .

VALUE
an reStruct object similar toobject , but with allpdMat components initial-
ized.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at
http://nlme.stat.wisc.edu

SEE ALSO
reStruct , pdMat

118

initialize.varFunc Initialize varFunc Object initialize.varFunc

This method initializesobject by evaluating its associated covariate(s) and
grouping factor, if any is present, indata ; determining if the covariate(s) need to
be updated when the values of the coefficients associated withobject change;
initializing the log-likelihood and the weights associated withobject ; and as-
signing initial values for the coefficients inobject , if none were present. The
covariate(s) will only be initialized if no update is needed whencoef(object)

changes.

initialize(object, data, ...)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

data: a data frame in which to evaluate the variables named informula(object) .

...: this argument is included to make this method compatible with the generic.

VALUE
an initialized object with the same class asobject representing a variance func-
tion structure.

SEE ALSO

EXAMPLE

vf1 <- varPower(form = ∼ age | Sex)
vf1 <- initialize(vf1, Orthodont)

intervals Confidence Intervals on Coefficients intervals

Confidence intervals on the parameters associated with the model represented by
object are obtained. This function is generic; method functions can be written
to handle specific classes of objects. Classes which already have methods for
this function include:gls , lme , andlmList .

intervals(object, level, ...)

ARGUMENTS

object: a fitted model object from which parameter estimates can be extracted.

level: an optional numeric value for the interval confidence level. Defaults to 0.95.

...: some methods for the generic may require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

119

SEE ALSO
intervals.gls , intervals.lme , intervals.lmList

EXAMPLE

see the method documentation

intervals.gls Confidence Intervals on gls Parameters intervals.gls

Approximate confidence intervals for the parameters in the linear model repre-
sented byobject are obtained, using a normal approximation to the distribution
of the (restricted) maximum likelihood estimators (the estimators are assumed
to have a normal distribution centered at the true parameter values and with co-
variance matrix equal to the negative inverse Hessian matrix of the (restricted)
log-likelihood evaluated at the estimated parameters). Confidence intervals are
obtained in an unconstrained scale first, using the normal approximation, and,
if necessary, transformed to the constrained scale, unless the control parameter
natUnconstrained is set toFALSE(see the documentation onglsControl).

intervals(object, level, which)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

level: an optional numeric value with the confidence level for the intervals. Defaults to
0.95.

which: an optional character string specifying the subset of parameters for which to
construct the confidence intervals. Possible values are"all" for all parameters,
"var-cov" for the variance-covariance parameters only, and"coef" for the
linear model coefficients only. Defaults to"all" .

VALUE
a list with components given by data frames with rows corresponding to pa-
rameters and columnslower , est. , andupper representing respectively lower
confidence limits, the estimated values, and upper confidence limits for the pa-
rameters. Possible components are:

ARGUMENTS

coef: linear model coefficients, only present whenwhich is not equal to"var-cov" .

corStruct: correlation parameters, only present whenwhich is not equal to"coef"

and a correlation structure is used inobject .

varFunc: variance function parameters, only present whenwhich is not equal to"coef"

and a variance function structure is used inobject .

120

sigma: residual standard error.

SEE ALSO
gls , print.intervals.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

intervals(fm1)

intervals.lmList Confidence Intervals on lmList Coefficients intervals.lmList

Confidence intervals on the linear model coefficients are obtained for eachlm

component ofobject and organized into a three dimensional array. The first
dimension corresponding to the names of theobject components. The second
dimension is given bylower , est. , andupper corresponding, respectively,
to the lower confidence limit, estimated coefficient, and upper confidence limit.
The third dimension is given by the coefficients names.

intervals(object, level, pool)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

level: an optional numeric value with the confidence level for the intervals. Defaults to
0.95.

pool: an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default isattr(object, "pool") .

VALUE
a three dimensional array with the confidence intervals and estimates for the
coefficients of eachlm component ofobject .

SEE ALSO
lmList , plot.intervals.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
intervals(fm1)

121

intervals.lme Confidence Intervals on lme Parameters intervals.lme

Approximate confidence intervals for the parameters in the linear mixed-effects
model represented byobject are obtained, using a normal approximation to
the distribution of the (restricted) maximum likelihood estimators (the estima-
tors are assumed to have a normal distribution centered at the true parameter
values and with covariance matrix equal to the negative inverse Hessian matrix
of the (restricted) log-likelihood evaluated at the estimated parameters). Con-
fidence intervals are obtained in an unconstrained scale first, using the normal
approximation, and, if necessary, transformed to the constrained scale, unless
the control parameternatUnconstrained is set toFALSE(see the documenta-
tion on lmeControl).

intervals(object, level, which)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

level: an optional numeric value with the confidence level for the intervals. Defaults to
0.95.

which: an optional character string specifying the subset of parameters for which to
construct the confidence intervals. Possible values are"all" for all parameters,
"var-cov" for the variance-covariance parameters only, and"fixed" for the
fixed effects only. Defaults to"all" .

VALUE
a list with components given by data frames with rows corresponding to pa-
rameters and columnslower , est. , andupper representing respectively lower
confidence limits, the estimated values, and upper confidence limits for the pa-
rameters. Possible components are:

ARGUMENTS

fixed: fixed effects, only present whenwhich is not equal to"var-cov" .

reStruct: random effects variance-covariance parameters, only present whenwhich is
not equal to"fixed" .

corStruct: within-group correlation parameters, only present whenwhich is not equal
to "fixed" and a correlation structure is used inobject .

varFunc: within-group variance function parameters, only present whenwhich is not
equal to"fixed" and a variance function structure is used inobject .

sigma: within-group standard deviation.

SEE ALSO
lme , print.intervals.lme ,

122

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
intervals(fm1)

isBalanced Check a Design for Balance isBalanced

Check the design of the experiment or study for balance.

isBalanced(object, countOnly, level)

ARGUMENTS

object: A groupedData object containing a data frame and a formula that describes
the roles of variables in the data frame. The object will have one or more nested
grouping factors and a primary covariate.

countOnly: A logical value indicating if the check for balance should only consider
the number of observations at each level of the grouping factor(s). Defaults to
FALSE.

level: an optional positive integer giving the level of grouping to be used with multi-
level data. Defaults to the highest or innermost level of grouping.

VALUE
TRUEor FALSEaccording to whether the data are balanced or not

SEE ALSO
table , groupedData

EXAMPLE

isBalanced(Orthodont) # should return TRUE
isBalanced(Orthodont, countOnly = TRUE) # should return TRUE
isBalanced(Pixel) # should return FALSE
isBalanced(Pixel, level = 1) # should return FALSE

123

isInitialized Check if Object is Initialized isInitialized

Checks ifobject has been initialized (generally through a call toinitial-

ize), by searching for components and attributes which are modified during
initialization.

isInitialized(object)

ARGUMENTS

object: any object requiring initialization.

VALUE
a logical value indicating whetherobject has been initialized.

SEE ALSO
initialize

EXAMPLE

pd1 <- pdDiag(∼ age)
isInitialized(pd1)

isInitialized.reStruct Check reStruct Initialization isInitialized.reStruct

Checks if allpdMat components ofobject have been initialized.

isInitialized(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a logical value indicating whether all components ofobject have been initial-
ized.

SEE ALSO
initialize , reStruct

EXAMPLE

rs1 <- reStruct(∼ age|Subject)
isInitialized(rs1)

124

isInitialized<- Set Initialization Status isInitialized<-

Sets the initialization status ofobject to value . This is a generic function and
specific methods must be implemented for different classes. In general, methods
for this function can only change the initialization status toFALSEand trying to
use them withvalue = TRUE will cause an error.

isInitialized(object) <- value

ARGUMENTS

object: any object requiring initialization.

value: a logical value indicating the initialization status to be used forobject .

VALUE
An object of the same class asoriginal , but with some of its components
modified to indicate the initialization status specified invalue .

SEE ALSO
isInitialized , initialize

EXAMPLE

cs1 <- corSymm(form = ∼ 1|Subject)
cs1 <- initialize(cs1, data = Orthodont)
cs1
isInitialized(cs1) <- FALSE
cs1

lmList List of lm Objects with a Common Model lmList

Data is partitioned according to the levels of the grouping factorg and individual
lm fits are obtained for eachdata partition, using the model defined inobject .

lmList(object, data, level, na.action, pool)

ARGUMENTS

object: either a linear formula object of the formy ∼x1+...+xn | g or agrouped-

Data object. In the formula object,y represents the response,x1,...,xn the
covariates, andg the grouping factor specifying the partitioning of the data ac-
cording to which differentlm fits should be performed. The grouping factorg

may be omitted from the formula, in which case the grouping structure will be
obtained fromdata , which must inherit from classgroupedData . The method
function lmList.groupedData is documented separately.

data: an data frame in which to interpret the variables named inobject .

125

level: an optional integer specifying the level of grouping to be used when multiple
nested levels of grouping are present.

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causeslmList to print an error message and terminate
if there are any incomplete observations.

pool: an optional logical value that is preserved as an attribute of the returned value.
This will be used as the default forpool in calculations of standard deviations
or standard errors for summaries.

VALUE
a list of lm objects with as many components as the number of groups defined by
the grouping factor. Generic functions such ascoef , fixef , lme , pairs , plot ,
predict , ranef , summary, andupdate have methods that can be applied to
an lmList object.

SEE ALSO
lm , lme.lmList .

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)

lmList.groupedData lmList Fit from a groupedData Object lmList.groupedData

The response variable and primary covariate informula(object) are used to
construct the linear model formula. This formula and thegroupedData object
are passed as theobject anddata arguments tolmList.formula , together
with any other additional arguments in the function call. See the documentation
on lmList.formula for a description of that function.

lmList(object, data, level, na.action, pool)

ARGUMENTS

object: a data frame inheriting from classgroupedData .

data: this argument is included for consistency with the generic function. It is ignored
in this method function.

other arguments: identical to the arguments in the generic function call. See the doc-
umentation forlmList .

VALUE
a list of lm objects with as many components as the number of groups defined by
the grouping factor. Generic functions such ascoef , fixef , lme , pairs , plot ,
predict , ranef , summary, andupdate have methods that can be applied to
an lmList object.

SEE ALSO
groupedData , lm , lme.lmList , lmList.formula

126

EXAMPLE

fm1 <- lmList(Orthodont)

lme Linear Mixed-Effects Models lme

This generic function fits a linear mixed-effects model in the formulation de-
scribed in Laird and Ware (1982) but allowing for nested random effects. The
within-group errors are allowed to be correlated and/or have unequal variances.

lme(fixed, data, random, correlation, weights, subset, method,
na.action, control)

ARGUMENTS

fixed: a two-sided linear formula object describing the fixed-effects part of the model,
with the response on the left of a∼ operator and the terms, separated by+ op-
erators, on the right, anlmList object, or agroupedData object. The method
functionslme.lmList andlme.groupedData are documented separately.

data: an optional data frame containing the variables named infixed , random , cor-

relation , weights , andsubset . By default the variables are taken from the
environment from whichlme is called.

random: optionally, any of the following: (i) a one-sided formula of the form∼x1+...+xn

| g1/.../gm , with x1+...+xn specifying the model for the random effects
andg1/.../gm the grouping structure (mmay be equal to 1, in which case no/

is required). The random effects formula will be repeated for all levels of group-
ing, in the case of multiple levels of grouping; (ii) a list of one-sided formulas of
the form∼x1+...+xn | g , with possibly different random effects models for
each grouping level. The order of nesting will be assumed the same as the order
of the elements in the list; (iii) a one-sided formula of the form∼x1+...+xn , or
a pdMat object with a formula (i.e. a non-NULLvalue forformula(object)),
or a list of such formulas orpdMat objects. In this case, the grouping structure
formula will be derived from the data used to fit the linear mixed-effects model,
which should inherit from classgroupedData ; (iv) a named list of formulas
or pdMat objects as in (iii), with the grouping factors as names. The order of
nesting will be assumed the same as the order of the order of the elements in
the list; (v) anreStruct object. See the documentation onpdClasses for a
description of the availablepdMat classes. Defaults to a formula consisting of
the right hand side offixed .

correlation: an optionalcorStruct object describing the within-group correlation
structure. See the documentation ofcorClasses for a description of the avail-
ablecorStruct classes. Defaults toNULL, corresponding to no within-group
correlations.

127

weights: an optionalvarFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed , corresponding to fixed variance weights. See the documentation
on varClasses for a description of the availablevarFunc classes. Defaults to
NULL, corresponding to homocesdatic within-group errors.

subset: an optional expression indicating the subset of the rows ofdata that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method: a character string. If"REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to"REML" .

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causeslme to print an error message and terminate if
there are any incomplete observations.

control: a list of control values for the estimation algorithm to replace the default values
returned by the functionlmeControl . Defaults to an empty list.

VALUE
an object of classlme representing the linear mixed-effects model fit. Generic
functions such asprint , plot andsummary have methods to show the results
of the fit. SeelmeObject for the components of the fit. The functionsresid ,
coef , fitted , fixef , andranef can be used to extract some of its compo-
nents.

REFERENCES
The computational methods are described in Bates, D.M. and Pinheiro, J.C.
(1998) and follow on the general framework of Lindstrom, M.J. and Bates,
D.M. (1988). The model formulation is described in Laird, N.M. and Ware,
J.H. (1982). The variance-covariance parametrizations are described in Pinheiro,
J.C. and Bates., D.M. (1996). The different correlation structures available for
the correlation argument are described in Box, G.E.P., Jenkins, G.M., and
Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger,
R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997). The use of variance
functions for linear and nonlinear mixed effects models is presented in detail in
Davidian, M. and Giltinan, D.M. (1995).
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) ”Random-Effects Models for Longitudinal
Data”, Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) ”Newton-Raphson and EM Algorithms

128

for Linear Mixed-Effects Models for Repeated-Measures Data”, Journal of the
American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
lmeControl , lme.lmList , lme.groupedData , lmeObject , lmList , re-

Struct , reStruct , pdClasses , corClasses , varClasses

EXAMPLE

fm1 <- lme(distance ∼ age, data = Orthodont) # random is ∼ age
fm2 <- lme(distance ∼ age + Sex, data = Orthodont, random = ∼ 1)

lme.groupedData LME fit from groupedData Object lme.groupedData

The response variable and primary covariate informula(fixed) are used to
construct the fixed effects model formula. This formula and thegroupedData

object are passed as thefixed anddata arguments tolme.formula , together
with any other additional arguments in the function call. See the documentation
on lme.formula for a description of that function.

lme(fixed, data, random, correlation, weights, subset, method,
na.action, control)

ARGUMENTS

fixed: a data frame inheriting from classgroupedData .

data: this argument is included for consistency with the generic function. It is ignored
in this method function.

other arguments: identical to the arguments in the generic function call. See the doc-
umentation onlme .

VALUE
an object of classlme representing the linear mixed-effects model fit. Generic
functions such asprint , plot andsummary have methods to show the results
of the fit. SeelmeObject for the components of the fit. The functionsresid ,
coef , fitted , fixef , andranef can be used to extract some of its compo-
nents.

REFERENCES
The computational methods are described in Bates, D.M. and Pinheiro, J.C.
(1998) and follow on the general framework of Lindstrom, M.J. and Bates,

129

D.M. (1988). The model formulation is described in Laird, N.M. and Ware,
J.H. (1982). The variance-covariance parametrizations are described in Pinheiro,
J.C. and Bates., D.M. (1996). The different correlation structures available for
the correlation argument are described in Box, G.E.P., Jenkins, G.M., and
Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger,
R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997). The use of variance
functions for linear and nonlinear mixed effects models is presented in detail in
Davidian, M. and Giltinan, D.M. (1995).
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) ”Random-Effects Models for Longitudinal
Data”, Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) ”Newton-Raphson and EM Algorithms
for Linear Mixed-Effects Models for Repeated-Measures Data”, Journal of the
American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
lme , groupedData , lmeObject

EXAMPLE

fm1 <- lme(Orthodont)

130

lme.lmList LME fit from lmList Object lme.lmList

If the random effects names defined inrandom are a subset of thelmList object
coefficient names, initial estimates for the covariance matrix of the random ef-
fects are obtained (overwriting any values given inrandom). formula(fixed)

and thedata argument in the calling sequence used to obtainfixed are passed
as thefixed anddata arguments tolme.formula , together with any other ad-
ditional arguments in the function call. See the documentation onlme.formula

for a description of that function.

lme(fixed, data, random, correlation, weights, subset, method,
na.action, control)

ARGUMENTS

fixed: an object inheriting from classlmList , representing a list oflm fits with a com-
mon model.

data: this argument is included for consistency with the generic function. It is ignored
in this method function.

random: an optional one-sided linear formula with no conditioning expression, or apdMat

object with aformula attribute. Multiple levels of grouping are not allowed
with this method function. Defaults to a formula consisting of the right hand
side offormula(fixed) .

other arguments: identical to the arguments in the generic function call. See the doc-
umentation onlme .

VALUE
an object of classlme representing the linear mixed-effects model fit. Generic
functions such asprint , plot andsummary have methods to show the results
of the fit. SeelmeObject for the components of the fit. The functionsresid ,
coef , fitted , fixef , andranef can be used to extract some of its compo-
nents.

REFERENCES
The computational methods are described in Bates, D.M. and Pinheiro, J.C.
(1998) and follow on the general framework of Lindstrom, M.J. and Bates,
D.M. (1988). The model formulation is described in Laird, N.M. and Ware,
J.H. (1982). The variance-covariance parametrizations are described in Pinheiro,
J.C. and Bates., D.M. (1996). The different correlation structures available for
the correlation argument are described in Box, G.E.P., Jenkins, G.M., and
Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger,
R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997). The use of variance
functions for linear and nonlinear mixed effects models is presented in detail in
Davidian, M. and Giltinan, D.M. (1995).

131

Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) ”Random-Effects Models for Longitudinal
Data”, Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) ”Newton-Raphson and EM Algorithms
for Linear Mixed-Effects Models for Repeated-Measures Data”, Journal of the
American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
lme , lmList , lmeObject

EXAMPLE

fm1 <- lmList(Orthodont)
fm2 <- lme(fm1)

lmeControl Control Values for lme Fit lmeControl

The values supplied in the function call replace the defaults and a list with all
possible arguments is returned. The returned list is used as thecontrol argu-
ment to thelme function.

lmeControl(maxIter, msMaxIter, tolerance, niterEM, msTol,
msScale, msVerbose, returnObject, gradHess, apVar,
.relStep, natural, natUnconstrained, sigma)

ARGUMENTS

maxIter: maximum number of iterations for thelme optimization algorithm. Default is
50.

msMaxIter: maximum number of iterations for thems optimization step inside thelme

optimization. Default is 50.

tolerance: tolerance for the convergence criterion in thelme algorithm. Default is 1e-6.

niterEM: number of iterations for the EM algorithm used to refine the initial estimates
of the random effects variance-covariance coefficients. Default is 25.

132

msTol: tolerance for the convergence criterion inms, passed as therel.tolerance

argument to the function (see documentation onms). Default is 1e-7.

msScale: scale function passed as thescale argument to thems function (see documen-
tation on that function). Default islmeScale .

msVerbose: a logical value passed as thetrace argument toms (see documentation on
that function). Default isFALSE.

returnObject: a logical value indicating whether the fitted object should be returned
when the maximum number of iterations is reached without convergence of the
algorithm. Default isFALSE.

gradHess: a logical value indicating whether numerical gradient vectors and Hessian
matrices of the log-likelihood function should be used in thems optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no ”varying” parameters and the
pdMat classes used in the random effects structure arepdSymm(general positive-
definite),pdDiag (diagonal),pdIdent (multiple of the identity), orpdComp-

Symm(compound symmetry). Default isTRUE.

apVar: a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default isTRUE.

.relStep: relative step for numerical derivatives calculations. Default is
.Machine$double.eps 1/3.

natural: a logical value, or a named list of logical values, indicating whether a natural
parameterization should be used for the model structures, when the approxi-
mate covariance matrix of the estimators is calculated. If given as a single log-
ical value, it is used for all model structures (pdMat , corStruct , andvar-

Func objects) used in the fit. If given as a list, it must have namesreStruct ,
corStruct , andvarStruct corresponding to the model structures used in the
fit. Default isTRUE.

natUnconstrained: a logical value, or a named list of logical values, indicating whether
an unconstrained parameterization should be used for the natural parameters of
the model structures. If given as a single logical value, it is used for all model
structures (pdMat , corStruct andvarFunc objects) used in the fit. If given as
a list, it must have namesreStruct , corStruct andvarStruct correspond-
ing to the model structures used in the fit. Default isTRUE.

sigma: a numeric value indicating the value at which the within-group standard error
should be kept fixed during the optmization of the objective function. Defaults
to NULL, in which case the within-group standard error is estimated together with
the other model parameters. Must be a non-negative numeric value - setting it to
zero has the same effect as the default (NULL).

VALUE
a list with components for each of the possible arguments.

133

SEE ALSO
lme , ms, lmeScale

EXAMPLE

decrease the maximum number iterations in the ms call and
request that information on the evolution of the ms itera-
tions be printed
lmeControl(msMaxIter = 20, msVerbose = TRUE)

lmeObject Fitted lme Object lmeObject

An object returned by thelme function, inheriting from classlme and repre-
senting a fitted linear mixed-effects model. Objects of this class have methods
for the generic functionsanova , coef , fitted , fixef , formula , getGroups ,
getResponse , intervals , logLik , pairs , plot , predict , print , ranef ,
residuals , summary, andupdate .

VALUE
The following components must be included in a legitimatelme object.

COMPONENTS

apVar: an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the list of control values used in the call tolme , this com-
ponent is equal toNULL.

call: a list containing an image of thelme call that produced the object.

coefficients: a list with two components,fixed and random , where the first is a
vector containing the estimated fixed effects and the second is a list of matrices
with the estimated random effects for each level of grouping. For each matrix
in the random list, the columns refer to the random effects and the rows to the
groups.

contrasts: a list with the contrasts used to represent factors in the fixed effects formula
and/or random effects formula. This information is important for making pre-
dictions from a new data frame in which not all levels of the original factors are
observed. If no factors are used in the lme model, this component will be an
empty list.

dims: a list with basic dimensions used in the lme fit, including the componentsN -
the number of observations in the data,Q- the number of grouping levels,qvec

- the number of random effects at each level from innermost to outermost (last
two values are equal to zero and correspond to the fixed effects and the response),
ngrps - the number of groups at each level from innermost to outermost (last
two values are one and correspond to the fixed effects and the response), and
ncol - the number of columns in the model matrix for each level of grouping
from innermost to outermost (last two values are equal to the number of fixed
effects and one).

134

fitted: a data frame with the fitted values as columns. The leftmost column corresponds
to the population fixed effects (corresponding to the fixed effects only) and suc-
cessive columns from left to right correspond to increasing levels of grouping.

fixDF: a list with componentsX andterms specifying the denominator degrees of free-
dom for, respectively, t-tests for the individual fixed effects and F-tests for the
fixed-effects terms in the models.

groups: a data frame with the grouping factors as columns. The grouping level increases
from left to right.

logLik: the (restricted) log-likelihood at convergence.

method: the estimation method: either"ML" for maximum likelihood, or"REML" for
restricted maximum likelihood.

modelStruct: an object inheriting from classlmeStruct , representing a list of mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

numIter: the number of iterations used in the iterative algorithm.

residuals: a data frame with the residuals as columns. The leftmost column corre-
sponds to the population residuals and successive columns from left to right
correspond to increasing levels of grouping.

sigma: the estimated within-group error standard deviation.

varFix: an approximate covariance matrix of the fixed effects estimates.

SEE ALSO
lme , lmeStruct

135

lmeScale Scale for lme Optimization lmeScale

This function calculates the scales to be used for each coefficient estimated
through anms optimization in thelme function. If all initial values are zero,
the scale is set to one for all coefficients; else, the scale for a coefficient with
non-zero initial value is equal to the inverse of its initial value and the scale
for the coefficients with initial value equal to zero is set to the median of the
non-zero initial value coefficients.

lmeScale(start)

ARGUMENTS

start: the starting values for the coefficients to be estimated.

VALUE
a vector with the scales to be used inms for estimating the coefficients.

SEE ALSO
ms

lmeStruct Linear Mixed-Effects Structure lmeStruct

A linear mixed-effects structure is a list of model components representing dif-
ferent sets of parameters in the linear mixed-effects model. AnlmeStruct list
must contain at least areStruct object, but may also containcorStruct and
varFunc objects.NULLarguments are not included in thelmeStruct list.

lmeStruct(reStruct, corStruct, varStruct)

ARGUMENTS

reStruct: a reStruct representing a random effects structure.

corStruct: an optionalcorStruct object, representing a correlation structure. Default
is NULL.

varStruct: an optionalvarFunc object, representing a variance function structure. De-
fault is NULL.

VALUE
a list of model components determining the parameters to be estimated for the
associated linear mixed-effects model.

SEE ALSO
lme , reStruct , corClasses , varClasses

136

EXAMPLE

lms1 <- lmeStruct(reStruct(∼ age), corAR1(), varPower())

logDet Extract the Logarithm of the Determinant logDet

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
corStruct , severalpdMat classes, andreStruct .

logDet(object, ...)

ARGUMENTS

object: any object from which a matrix, or list of matrices, can be extracted

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
logLik

EXAMPLE

see the method function documentation

logDet.corStruct Extract corStruct Log-Determinant logDet.corStruct

This method function extracts the logarithm of the determinant of a square-root
factor of the correlation matrix associated withobject , or the sum of the log-
determinants of square-root factors of the list of correlation matrices associated
with object .

logDet(object, covariate)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

covariate: an optional covariate vector (matrix), or list of covariate vectors (matrices),
at which values the correlation matrix, or list of correlation matrices, are to be
evaluated. Defaults togetCovariate(object) .

VALUE
the log-determinant of a square-root factor of the correlation matrix associated
with object , or the sum of the log-determinants of square-root factors of the
list of correlation matrices associated withobject .

SEE ALSO
logLik.corStruct , corMatrix.corStruct

137

EXAMPLE

cs1 <- corAR1(0.3)
logDet(cs1, covariate = 1:4)

logDet.pdMat pdMat Log-Determinant logDet.pdMat

This method function extracts the logarithm of the determinant of a square-root
factor of the positive-definite matrix represented byobject .

logDet(object)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

VALUE
the log-determinant of a square-root factor of the positive-definite matrix repre-
sented byobject .

SEE ALSO
pdMat

EXAMPLE

pd1 <- pdSymm(diag(1:3))
logDet(pd1)

logDet.reStruct Extract reStruct Log-Determinants logDet.reStruct

Calculates, for each of thepdMat components ofobject , the logarithm of the
determinant of a square-root factor.

logDet(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a vector with the log-determinants of square-root factors of thepdMat compo-
nents ofobject .

SEE ALSO
reStruct , pdMat

138

EXAMPLE

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ∼ Score),
B = pdDiag(2 * diag(4), form = ∼ Educ)))

logDet(rs1)

logLik Extract Log-Likelihood logLik

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
corStruct , gls , lm , lme , lmList , lmeStruct , reStruct , andvarFunc .

logLik(object, ...)

ARGUMENTS

object: any object from which a log-likelihood value, or a contribution to a log-likelihood
value, can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

EXAMPLE

see the method function documentation

logLik.corStruct corStruct Log-Likelihood logLik.corStruct

This method function extracts the component of a Gaussian log-likelihood asso-
ciated with the correlation structure, which is equal to the negative of the loga-
rithm of the determinant (or sum of the logarithms of the determinants) of the
matrix (or matrices) represented byobject .

logLik(object, data)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

data: this argument is included to make this method function compatible with other
logLik methods and will be ignored.

VALUE
the negative of the logarithm of the determinant (or sum of the logarithms of the
determinants) of the correlation matrix (or matrices) represented byobject .

SEE ALSO
logDet.corStruct

139

EXAMPLE

cs1 <- corAR1(0.2)
cs1 <- initialize(cs1, data = Orthodont)
logLik(cs1)

logLik.gls Log-Likelihood of a gls Object logLik.gls

If REML=FALSE, returns the log-likelihood value of the linear model represented
by object evaluated at the estimated coefficients; else, the restricted log-likelihood
evaluated at the estimated coefficients is returned.

logLik(object, REML)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

REML: an optional logical value. IfTRUEthe restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults toFALSE.

VALUE
the (restricted) log-likelihood of the linear model represented byobject evalu-
ated at the estimated coefficients.

REFERENCES
Harville, D.A. (1974) ”Bayesian Inference for Variance Components Using Only
Error Contrasts”, Biometrika, 61, 383-385.

SEE ALSO
gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

logLik(fm1)
logLik(fm1, REML = FALSE)

140

logLik.glsStruct Log-Likelihood of a glsStruct Object logLik.glsStruct

Pars is used to update the coefficients of the model components ofobject and
the individual (restricted) log-likelihood contributions of each component are
added together. The type of log-likelihood (restricted or not) is determined by
thesettings attribute ofobject .

logLik(object, Pars, conLin)

ARGUMENTS

object: an object inheriting from classglsStruct , representing a list of linear model
components, such ascorStruct andvarFunc objects.

Pars: the parameter values at which the (restricted) log-likelihood is to be evaluated.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying linear
model. Defaults toattr(object, "conLin") .

VALUE
the (restricted) log-likelihood for the linear model described byobject , evalu-
ated atPars .

SEE ALSO
gls , glsStruct

logLik.gnls Log-Likelihood of a gnls Object logLik.gnls

Returns the log-likelihood value of the nonlinear model represented byobject

evaluated at the estimated coefficients.

logLik(object)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

VALUE
the log-likelihood of the linear model represented byobject evaluated at the
estimated coefficients.

SEE ALSO
gnls

141

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

logLik(fm1)

logLik.gnlsStruct Log-Likelihood of a gnlsStruct Object logLik.gnlsStruct

Pars is used to update the coefficients of the model components ofobject

and the individual log-likelihood contributions of each component are added to-
gether.

logLik(object, Pars, conLin)

ARGUMENTS

object: an object inheriting from classgnlsStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

Pars: the parameter values at which the log-likelihood is to be evaluated.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vec-
tor (y), and "logLik" , corresponding to the log-likelihood of the underlying
nonlinear model. Defaults toattr(object,"conLin") .

VALUE
the log-likelihood for the linear model described byobject , evaluated atPars .

SEE ALSO
gnls , gnlsStruct

142

logLik.lm lm Log-Likelihood logLik.lm

If REML=FALSE, returns the log-likelihood value of the linear model represented
by object evaluated at the estimated coefficients; else, the restricted log-likelihood
evaluated at the estimated coefficients is returned.

logLik(object, REML)

ARGUMENTS

object: an object inheriting from classlm .

REML: an optional logical value. IfTRUEthe restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults toFALSE.

VALUE
the (restricted) log-likelihood of the linear model represented byobject evalu-
ated at the estimated coefficients.

REFERENCES
Harville, D.A. (1974) ”Bayesian Inference for Variance Components Using Only
Error Contrasts”, Biometrika, 61, 383-385.

SEE ALSO
lm

EXAMPLE

fm1 <- lm(distance ∼ Sex * age, Orthodont)
logLik(fm1)
logLik(fm1, REML = TRUE)

143

logLik.lmList Log-Likelihood of an lmList Object logLik.lmList

If pool=FALSE , the (restricted) log-likelihoods of thelm components ofob-

ject are summed together. Else, the (restricted) log-likelihood of thelm fit
with different coefficients for each level of the grouping factor associated with
the partitioning of theobject components is obtained.

logLik(object, REML, pool)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

REML: an optional logical value. IfTRUEthe restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults toFALSE.

pool: an optional logical value indicating whether alllm components ofobject may
be assumed to have the same error variance. Default isattr(object, "pool") .

VALUE
either the sum of the (restricted) log-likelihoods of eachlm component inob-

ject , or the (restricted) log-likelihood for thelm fit with separate coefficients
for each component ofobject .

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
logLik(fm1)

144

logLik.lme lme Log-Likelihood logLik.lme

If REML=FALSE, returns the log-likelihood value of the linear mixed-effects model
represented byobject evaluated at the estimated coefficients; else, the re-
stricted log-likelihood evaluated at the estimated coefficients is returned.

logLik(object, REML)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

REML: an optional logical value. IfTRUEthe restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults toFALSE.

VALUE
the (restricted) log-likelihood of the linear mixed-effects model represented by
object evaluated at the estimated coefficients.

REFERENCES
Harville, D.A. (1974) ”Bayesian Inference for Variance Components Using Only
Error Contrasts”, Biometrika, 61, 383-385.

SEE ALSO
lme

EXAMPLE

fm1 <- lme(distance ∼ Sex * age, Orthodont, random = ∼ age,
method = "ML")

logLik(fm1)
logLik(fm1, REML = TRUE)

145

logLik.lmeStruct lmeStruct Log-Likelihood logLik.lmeStruct

Pars is used to update the coefficients of the model components ofobject and
the individual (restricted) log-likelihood contributions of each component are
added together. The type of log-likelihood (restricted or not) is determined by
thesettings attribute ofobject .

logLik(object, Pars, conLin)

ARGUMENTS

object: an object inheriting from classlmeStruct , representing a list of linear mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

Pars: the parameter values at which the (restricted) log-likelihood is to be evaluated.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying lme
model. Defaults toattr(object, "conLin") .

VALUE
the (restricted) log-likelihood for the linear mixed-effects model described by
object , evaluated atPars .

SEE ALSO
lme , lmeStruct

logLik.reStruct Calculate reStruct Log-Likelihood logLik.reStruct

Calculates the log-likelihood, or restricted log-likelihood, of the Gaussian lin-
ear mixed-effects model represented byobject andconLin (assuming spheri-
cal within-group covariance structure), evaluated atcoef(object) . Theset-

tings attribute ofobject determines whether the log-likelihood, or the re-
stricted log-likelihood, is to be calculated. The computational methods are de-
scribed in Bates and Pinheiro (1998).

logLik(object, conLin)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

146

VALUE
the log-likelihood, or restricted log-likelihood, of linear mixed-effects model
represented byobject andconLin , evaluated atcoef(object) .

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
reStruct , pdMat

logLik.varFunc varFunc Log-Likelihood logLik.varFunc

This method function extracts the component of a Gaussian log-likelihood as-
sociated with the variance function structure represented byobject , which is
equal to the sum of the logarithms of the corresponding weights.

logLik(object, data)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

data: this argument is included to make this method function compatible with other
logLik methods and will be ignored.

VALUE
the sum of the logarithms of the weights corresponding to the variance function
structure represented byobject .

EXAMPLE

vf1 <- varPower(form = ∼ age)
vf1 <- initialize(vf1, Orthodont)
coef(vf1) <- 0.1
logLik(vf1)

147

matrix <- Assign Matrix Values matrix <-

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
pdMat , pdBlocked , andreStruct .

matrix(object) <- value

ARGUMENTS

object: any object to whichas.matrix can be applied.

value: a matrix, or list of matrices, with the same dimensions asas.matrix(object)

with the new values to be assigned to the matrix associated withobject .

VALUE
will depend on the method function; see the appropriate documentation.

SEE ALSO
as.matrix

EXAMPLE

see the method function documentation

matrix <- .pdMat Assign Matrix to a pdMat Object matrix <- .pdMat

The positive-definite matrix represented byobject is replaced byvalue . If
the original matrix had row and/or column names, the corresponding names for
value can either beNULL, or a permutation of the original names.

matrix(object) <- value

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

value: a matrix with the new values to be assigned to the positive-definite matrix repre-
sented byobject . Must have the same dimensions asas.matrix(object) .

VALUE
a pdMat object similar toobject , but with its coefficients modified to produce
the matrix invalue .

SEE ALSO
pdMat

148

EXAMPLE

pd1 <- pdSymm(diag(3))
matrix(pd1) <- diag(1:3)
pd1

matrix <- .pdKron Assign Matrix to a pdKron Object matrix <- .pdKron

If value has the same dimensions as the basic pd matrix used in the Kronecker
product represented byobject , it replaces the basic pd matrix. Otherwise, if
value has the same dimensions asas.matrix(object) , the average of the
block diagonal elements ofvalue of dimensions equal to that of the basic pd
matrix replaces the latter. If the original matrix represented byobject (or the
corresponding basic pd matrix) had row and/or column names, the corresponding
names forvalue can either beNULL, or a permutation of the original names.

matrix(object) <- value

ARGUMENTS

object: an object inheriting from classpdKron , representing a Kronecker-product pos-
itive definite matrix.

value: a matrix with the new values to be assigned to the basic positive-definite ma-
trix used in the Kronecker product represented byobject . It can either have the
same dimensions as the basic pd matrix, or the same dimensions asas.matrix(object) .

VALUE
apdKron object similar toobject , but with its coefficients modified to produce
the matrix invalue , or, depending on the dimensions ofvalue , the average of
the block diagonal elements ofvalue .

SEE ALSO
pdKron

EXAMPLE

pd1 <- pdKron(∼ day, data = Pixel, groups = ∼ Side)
matrix(pd1) <- 3 * diag(2) + 1
pd1
matrix(pd1) <- 3 * diag(4) + 1
pd1

149

matrix <- .reStruct Assign reStruct Matrices matrix <- .reStruct

The individual matrices invalue are assigned to eachpdMat component of
object , in the they are listed. The new matrices must have the same dimensions
as the matrices they are meant to replace.

matrix(object) <- value

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

value: a matrix, or list of matrices, with the new values to be assigned to the matrices
associated with thepdMat components ofobject .

VALUE
an reStruct object similar toobject , but with the coefficients of the individ-
ual pdMat components modified to produce the matrices listed invalue .

SEE ALSO
reStruct , pdMat

EXAMPLE

rs1 <- reStruct(list(Dog = ∼ day, Side = ∼ 1), data = Pixel)
matrix(rs1) <- list(diag(2), 3)

model.matrix.reStruct reStruct Model Matrix model.matrix.reStruct

The model matrices for each element offormula(object) , calculated us-
ing data , are bound together column-wise. When multiple grouping levels
are present (i.e. whenlength(object)>1), the individual model matrices are
combined from innermost (at the leftmost position) to outermost (at the right-
most position).

model.matrix(object, data, contr)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

data: a data frame in which to evaluate the variables defined informula(object) .

contr: an optional named list specifying the contrasts to be used for representing the
factor variables indata . The components names should match the names of
the variables indata for which the contrasts are to be specified. The components
of this list will be used as thecontrasts attribute of the corresponding factor.
If missing, the default contrast specification is used.

150

VALUE
a matrix obtained by binding together, column-wise, the model matrices for each
element offormula(object) .

SEE ALSO
model.matrix , contrasts , reStruct , formula.reStruct

EXAMPLE

rs1 <- reStruct(list(Dog = ∼ day, Side = ∼ 1), data = Pixel)
model.matrix(rs1, Pixel)

Names Names Associated with an Object Names

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
formula , modelStruct , pdBlocked , pdMat , andreStruct .

Names(object, ...)
Names(object, ...) <- value

ARGUMENTS

object: any object for which names can be extracted and/or assigned.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SIDE EFFECTS
On the left side of an assignment, sets the names associated withobject to
value , which must have an appropriate length.

NOTE
If names were generic, there would be no need for this generic function.

SEE ALSO
Names.formula , Names.pdMat

EXAMPLE

see the method function documentation

151

Names.formula Extract Names from a formula Names.formula

This method function returns the names of the terms corresponding to the right
hand side ofobject (treated as a linear formula), obtained as the column names
of the correspondingmodel.matrix .

Names(object, data, exclude)

ARGUMENTS

object: an object inheriting from classformula .

data: an optional data frame containing the variables specified inobject . By default
the variables are taken from the environment from whichNames.formula is
called.

exclude: an optional character vector with names to be excluded from the returned value.
Default isc("pi",".") .

VALUE
a character vector with the column names of themodel.matrix corresponding
to the right hand side ofobject which are not listed inexcluded .

SEE ALSO
model.matrix , terms , Names

EXAMPLE

Names(distance ∼ Sex * age, data = Orthodont)

Names.pdBlocked Names of a pdBlocked Object Names.pdBlocked

This method function extracts the first element of theDimnames attribute, which
contains the column names, for each block diagonal element in the matrix rep-
resented byobject .

Names(object, asList)

ARGUMENTS

object: an object inheriting from classpdBlocked representing a positive-definite ma-
trix with block diagonal structure

asList: a logical value. IfTRUEa list with the names for each block diagonal element
is returned. IfFALSE a character vector with all column names is returned.
Defaults toFALSE.

152

VALUE
if asList is FALSE, a character vector with column names of the matrix repre-
sented byobject ; otherwise, ifasList is TRUE, a list with components given
by the column names of the individual block diagonal elements in the matrix
represented byobject .

SEE ALSO
Names, Names.pdMat

EXAMPLE

pd1 <- pdBlocked(list(∼ Sex - 1, ∼ age - 1), data = Orthodont)
Names(pd1)

Names.pdMat Names of a pdMat Object Names.pdMat

This method function returns the fist element of theDimnames attribute ofob-

ject , which contains the column names of the matrix represented byobject .

Names(object)
Names(object) <- value

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive-definite matrix.

value: a character vector with the replacement values for the column and row names of
the matrix represented byobject . It must have length equal to the dimension of
the matrix represented byobject and, if names have been previously assigned
to object , it must correspond to a permutation of the original names.

VALUE
if object has aDimnames attribute then the first element of this attribute is
returned; otherwiseNULL.

SIDE EFFECTS
On the left side of an assignment, sets theDimnames attribute ofobject to
list(value, value) .

SEE ALSO
Names, Names.pdBlocked

EXAMPLE

pd1 <- pdSymm(∼ age, data = Orthodont)
Names(pd1)

153

Names.reStruct Names of an reStruct Object Names.reStruct

This method function extracts the column names of each of the positive-definite
matrices represented thepdMat elements ofobject .

Names(object)
Names(object) <- value

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

value: a list of character vectors with the replacement values for the names of the in-
dividual pdMat objects that formobject . It must have the same length asob-

ject .

VALUE
a list containing the column names of each of the positive-definite matrices rep-
resented by thepdMat elements ofobject .

SIDE EFFECTS
On the left side of an assignment, sets theNames of the pdMat elements of
object to the corresponding element ofvalue .

SEE ALSO
reStruct , pdMat , Names.pdMat

EXAMPLE

rs1 <- reStruct(list(Dog = ∼ day, Side = ∼ 1), data = Pixel)
Names(rs1)

needUpdate Check if Update is Needed needUpdate

This function is generic; method functions can be written to handle specific
classes of objects. By default, it tries to extract aneedUpdate attribute ofob-

ject . If this is NULLor FALSE it returnsFALSE; else it returnsTRUE. Updating
of objects usually takes place in iterative algorithms in which auxiliary quantities
associated with the object, and not being optimized over, may change.

needUpdate(object)

ARGUMENTS

object: any object

VALUE
a logical value indicating whetherobject needs to be updated.

154

EXAMPLE

vf1 <- varExp()
vf1 <- initialize(vf1, data = Orthodont)
needUpdate(vf1)

needUpdate.modelStruct Check modelStruct Updating needUpdate.modelStruct

This method function checks if any of the elements ofobject needs to be up-
dated. Updating of objects usually takes place in iterative algorithms in which
auxiliary quantities associated with the object, and not being optimized over,
may change.

needUpdate(object)

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

VALUE
a logical value indicating whether any element ofobject needs to be updated.

EXAMPLE

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ∼ age)),
varStruct = varPower(form = ∼ age))

needUpdate(lms1)

nlme Nonlinear Mixed-Effects Models nlme

This generic function fits a nonlinear mixed-effects model in the formulation de-
scribed in Lindstrom and Bates (1990) but allowing for nested random effects.
The within-group errors are allowed to be correlated and/or have unequal vari-
ances.

nlme(model, data, fixed, random, groups, start, correlation,
weights, subset, method, na.action, naPattern, control,
verbose)

ARGUMENTS

model: a nonlinear model formula, with the response on the left of a∼ operator and
an expression involving parameters and covariates on the right, or annlsList

object. If data is given, all names used in the formula should be defined as
parameters or variables in the data frame. The method functionnlme.nlsList

is documented separately.

155

fixed: a two-sided linear formula of the formf1+...+fn ∼x1+...+xm , or a list of
two-sided formulas of the formf1 ∼x1+...+xm , with possibly different models
for different parameters. Thef1,...,fn are the names of the parameters in-
cluded on the right hand side ofmodel and thex1+...+xm expressions define
linear models for these parameters (when the left hand side of the formula con-
tains several parameters, they all are assumed to follow the same linear model,
described by the right hand side expression). A1 on the right hand side of the
formula(s) indicates a single fixed effects for the corresponding parameter(s).

data: an optional data frame containing the variables named inmodel , fixed , ran-

dom, correlation , weights , subset , andnaPattern . By default the vari-
ables are taken from the environment from whichnlme is called.

random: optionally, any of the following: (i) a two-sided formula of the formr1+...+rn ∼x1+...+xm

| g1/.../gQ , with r1,...,rn naming parameters included on the right hand
side ofmodel , x1+...+xm specifying the random-effects model for these ran-
dom effects andg1/.../gQ the grouping structure (Q may be equal to 1, in
which case no/ is required). The random effects formula will be repeated for
all levels of grouping, in the case of multiple levels of grouping; (ii) a two-sided
formula of the formr1+...+rn ∼x1+..+xm , a list of two-sided formulas of the
form r1 ∼x1+...+xm , with possibly different random-effects models for differ-
ent parameters, apdMat object with a two-sided formula, or list of two-sided
formulas (i.e. a non-NULLvalue forformula(random)), or a list of pdMat ob-
jects with two-sided formulas, or lists of two-sided formulas. In this case, the
grouping structure formula will be given ingroups , or derived from the data
used to fit the nonlinear mixed-effects model, which should inherit from class
groupedData ; (iii) a named list of formulas, lists of formulas, orpdMat ob-
jects as in (ii), with the grouping factors as names. The order of nesting will
be assumed the same as the order of the order of the elements in the list; (iv)
an reStruct object. See the documentation onpdClasses for a description
of the availablepdMat classes. Defaults tofixed , resulting in all fixed effects
having also random effects.

groups: an optional one-sided formula of the form∼g1 (single level of nesting) or
∼g1/.../gQ (multiple levels of nesting), specifying the partitions of the data
over which the random effects vary.g1,...,gQ must evaluate to factors in
data . The order of nesting, when multiple levels are present, is taken from left
to right (i.e.g1 is the first level,g2 the second, etc.).

start: an optional numeric vector, or list of initial estimates for the fixed effects and
random effects. If declared as a numeric vector, it is converted internally to a
list with a single componentfixed , given by the vector. Thefixed component
is required, unless the model function inherits from classselfStart , in which
case initial values will be derived from a call tonlsList . An optionalrandom

component is used to specify initial values for the random effects and should
consist of a matrix, or a list of matrices with length equal to the number of
grouping levels. Each matrix should have as many rows as the number of groups

156

at the corresponding level and as many columns as the number of random effects
in that level.

correlation: an optionalcorStruct object describing the within-group correlation
structure. See the documentation ofcorClasses for a description of the avail-
ablecorStruct classes. Defaults toNULL, corresponding to no within-group
correlations.

weights: an optionalvarFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed , corresponding to fixed variance weights. See the documentation
on varClasses for a description of the availablevarFunc classes. Defaults to
NULL, corresponding to homoscesdatic within-group errors.

subset: an optional expression indicating the subset of the rows ofdata that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method: a character string. If"REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to"REML" .

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causesnlme to print an error message and terminate if
there are any incomplete observations.

naPattern: an expression or formula object, specifying which returned values are to be
regarded as missing.

control: a list of control values for the estimation algorithm to replace the default values
returned by the functionnlmeControl . Defaults to an empty list.

verbose: an optional logical value. IfTRUEinformation on the evolution of the iterative
algorithm is printed. Default isFALSE.

VALUE
an object of classnlme representing the nonlinear mixed-effects model fit. Generic
functions such asprint , plot andsummary have methods to show the results
of the fit. SeenlmeObject for the components of the fit. The functionsresid ,
coef , fitted , fixef , andranef can be used to extract some of its compo-
nents.

REFERENCES
The model formulation and computational methods are described in Lindstrom,
M.J. and Bates, D.M. (1990). The variance-covariance parametrizations are de-
scribed in Pinheiro, J.C. and Bates., D.M. (1996). The different correlation struc-
tures available for thecorrelation argument are described in Box, G.E.P.,
Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup,
W.W., and Wolfinger, R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997).

157

The use of variance functions for linear and nonlinear mixed effects models is
presented in detail in Davidian, M. and Giltinan, D.M. (1995).
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) ”Random-Effects Models for Longitudinal
Data”, Biometrics, 38, 963-974.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Lindstrom, M.J. and Bates, D.M. (1990) ”Nonlinear Mixed Effects Models for
Repeated Measures Data”, Biometrics, 46, 673-687.
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
nlmeControl , nlme.nlsList , nlmeObject , nlsList , reStruct , pdClasses ,
corClasses , varClasses

EXAMPLE

all parameters as fixed and random effects
fm1 <- nlme(weight ∼ SSlogis(Time, Asym, xmid, scal),

data = Soybean, fixed = Asym + xmid + scal ∼ 1,
start = c(18, 52, 7.5))

only Asym and xmid as random, with a diagonal covariance
fm2 <- nlme(weight ∼ SSlogis(Time, Asym, xmid, scal),

data = Soybean, fixed = Asym + xmid + scal ∼ 1,
random = pdDiag(Asym + xmid ∼ 1),
start = c(18, 52, 7.5))

158

nlme.nlsList NLME fit from nlsList Object nlme.nlsList

If the random effects names defined inrandom are a subset of thelmList object
coefficient names, initial estimates for the covariance matrix of the random ef-
fects are obtained (overwriting any values given inrandom). formula(fixed)

and thedata argument in the calling sequence used to obtainfixed are passed
as thefixed anddata arguments tonlme.formula , together with any other
additional arguments in the function call. See the documentation onnlme.formula

for a description of that function.

nlme(model, data, fixed, random, groups, start, correlation, weights,
subset, method, na.action, naPattern, control, verbose)

ARGUMENTS

model: an object inheriting from classnlsList , representing a list ofnls fits with a
common model.

data: this argument is included for consistency with the generic function. It is ignored
in this method function.

random: an optional one-sided linear formula with no conditioning expression, or apdMat

object with aformula attribute. Multiple levels of grouping are not allowed
with this method function. Defaults to a formula consisting of the right hand
side offormula(fixed) .

other arguments: identical to the arguments in the generic function call. See the doc-
umentation onnlme .

VALUE
an object of classnlme representing the linear mixed-effects model fit. Generic
functions such asprint , plot andsummary have methods to show the results
of the fit. SeenlmeObject for the components of the fit. The functionsresid ,
coef , fitted , fixef , andranef can be used to extract some of its compo-
nents.

REFERENCES
The computational methods are described in Bates, D.M. and Pinheiro, J.C.
(1998) and follow on the general framework of Lindstrom, M.J. and Bates,
D.M. (1988). The model formulation is described in Laird, N.M. and Ware,
J.H. (1982). The variance-covariance parametrizations are described in Pinheiro,
J.C. and Bates., D.M. (1996). The different correlation structures available for
the correlation argument are described in Box, G.E.P., Jenkins, G.M., and
Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger,
R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997). The use of variance
functions for linear and nonlinear mixed effects models is presented in detail in
Davidian, M. and Giltinan, D.M. (1995).

159

Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) ”Time Series Analysis:
Forecasting and Control”, 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) ”Nonlinear Mixed Effects Models for
Repeated Measurement Data”, Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) ”Random-Effects Models for Longitudinal
Data”, Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) ”Newton-Raphson and EM Algorithms
for Linear Mixed-Effects Models for Repeated-Measures Data”, Journal of the
American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) ”SAS
Systems for Mixed Models”, SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) ”Modern Applied Statistics with S-
plus”, 2nd Edition, Springer-Verlag.

SEE ALSO
nlme , lmList , nlmeObject

EXAMPLE

fm1 <- nlsList(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean)
fm2 <- nlme(fm1)

nlmeControl Control Values for nlme Fit nlmeControl

The values supplied in the function call replace the defaults and a list with all
possible arguments is returned. The returned list is used as thecontrol argu-
ment to thenlme function.

nlmeControl(maxIter,pnlsMaxIter,msMaxIter,minScale,tolerance,
niterEM,pnlsTol,msTol,msScale,returnObject,
msVerbose, gradHess, apVar, .relStep, natural,
natUnconstrained, sigma)

ARGUMENTS

maxIter: maximum number of iterations for thenlme optimization algorithm. Default
is 50.

pnlsMaxIter: maximum number of iterations for thePNLSoptimization step inside the
nlme optimization. Default is 7.

msMaxIter: maximum number of iterations for themsoptimization step inside thenlme

optimization. Default is 50.

160

minScale: minimum factor by which to shrink the default step size in an attempt to
decrease the sum of squares in thePNLSstep. Default 0.001.

tolerance: tolerance for the convergence criterion in thenlme algorithm. Default is
1e-6.

niterEM: number of iterations for the EM algorithm used to refine the initial estimates
of the random effects variance-covariance coefficients. Default is 25.

pnlsTol: tolerance for the convergence criterion inPNLSstep. Default is 1e-3.

msTol: tolerance for the convergence criterion inms, passed as therel.tolerance

argument to the function (see documentation onms). Default is 1e-7.

msScale: scale function passed as thescale argument to thems function (see documen-
tation on that function). Default islmeScale .

returnObject: a logical value indicating whether the fitted object should be returned
when the maximum number of iterations is reached without convergence of the
algorithm. Default isFALSE.

msVerbose: a logical value passed as thetrace argument toms (see documentation on
that function). Default isFALSE.

gradHess: a logical value indicating whether numerical gradient vectors and Hessian
matrices of the log-likelihood function should be used in thems optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no ”varying” parameters and the
pdMat classes used in the random effects structure arepdSymm(general positive-
definite),pdDiag (diagonal),pdIdent (multiple of the identity), orpdComp-

Symm(compound symmetry). Default isTRUE.

apVar: a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default isTRUE.

.relStep: relative step for numerical derivatives calculations. Default is
.Machine$double.eps 1/3.

natural: a logical value, or a named list of logical values, indicating whether a natural
parameterization should be used for the model structures, when the approxi-
mate covariance matrix of the estimators is calculated. If given as a single log-
ical value, it is used for all model structures (pdMat , corStruct , andvar-

Func objects) used in the fit. If given as a list, it must have namesreStruct ,
corStruct , andvarStruct corresponding to the model structures used in the
fit. Default isTRUE.

natUnconstrained: a logical value, or a named list of logical values, indicating whether
an unconstrained parameterization should be used for the natural parameters of
the model structures. If given as a single logical value, it is used for all model
structures (pdMat , corStruct andvarFunc objects) used in the fit. If given as

161

a list, it must have namesreStruct , corStruct andvarStruct correspond-
ing to the model structures used in the fit. Default isTRUE.

sigma: a numeric value indicating the value at which the within-group standard error
should be kept fixed during the optmization of the objective function. Defaults
to NULL, in which case the within-group standard error is estimated together with
the other model parameters. Must be a non-negative numeric value - setting it to
zero has the same effect as the default (NULL).

VALUE
a list with components for each of the possible arguments.

SEE ALSO
nlme , ms, nlmeScale

EXAMPLE

decrease the maximum number iterations in the ms call and
request that information on the evolution of the ms itera-
tions be printed
nlmeControl(msMaxIter = 20, msVerbose = TRUE)

nlmeObject Fitted nlme Object nlmeObject

An object returned by thenlme function, inheriting from classnlme , also inher-
iting from classlme , and representing a fitted nonlinear mixed-effects model.
Objects of this class have methods for the generic functionsanova , coef , fit-

ted , fixef , formula , getGroups , getResponse , intervals , logLik , pairs ,
plot , predict , print , ranef , residuals , summary, andupdate .

VALUE
The following components must be included in a legitimatenlme object.

COMPONENTS

apVar: an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the list of control values used in the call tonlme , this com-
ponent is equal toNULL.

call: a list containing an image of thenlme call that produced the object.

coefficients: a list with two components,fixed and random , where the first is a
vector containing the estimated fixed effects and the second is a list of matrices
with the estimated random effects for each level of grouping. For each matrix
in the random list, the columns refer to the random effects and the rows to the
groups.

162

contrasts: a list with the contrasts used to represent factors in the fixed effects formula
and/or random effects formula. This information is important for making pre-
dictions from a new data frame in which not all levels of the original factors are
observed. If no factors are used in the nlme model, this component will be an
empty list.

dims: a list with basic dimensions used in the nlme fit, including the componentsN -
the number of observations in the data,Q- the number of grouping levels,qvec

- the number of random effects at each level from innermost to outermost (last
two values are equal to zero and correspond to the fixed effects and the response),
ngrps - the number of groups at each level from innermost to outermost (last
two values are one and correspond to the fixed effects and the response), and
ncol - the number of columns in the model matrix for each level of grouping
from innermost to outermost (last two values are equal to the number of fixed
effects and one).

fitted: a data frame with the fitted values as columns. The leftmost column corresponds
to the population fixed effects (corresponding to the fixed effects only) and suc-
cessive columns from left to right correspond to increasing levels of grouping.

fixDF: a list with componentsX andterms specifying the denominator degrees of free-
dom for, respectively, t-tests for the individual fixed effects and F-tests for the
fixed-effects terms in the models.

groups: a data frame with the grouping factors as columns. The grouping level increases
from left to right.

logLik: the (restricted) log-likelihood at convergence.

map: a list with componentsfmap , rmap , rmapRel , andbmap, specifying various
mappings for the fixed and random effects, used to generate predictions from the
fitted object.

method: the estimation method: either"ML" for maximum likelihood, or"REML" for
restricted maximum likelihood.

modelStruct: an object inheriting from classnlmeStruct , representing a list of mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

numIter: the number of iterations used in the iterative algorithm.

residuals: a data frame with the residuals as columns. The leftmost column corre-
sponds to the population residuals and successive columns from left to right
correspond to increasing levels of grouping.

sigma: the estimated within-group error standard deviation.

varFix: an approximate covariance matrix of the fixed effects estimates.

163

SEE ALSO
nlme , nlmeStruct

nlmeStruct Nonlinear Mixed-Effects Structure nlmeStruct

A nonlinear mixed-effects structure is a list of model components representing
different sets of parameters in the nonlinear mixed-effects model. AnnlmeStruct

list must contain at least areStruct object, but may also containcorStruct

andvarFunc objects.NULLarguments are not included in thenlmeStruct list.

nlmeStruct(reStruct, corStruct, varStruct)

ARGUMENTS

reStruct: a reStruct representing a random effects structure.

corStruct: an optionalcorStruct object, representing a correlation structure. Default
is NULL.

varStruct: an optionalvarFunc object, representing a variance function structure. De-
fault is NULL.

VALUE
a list of model components determining the parameters to be estimated for the
associated nonlinear mixed-effects model.

SEE ALSO
nlme , reStruct , corClasses , varClasses

EXAMPLE

nlms1 <- nlmeStruct(reStruct(∼ age), corAR1(), varPower())

164

nlsList List of nls Objects with a Common Model nlsList

Data is partitioned according to the levels of the grouping factor defined in
model and individualnls fits are obtained for eachdata partition, using the
model defined inmodel .

nlsList(model, data, start, control, level, na.action, pool)

ARGUMENTS

model: either a nonlinear model formula, with the response on the left of a∼ operator
and an expression involving parameters, covariates, and a grouping factor sep-
arated by the| operator on the right, or aselfStart function. The method
functionnlsList.selfStart is documented separately.

data: a data frame in which to interpret the variables named inmodel .

start: an optional named list with initial values for the parameters to be estimated in
model . It is passed as thestart argument to eachnls call and is required when
the nonlinear function inmodel does not inherit from classselfStart .

control: a list of control values passed as thecontrol argument tonls . Defaults to an
empty list.

level: an optional integer specifying the level of grouping to be used when multiple
nested levels of grouping are present.

na.action: a function that indicates what should happen when the data containNAs.
The default action (na.fail) causesnlsList to print an error message and
terminate if there are any incomplete observations.

pool: an optional logical value that is preserved as an attribute of the returned value.
This will be used as the default forpool in calculations of standard deviations
or standard errors for summaries.

VALUE
a list of nls objects with as many components as the number of groups defined
by the grouping factor. Generic functions such ascoef , fixef , lme , pairs ,
plot , predict , ranef , summary, andupdate have methods that can be ap-
plied to annlsList object.

SEE ALSO
nls , nlme.nlsList .

EXAMPLE

fm1 <- nlsList(weight ∼ SSlogis(Time, Asym, xmid, scal) | Plot,
Soybean)

165

nlsList.selfStart nlsList Fit from a selfStart Function nlsList.selfStart

The response variable and primary covariate informula(data) are used to-
gether withmodel to construct the nonlinear model formula. This is used in the
nls calls and, because a selfStarting model function can calculate initial esti-
mates for its parameters from the data, no starting estimates need to be provided.

nlsList(model, data, start, control, level, na.action, pool)

ARGUMENTS

model: a selfStart model function, which calculates initial estimates for the model
parameters fromdata .

data: a data frame in which to interpret the variables inmodel . Because no grouping
factor can be specified inmodel , data must inherit from classgroupedData .

other arguments: identical to the arguments in the generic function call. See the doc-
umentation onnlsList .

VALUE
a list of nls objects with as many components as the number of groups defined
by the grouping factor. ANULLvalue is assigned to the components correspond-
ing to clusters for which thenls algorithm failed to converge. Generic functions
such ascoef , fixef , lme , pairs , plot , predict , ranef , summary, andup-

date have methods that can be applied to annlsList object.

SEE ALSO
selfStart , groupedData , nls , nlme.nlsList , nlsList.formula

EXAMPLE

fm1 <- nlsList(SSlogis, Soybean)

NLSstClosestX Inverse Interpolation NLSstClosestX

Use inverse linear interpolation to approximate thex value at which the function
represented byxy is equal toyval .

NLSstClosestX(xy, yval)

ARGUMENTS

xy: a sortedXyData object

yval: the numeric value on they scale to get close to

VALUE
A single numeric value on thex scale.

166

EXAMPLE

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstClosestX(DN.srt, 1.0)

NLSstLfAsymptote Horizontal Asymptote on the Left Side NLSstLfAsymptote

Provide an initial guess at the horizontal asymptote on the left side (i.e. small
values ofx) of the graph ofy versusx from thexy object. Primarily used within
initial functions for self-starting nonlinear regression models.

NLSstLfAsymptote(xy)

ARGUMENTS

xy: a sortedXyData object

VALUE
A single numeric estimating the horizontal asymptote for smallx .

EXAMPLE

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side NLSstRtAsymptote

Provide an initial guess at the horizontal asymptote on the right side (i.e. large
values ofx) of the graph ofy versusx from thexy object. Primarily used within
initial functions for self-starting nonlinear regression models.

NLSstRtAsymptote(xy)

ARGUMENTS

xy: a sortedXyData object

VALUE
A single numeric estimating the horizontal asymptote for largex .

EXAMPLE

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstRtAsymptote(DN.srt)

167

pairs.compareFits Pairs Plot of compareFits Object pairs.compareFits

Scatter plots of the values being compared are generated for each pair of coef-
ficients inobject . Different symbols (colors) are used for each object being
compared and values corresponding to the same group are joined by a line, to
facilitate comparison of fits. If only two coefficients are present, thetrellis

functionxyplot is used; otherwise thetrellis functionsplom is used.

pairs(object, subset, key, ...)

ARGUMENTS

object: an object of classcompareFits .

subset: an optional logical or integer vector specifying which rows ofobject should
be used in the plots. If missing, all rows are used.

key: an optional logical value, or list. IfTRUE, a legend is included at the top of
the plot indicating which symbols (colors) correspond to which objects being
compared. IfFALSE, no legend is included. If given as a list,key is passed
down as an argument to thetrellis function generating the plots (splom or
xyplot). Defaults toTRUE.

...: optional arguments passed down to thetrellis function generating the plots.

VALUE
Pairwise scatter plots of the values being compared, with different symbols (col-
ors) used for each object under comparison.

SEE ALSO
compareFits ,plot.compareFits , xyplot , splom

EXAMPLE

fm1 <- lmList(Orthodont)
fm2 <- lme(Orthodont)
pairs(compareFits(coef(fm1), coef(fm2)))

168

pairs.lmList Pairs Plot of an lmList Object pairs.lmList

Diagnostic plots for the linear model fits corresponding to theobject com-
ponents are obtained. Theform argument gives considerable flexibility in the
type of plot specification. A conditioning expression (on the right side of a|

operator) always implies that different panels are used for each level of the con-
ditioning factor, according to a Trellis display. The expression on the right hand
side of the formula, before a| operator, must evaluate to a data frame with at
least two columns. If the data frame has two columns, a scatter plot of the two
variables is displayed (the Trellis functionxyplot is used). Otherwise, if more
than two columns are present, a scatter plot matrix with pairwise scatter plots of
the columns in the data frame is displayed (the Trellis functionsplom is used).

pairs(object, form, label, id, idLabels, grid, subset, ...)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

form: an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtainobject can be referenced.
In addition,object itself can be referenced in the formula using the symbol
"." . Conditional expressions on the right of a| operator can be used to define
separate panels in a Trellis display. The expression on the right hand side of
form , and to the left of the| operator, must evaluate to a data frame with at
least two columns. Default is∼coef(.) , corresponding to a pairs plot of the
coefficients ofobject .

id: an optional numeric value, or one-sided formula. If given as a value, it is used as
a significance level for an outlier test based on the Mahalanobis distances of the
estimated random effects. Groups with random effects distances greater than the
1-value percentile of the appropriate chi-square distribution are identified in the
plot usingidLabels . If given as a one-sided formula, its right hand side must
evaluate to a logical, integer, or character vector which is used to identify points
in the plot. If missing, no points are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the points identified according toid . If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified points. Default is the
innermost grouping factor.

grid: an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

169

subset: an optional expression indicating the subset of the observations that should be
used in the plot. This can be a logical vector, or a numeric vector indicating
which observation numbers are to be included, or a character vector of the row
names to be included. All observations are included by default.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot.

SEE ALSO
lmList , xyplot , splom

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
scatter plot of coefficients by gender, identifying
unusual subjects
pairs(fm1, ∼ coef(.)| Sex, id = 0.1, adj = -0.5)
scatter plot of estimated random effects
pairs(fm1, ∼ ranef(.))

pairs.lme Pairs Plot of an lme Object pairs.lme

Diagnostic plots for the linear mixed-effects fit are obtained. Theform argument
gives considerable flexibility in the type of plot specification. A conditioning
expression (on the right side of a| operator) always implies that different panels
are used for each level of the conditioning factor, according to a Trellis display.
The expression on the right hand side of the formula, before a| operator, must
evaluate to a data frame with at least two columns. If the data frame has two
columns, a scatter plot of the two variables is displayed (the Trellis function
xyplot is used). Otherwise, if more than two columns are present, a scatter plot
matrix with pairwise scatter plots of the columns in the data frame is displayed
(the Trellis functionsplom is used).

pairs(object, form, label, id, idLabels, grid, subset, ...)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

form: an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtainobject can be referenced.
In addition,object itself can be referenced in the formula using the symbol
"." . Conditional expressions on the right of a| operator can be used to define
separate panels in a Trellis display. The expression on the right hand side of
form , and to the left of the| operator, must evaluate to a data frame with at
least two columns. Default is∼coef(.) , corresponding to a pairs plot of the
coefficients evaluated at the innermost level of nesting.

170

id: an optional numeric value, or one-sided formula. If given as a value, it is used as
a significance level for an outlier test based on the Mahalanobis distances of the
estimated random effects. Groups with random effects distances greater than the
1-value percentile of the appropriate chi-square distribution are identified in the
plot usingidLabels . If given as a one-sided formula, its right hand side must
evaluate to a logical, integer, or character vector which is used to identify points
in the plot. If missing, no points are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the points identified according toid . If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified points. Default is the
innermost grouping factor.

grid: an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot.

SEE ALSO
lme , xyplot , splom

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
scatter plot of coefficients by gender, identifying
unusual subjects
pairs(fm1, ∼ coef(., augFrame = T) | Sex, id = 0.1, adj = -
0.5)
scatter plot of estimated random effects
pairs(fm1, ∼ ranef(.))

171

pdBand Banded Positive-Definite Matrix pdBand

This function is a constructor for thepdBand class, representing a banded positive-
definite matrix. If the matrix associated withobject is of dimensionn and or-
der r, it is represented byr(2n − r + 1)/2 unrestricted parameters, using the
log-Cholesky parameterization described in Pinheiro and Bates (1996). When
value is numeric(0) , an uninitializedpdMat object, a one-sided formula, or
a vector of character strings,object is returned as an uninitializedpdBand

object (with just some of its attributes and its class defined) and needs to have
its coefficients assigned later, generally using thecoef or matrix replacement
functions. Ifvalue is an initializedpdMat object,object will be constructed
from as.matrix(value) . Finally, if value is a numeric vector, it is assumed
to represent the unrestricted coefficients of the log-Cholesky parameterization of
the underlying positive-definite matrix.

pdBand(value, form, nam, data, ord)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

ord: an optional integer specifying the order of the banded matrix represented by
the returnedpdBand object, defined as the number of nonzero diagonals in the
upper-triangular part of the matrix. Defaults to 2.

VALUE
a pdBand object representing a banded positive-definite matrix, also inheriting
from classpdMat .

172

REFERENCES
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdBand(diag(1:3), nam = c("A","B","C"))
pd1

pdBandNat Banded Positive-Definite Matrix in Natural ParameterizationpdBandNat

This function is a constructor for thepdBandNat class, representing a banded
positive-definite matrix, using a natural parameterization . If the matrix associ-
ated withobject is of dimensionn and orderr, it is represented byr(2n− r+
1)/2 parameters. LettingΣij denote theijth element of the underlying positive
definite matrix (|i − j| < r) andρij = Σij/

√
ΣiiΣjj , i 6= j denote the as-

sociated ”correlations”, ifunconstrained = TRUE , the ”natural” parameters
are given bylog(Σii), i = 1, .., n andlog((1 + ρij)/(1 − ρij)), |i − j| < r.
Note that, in this case, all natural parameters are individually unrestricted, but
not jointly unrestricted (meaning that not all unrestricted vectors would give
positive-definite matrices). Ifunconstrained = FALSE , theΣij are used to
parameterize the returned object. This class does not define an unrestricted pa-
rameterization and, therefore, should NOT be used for optimization. It is mostly
used for deriving approximate confidence intervals on parameters following the
optimization of an objective function. Whenvalue is numeric(0) , an unini-
tializedpdMat object, a one-sided formula, or a vector of character strings,ob-

ject is returned as an uninitializedpdBand object (with just some of its at-
tributes and its class defined) and needs to have its coefficients assigned later,
generally using thecoef or matrix replacement functions. Ifvalue is an ini-
tialized pdMat object,object will be constructed fromas.matrix(value) .
Finally, if value is a numeric vector, it is assumed to represent the natural pa-
rameters of the underlying positive-definite matrix.

pdBandNat(value, form, nam, data, ord, unconstrained)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

173

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

ord: an optional integer specifying the order of the banded matrix represented by the
returnedpdBandNat object, defined as the number of nonzero diagonals in the
upper-triangular part of the matrix. Defaults to 2.

unconstrained: an optional logical value indicating whether an unconstrained natural
parameterization should be used. Defaults toTRUE.

VALUE
a pdBandNat object representing a banded positive-definite matrix in natural
parameterization, also inheriting from classpdMat .

SEE ALSO
asNatural.pdBand , pdBand

EXAMPLE

pdBandNat(diag(1:3))

pdBlocked Positive-Definite Block Diagonal Matrix pdBlocked

This function is a constructor for thepdBlocked class, representing a positive-
definite block-diagonal matrix. Each block-diagonal element of the underlying
matrix is itself a positive-definite matrix and is represented internally as an indi-
vidualpdMat object. Whenvalue is numeric(0) , a list of uninitializedpdMat

objects, a list of one-sided formulas, or a list of vectors of character strings,ob-

ject is returned as an uninitializedpdBlocked object (with just some of its
attributes and its class defined) and needs to have its coefficients assigned later,
generally using thecoef or matrix replacement functions. Ifvalue is a list
of initialized pdMat objects,object will be constructed from the list obtained
by applyingas.matrix to each of thepdMat elements ofvalue . Finally, if
value is a list of numeric vectors, they are assumed to represent the unrestricted
coefficients of the block-diagonal elements of the underlying positive-definite
matrix.

pdBlocked(value, form, nam, data, pdClass)

ARGUMENTS

174

value: an optional list with elements to be used as thevalue argument to otherpdMat

constructors. These include:pdMat objects, positive-definite matrices, one-
sided linear formulas, vectors of character strings, or numeric vectors. All el-
ements in the list must be similar (e.g. all one-sided formulas, or all numeric
vectors). Defaults tonumeric(0) , corresponding to an uninitialized object.

form: an optional list of one-sided linear formulas specifying the row/column names
for the block-diagonal elements of the matrix represented byobject . Be-
cause factors may be present inform , the formulas needs to be evaluated on
a data.frame to resolve the names they define. This argument is ignored when
value is a list of one-sided formulas. Defaults toNULL.

nam: an optional list of vector of character strings specifying the row/column names
for the block-diagonal elements of the matrix represented by object. Each of
its components must have length equal to the dimension of the corresponding
block-diagonal element and unreplicated elements. This argument is ignored
whenvalue is a list of vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is made
to obtain information on anyfactors appearing in the formulas. Defaults to the
parent frame from which the function was called.

pdClass: an optional vector of character strings naming thepdMat classes to be assigned
to the individual blocks in the underlying matrix. If a single class is specified, it
is used for all block-diagonal elements. This argument will only be used when
value is missing, or its elements are notpdMat objects. Defaults to"pdSymm" .

VALUE
apdBlocked object representing a positive-definite block-diagonal matrix, also
inheriting from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdBlocked(list(diag(1:2), diag(c(0.1, 0.2, 0.3))),
nam = list(c("A","B"), c("a1", "a2", "a3")))

175

pdClasses Positive-Definite Matrix Classes pdClasses

Standard classes of positive-definite matrices (pdMat) structures available in the
nlme library.

STANDARD CLASSES

pdSymm: general positive-definite matrix, with no additional structure

pdDiag: diagonal

pdIdent: multiple of an identity

pdCompSymm: compound symmetry structure (constant diagonal and constant off-diagonal
elements)

pdBand: banded positive-definite matrix

pdBand: banded positive-definite matrix

pdBlocked: block-diagonal matrix, with diagonal blocks of any ”atomic”pdMat class

NOTE
Users may define their ownpdMat classes by specifying aconstructor func-
tion and, at a minimum, methods for the functionspdConstruct , pdMatrix

andcoef . For examples of these functions, see the methods for classespdSymm

andpdDiag .

SEE ALSO
pdBand , pdCompSymm, pdDiag , pdIdent , pdSymm, pdBand , pdBlocked

176

pdCompSymm Compound Symmetry PD Matrix pdCompSymm

This function is a constructor for thepdCompSymmclass, representing a positive-
definite matrix with compound symmetry structure (constant diagonal and con-
stant off-diagonal elements). The underlying matrix is represented by 2 unre-
stricted parameters. Whenvalue is numeric(0) , an unitializedpdMat object,
a one-sided formula, or a vector of character strings,object is returned as an
uninitializedpdCompSymmobject (with just some of its attributes and its class
defined) and needs to have its coefficients assigned later, generally using the
coef or matrix replacement functions. Ifvalue is an initializedpdMat ob-
ject, object will be constructed fromas.matrix(value) . Finally, if value

is a numeric vector of length 2, it is assumed to represent the unrestricted coeffi-
cients of the underlying positive-definite matrix.

pdCompSymm(value, form, nam, data)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector of length 2. De-
faults tonumeric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

VALUE
a pdCompSymmobject representing a positive-definite matrix with compound
symmetry structure, also inheriting from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

177

EXAMPLE

pd1 <- pdCompSymm(diag(3) + 1, nam = c("A","B","C"))
pd1

pdConstruct Construct pdMat Objects pdConstruct

This function is an alternative constructor for thepdMat class associated with
object and is mostly used internally in other functions. See the documentation
on the principal constructor function, generally with the same name as thepdMat

class of object.

pdConstruct(object, value, form, nam, data)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

VALUE
a pdMat object representing a positive-definite matrix, inheriting from the same
classes asobject .

SEE ALSO
pdCompSymm, pdDiag , pdIdent , pdSymm

EXAMPLE

pd1 <- pdSymm()
pdConstruct(pd1, diag(1:4))

178

pdConstruct.pdBlocked Construct pdBlocked pdConstruct.pdBlocked

This function give an alternative constructor for thepdBlocked class, repre-
senting a positive-definite block-diagonal matrix. Each block-diagonal element
of the underlying matrix is itself a positive-definite matrix and is represented
internally as an individualpdMat object. Whenvalue is numeric(0) , a list
of uninitializedpdMat objects, a list of one-sided formulas, or a list of vectors
of character strings,object is returned as an uninitializedpdBlocked object
(with just some of its attributes and its class defined) and needs to have its co-
efficients assigned later, generally using thecoef or matrix replacement func-
tions. If value is a list of initializedpdMat objects,object will be constructed
from the list obtained by applyingas.matrix to each of thepdMat elements
of value . Finally, if value is a list of numeric vectors, they are assumed to
represent the unrestricted coefficients of the block-diagonal elements of the un-
derlying positive-definite matrix.

pdConstruct(object, value, form, nam, data, pdClass)

ARGUMENTS

object: an object inheriting from classpdBlocked , representing a positive definite
block-diagonal matrix.

value: an optional list with elements to be used as thevalue argument to otherpdMat

constructors. These include:pdMat objects, positive-definite matrices, one-
sided linear formulas, vectors of character strings, or numeric vectors. All el-
ements in the list must be similar (e.g. all one-sided formulas, or all numeric
vectors). Defaults tonumeric(0) , corresponding to an uninitialized object.

form: an optional list of one-sided linear formula specifying the row/column names for
the block-diagonal elements of the matrix represented byobject . Because fac-
tors may be present inform , the formulas needs to be evaluated on a data.frame
to resolve the names they defines. This argument is ignored whenvalue is a list
of one-sided formulas. Defaults toNULL.

nam: an optional list of vector of character strings specifying the row/column names
for the block-diagonal elements of the matrix represented by object. Each of
its components must have length equal to the dimension of the corresponding
block-diagonal element and unreplicated elements. This argument is ignored
whenvalue is a list of vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

179

pdClass: an optional vector of character strings naming thepdMat classes to be assigned
to the individual blocks in the underlying matrix. If a single class is specified, it
is used for all block-diagonal elements. This argument will only be used when
value is missing, or its elements are notpdMat objects. Defaults to"pdSymm" .

VALUE
apdBlocked object representing a positive-definite block-diagonal matrix, also
inheriting from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdBlocked(list(c("A","B"), c("a1", "a2", "a3")))
pdConstruct(pd1, list(diag(1:2), diag(c(0.1, 0.2, 0.3))))

pdDiag Diagonal Positive-Definite Matrix pdDiag

This function is a constructor for thepdDiag class, representing a diagonal
positive-definite matrix. If the matrix associated withobject is of dimension
n, it is represented by n unrestricted parameters, given by the logarithm of the
square-root of the diagonal values. Whenvalue is numeric(0) , an uninitial-
izedpdMat object, a one-sided formula, or a vector of character strings,object

is returned as an uninitializedpdDiag object (with just some of its attributes and
its class defined) and needs to have its coefficients assigned later, generally using
thecoef or matrix replacement functions. Ifvalue is an initializedpdMat ob-
ject, object will be constructed fromas.matrix(value) . Finally, if value

is a numeric vector, it is assumed to represent the unrestricted coefficients of the
underlying positive-definite matrix.

pdDiag(value, form, nam, data)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector of length equal
to the dimension of the underlying positive-definite matrix. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

180

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

VALUE
apdDiag object representing a diagonal positive-definite matrix, also inheriting
from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdDiag(diag(1:3), nam = c("A","B","C"))
pd1

pdFactor Square-Root Factor of a Positive-Definite Matrix pdFactor

A square-root factor of the positive-definite matrix represented byobject is
obtained. LettingΣ denote a positive-definite matrix, a square-root factor ofΣ
is any square matrixL such thatΣ = LtL. This function extractsL.

pdFactor(object, ...)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix,
which must have been initialized (i.e.length(coef(object)) > 0).

...: some methods for the generic function may require additional arguments.

VALUE
a vector with a square-root factor of the positive-definite matrix associated with
object stacked column-wise.

NOTE
This function is used intensively in optimization algorithms and its value is re-
turned as a vector for efficiency reasons. ThepdMatrix function can be used to
obtain square-root factors in matrix form.

SEE ALSO
pdMatrix

EXAMPLE

pd1 <- pdCompSymm(4 * diag(3) + 1)
pdFactor(pd1)

181

pdFactor.reStruct reStruct Factors pdFactor.reStruct

This method function extracts square-root factors of the positive-definite matri-
ces corresponding to thepdMat elements ofobject .

pdFactor(object)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

VALUE
a vector with square-root factors of the positive-definite matrices corresponding
to the elements ofobject stacked column-wise.

NOTE
This function is used intensively in optimization algorithms and its value is re-
turned as a vector for efficiency reasons. ThepdMatrix function can be used to
obtain square-root factors in matrix form.

SEE ALSO
pdMatrix.reStruct , pdFactor.pdMat

EXAMPLE

rs1 <- reStruct(pdSymm(diag(3), form= ∼ Sex+age, data=Orthodont))
pdFactor(rs1)

pdIdent Multiple of an Identity Positive-Definite Matrix pdIdent

This function is a constructor for thepdIdent class, representing a multiple
of the identity positive-definite matrix. The matrix associated withobject is
represented by 1 unrestricted parameter, given by the logarithm of the square-
root of the diagonal value. Whenvalue is numeric(0) , an uninitializedpdMat

object, a one-sided formula, or a vector of character strings,object is returned
as an uninitializedpdIdent object (with just some of its attributes and its class
defined) and needs to have its coefficients assigned later, generally using the
coef or matrix replacement functions. Ifvalue is an initializedpdMat object,
object will be constructed fromas.matrix(value) . Finally, if value is
a numeric value, it is assumed to represent the unrestricted coefficient of the
underlying positive-definite matrix.

pdIdent(value, form, nam, data)

ARGUMENTS

182

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric value. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

VALUE
apdIdent object representing a multiple of the identity positive-definite matrix,
also inheriting from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdIdent(4 * diag(3), nam = c("A","B","C"))
pd1

183

pdKron Kronecker-Product Positive-Definite Matrix pdKron

This function is a constructor for thepdKron class, representing a positive-
definite matrix obtained as the Kronecker product between an identity matrix
and a basic positive-definite matrix. AnypdMat object can be used to define
the basic pd matrix. The order of the idientity matrix used in the Kronecker
product is determined by the number of levels of the factor declared ingroups .
The number of coefficients associated with this class is equal to the number
of coefficients used to represent the basicpdMat object. Whenvalue is nu-

meric(0) , an uninitializedpdMat object, a one-sided formula, or a vector of
character strings,object is returned as an uninitializedpdKron object (with
just some of its attributes and its class defined) and needs to have its coefficients
assigned later, generally using thecoef or matrix replacement functions. If
value is an initializedpdMat object, the basicpdMat object will be constructed
from as.matrix(value) . Finally, if value is a numeric vector, it is assumed
to represent the unrestricted coefficients of the basicpdMat object.

pdKron(value, form, nam, data, pdClass, groups)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
basic matrix used to form the Kronecker-product matrix represented byobject .
Because factors may be present inform , the formula needs to be evaluated on
a data.frame to resolve the names it defines. This argument is ignored when
value is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
basic matrix used to form the Kronecker-product matrix represented byobject .
It must have length equal to the dimension of the underlying basic positive-
definite matrix and unreplicated elements. This argument is ignored whenvalue

is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue , form ,
andgroups . It is used to obtain the levels forfactors , which affect the dimen-
sions and the row/column names of the underlying matrix. IfNULL, no attempt
is made to obtain information onfactors appearing in the formulas. Defaults
to the parent frame from which the function was called.

pdClass: an optional character string naming thepdMat class to be assigned to the basic
element used to form the Kronecker product represented by the returned object.
This argument will only be used whenvalue is not apdMat object. Defaults to
"pdSymm" .

184

groups: a one-sided formula specifying the grouping variable used in forming the Kronecker-
product matrix represented byobject . Its right hand side must evaluate to a
factor indata ; the number of levels of the corresponding factor determines the
number of identical block diagonal elements in the matrix represented byob-

ject .

VALUE
a pdKron object representing a positive-definite matrix obtained as the Kro-
necker product between an identity matrix and a basic positive-definite matrix,
also inheriting from classpdMat .

SEE ALSO
matrix<-.pdKron

EXAMPLE

pd1 <- pdKron(3*diag(2)+1, form = ∼ day, data = Pixel, groups = ∼ Side)
pd1

pdMat Positive-Definite Matrix pdMat

This function gives an alternative way of constructing an object inheriting from
thepdMat class named inpdClass , or fromdata.class(object) if object

inherits frompdMat , and is mostly used internally in other functions. See the
documentation on the principal constructor function, generally with the same
name as thepdMat class of object.

pdMat(value, form, nam, data, pdClass)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is

185

made to obtain information onfactors appearing the formulas. Defaults to
parent frame from which the function was called.

pdClass: an optional character string naming thepdMat class to be assigned to the re-
turned object. This argument will only be used whenvalue is not apdMat

object. Defaults to"pdSymm" .

VALUE
a pdMat object representing a positive-definite matrix, inheriting from the class
named inpdClass , or fromclass(object) , if object inherits frompdMat .

SEE ALSO
pdCompSymm, pdDiag , pdIdent , pdSymm

EXAMPLE

pd1 <- pdMat(diag(1:4), pdClass = "pdDiag")
pd1

pdMatrix pdMat Matrix or Square-Root Factor pdMatrix

The positive-definite matrix represented byobject , or a square-root factor of it
is obtained. LettingΣ denote a positive-definite matrix, a square-root factor of
Σ is any square matrixL such thatΣ = LtL. This function extractsΣ orL.

pdMatrix(object, fact, ...)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

fact: an optional logical value. IfTRUE, a square-root factor of the positive-definite
matrix represented byobject is returned; else, ifFALSE, the positive-definite
matrix is returned. Defaults toFALSE.

...: some methods for the generic function may require additional arguments.

VALUE
if fact is FALSEthe positive-definite matrix represented byobject is returned;
else a square-root of the positive-definite matrix is returned.

SEE ALSO
as.matrix.pdMat , pdFactor , corMatrix

EXAMPLE

pd1 <- pdSymm(diag(1:4))
pdMatrix(pd1)

186

pdMatrix.reStruct reStruct Matrix or Square-Root Factor pdMatrix.reStruct

This method function extracts the positive-definite matrices corresponding to
the pdMat elements ofobject , or square-root factors of the positive-definite
matrices.

pdMatrix(object, fact)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

fact: an optional logical value. IfTRUE, square-root factors of the positive-definite
matrices represented by the elements ofobject are returned; else, ifFALSE, the
positive-definite matrices are returned. Defaults toFALSE.

VALUE
a list with components given by the positive-definite matrices corresponding to
the elements ofobject , or square-root factors of the positive-definite matrices.

SEE ALSO
as.matrix.reStruct , reStruct , pdMatrix.pdMat

EXAMPLE

rs1 <- reStruct(pdSymm(diag(3), form= ∼ Sex+age, data=Orthodont))
pdMatrix(rs1)

pdStrat Stratified Positive-Definite Matrix pdStrat

This function is a constructor for thepdStrat class, representing a set of positive-
definite matrices corresponding to different strata, defined bystrata . Different
pdMat classes can be used for different strata, but they must all represent ma-
trices of equal dimensions and equal row/column names. The number of coeffi-
cients associated with this class is equal to the sum of the number of coefficients
of eachpdMat object it includes. Whenvalue is numeric(0) , an uninitialized
pdMat object, a one-sided formula, or a vector of character strings,object is
returned as an uninitializedpdStrat object (with just some of its attributes and
its class defined) and needs to have its coefficients assigned later, generally using
thecoef or matrix replacement functions.

pdStrat(value, form, nam, data, strata)

ARGUMENTS

187

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, a numeric vector, or a list ofpdMat

objects, positive-definite matrices, or numeric vectors. If given as a list, all of its
elements must represent positive-definite matrices of equal dimensions and equal
row/column names, when converted topdMat objects (in particular, allpdMat

objects must have the same formula). When not given as a list,value is repeated
for all strata. Defaults tonumeric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for all
pdMat objects represented byobject . Because factors may be present inform ,
the formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrices represented byobject . It must have length equal to the dimension of
the underlying positive-definite matrices and unreplicated elements. This argu-
ment is ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue , form ,
andstrata . It is used to obtain the levels forfactors , which affect the dimen-
sions and the row/column names of the underlying matrix. IfNULL, no attempt
is made to obtain information onfactors appearing in the formulas. Defaults
to the parent frame from which the function was called.

strata: a one-sided formula specifying the stratification variable for the differentpdMat

objects represented byobject . Its right hand side must evaluate to a factor or
an integer indata .

VALUE
a pdStrat object representing a set of positive-definite matrices corresponding
to different strata.

SEE ALSO
pdMat

EXAMPLE

pd1 <- pdStrat(list(pdSymm(diag(2)), pdDiag(c(1,0))), form = ∼ age,
data = Orthodont, strata = ∼ Sex)

pd1

188

pdSymm General Positive-Definite Matrix pdSymm

This function is a constructor for thepdSymmclass, representing a general positive-
definite matrix. If the matrix associated withobject is of ordern, it is rep-
resented byn(n + 1)/2 unrestricted parameters, using the matrix-logarithm
parametrization described in Pinheiro and Bates (1996). Whenvalue is nu-

meric(0) , an uninitializedpdMat object, a one-sided formula, or a vector of
character strings,object is returned as an uninitializedpdSymmobject (with
just some of its attributes and its class defined) and needs to have its coeffi-
cients assigned later, generally using thecoef or matrix replacement func-
tions. If value is an initializedpdMat object,object will be constructed from
as.matrix(value) . Finally, if value is a numeric vector, it is assumed to
represent the unrestricted coefficients of the matrix-logarithm parametrization
of the underlying positive-definite matrix.

pdSymm(value, form, nam, data)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

VALUE
a pdSymmobject representing a general positive-definite matrix, also inheriting
from classpdMat .

REFERENCES
Pinheiro, J.C. and Bates., D.M. (1996) ”Unconstrained Parametrizations for Variance-
Covariance Matrices”, Statistics and Computing, 6, 289-296.

189

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pd1 <- pdSymm(diag(1:3), nam = c("A","B","C"))
pd1

pdSymmNat General PD Matrix in Natural Parametrization pdSymmNat

This function is a constructor for thepdSymmNat class, representing a general
positive-definite matrix, using a natural parametrization. If the matrix associated
with object is of ordern, it is represented byn(n + 1)/2 parameters. Letting
Σij denote theij-th element of the underlying positive definite matrix andρij =
Σij/

√
ΣiiΣjj , i 6= j denote the associatedcorrelations, if unconstrained

= TRUE, the natural parameters are given bylog(Σii)/2, i = 1, . . . , n and
log((1 + ρij)/(1 − ρij)), i 6= j. Note that, in this case, all natural parameters
are individually unrestricted, but not jointly unrestricted (meaning that not all
unrestricted vectors would give positive-definite matrices). Ifunconstrained

= FALSE, theΣij are used to parameterize the returned object. This class does
not define an unrestricted parameterization and, therefore, should NOT be used
for optimization. It is mostly used for deriving approximate confidence inter-
vals on parameters following the optimization of an objective function. When
value is numeric(0) , an uninitializedpdMat object, a one-sided formula, or
a vector of character strings,object is returned as an uninitializedpdSymm

object (with just some of its attributes and its class defined) and needs to have
its coefficients assigned later, generally using thecoef or matrix replacement
functions. Ifvalue is an initializedpdMat object,object will be constructed
from as.matrix(value) . Finally, if value is a numeric vector, it is assumed
to represent the natural parameters of the underlying positive-definite matrix.

pdSymmNat(value, form, nam, data, unconstrained)

ARGUMENTS

value: an optional initialization value, which can be any of the following: apdMat

object, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by+), a vector of character strings, or a numeric vector. Defaults tonu-

meric(0) , corresponding to an uninitialized object.

form: an optional one-sided linear formula specifying the row/column names for the
matrix represented byobject . Because factors may be present inform , the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored whenvalue is a one-sided formula. Defaults toNULL.

nam: an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored whenvalue is a vector of character strings. Defaults toNULL.

190

data: an optional data frame in which to evaluate the variables named invalue and
form . It is used to obtain the levels forfactors , which affect the dimensions
and the row/column names of the underlying matrix. IfNULL, no attempt is
made to obtain information onfactors appearing in the formulas. Defaults to
the parent frame from which the function was called.

unconstrained: an optional logical value indicating whether an unconstrained natural
parameterization should be used. Defaults toTRUE.

VALUE
a pdSymmNat object representing a general positive-definite matrix in natural
parametrization, also inheriting from classpdMat .

SEE ALSO
as.matrix.pdMat , coef.pdMat , matrix<-.pdMat

EXAMPLE

pdSymmNat(diag(1:3))

plot.ACF Plot an ACF Object plot.ACF

an xyplot of the autocorrelations versus the lags, withtype = "h" , is pro-
duced. Ifalpha > 0 , curves representing the critical limits for a two-sided test
of level alpha for the autocorrelations are added to the plot.

plot(object, alpha, xlab, ylab, grid, ...)

ARGUMENTS

object: an object inheriting from classACF, consisting of a data frame with two columns
namedlag andACF, representing the autocorrelation values and the correspond-
ing lags.

alpha: an optional numeric value with the significance level for testing if the autocorre-
lations are zero. Lines corresponding to the lower and upper critical values for a
test of levelalpha are added to the plot. Default is0, in which case no lines are
plotted.

xlab,ylab: optional character strings with the x- and y-axis labels. Default respectively
to "Lag" and"Autocorrelation" .

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toFALSE.

...: optional arguments passed to thexyplot function.

VALUE
anxyplot Trellis plot.

SEE ALSO
ACF, xyplot

191

EXAMPLE

fm1 <- lme(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
plot(ACF(fm1, maxLag = 10), alpha = 0.01)

plot.augPred Plot an augPred Object plot.augPred

A Trellis xyplot of predictions versus the primary covariate is generated, with a
different panel for each value of the grouping factor. Predicted values are joined
by lines, with different line types (colors) being used for each level of grouping.
Original observations are represented by circles.

plot(x, key, grid, ...)

ARGUMENTS

x: an object of classaugPred .

key: an optional logical value, or list. IfTRUE, a legend is included at the top of the
plot indicating which symbols (colors) correspond to which prediction levels.
If FALSE, no legend is included. If given as a list,key is passed down as an
argument to thetrellis function generating the plots (xyplot). Defaults to
TRUE.

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toFALSE.

...: optional arguments passed down to thetrellis function generating the plots.

VALUE
A Trellis plot of predictions versus the primary covariate, with panels determined
by the grouping factor.

SEE ALSO
augPred , xyplot

EXAMPLE

fm1 <- lme(Orthodont)
plot(augPred(fm1, level = 0:1, length.out = 2))

192

plot.compareFits Plot a compareFits Object plot.compareFits

A Trellis dotplot of the values being compared, with different rows per group,
is generated, with a different panel for each coefficient. Different symbols (col-
ors) are used for each object being compared.

plot(object, subset, key, mark, ...)

ARGUMENTS

object: an object of classcompareFits .

subset: an optional logical or integer vector specifying which rows ofobject should
be used in the plots. If missing, all rows are used.

key: an optional logical value, or list. IfTRUE, a legend is included at the top of
the plot indicating which symbols (colors) correspond to which objects being
compared. IfFALSE, no legend is included. If given as a list,key is passed
down as an argument to thetrellis function generating the plots (dotplot).
Defaults toTRUE.

mark: an optional numeric vector, of length equal to the number of coefficients be-
ing compared, indicating where vertical lines should be drawn in the plots. If
missing, no lines are drawn.

...: optional arguments passed down to thetrellis function generating the plots.

VALUE
A Trellis dotplot of the values being compared, with rows determined by the
groups and panels by the coefficients.

SEE ALSO
compareFits ,pairs.compareFits , dotplot

EXAMPLE

fm1 <- lmList(Orthodont)
fm2 <- lme(Orthodont)
plot(compareFits(coef(fm1), coef(fm2)))

193

plot.gls Plot a gls Object plot.gls

Diagnostic plots for the linear model fit are obtained. Theform argument gives
considerable flexibility in the type of plot specification. A conditioning expres-
sion (on the right side of a| operator) always implies that different panels are
used for each level of the conditioning factor, according to a Trellis display. If
form is a one-sided formula, histograms of the variable on the right hand side of
the formula, before a| operator, are displayed (the Trellis functionhistogram

is used). Ifform is two-sided and both its left and right hand side variables
are numeric, scatter plots are displayed (the Trellis functionxyplot is used).
Finally, if form is two-sided and its left had side variable is a factor, box-plots
of the right hand side variable by the levels of the left hand side variable are
displayed (the Trellis functionbwplot is used).

plot(object, form, abline, id, idLabels, idResType, grid, sub-
set, ...)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

form: an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtainobject can be referenced. In addition,
object itself can be referenced in the formula using the symbol"." . Condi-
tional expressions on the right of a| operator can be used to define separate
panels in a Trellis display. Default isresid(., type = "p") ∼fitted(.) ,
corresponding to a plot of the standardized residuals versus fitted values, both
evaluated at the innermost level of nesting.

abline: an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id: an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residu-
als. Observations with absolute standardized residuals greater than the1-id/2

quantile of the standard normal distribution are identified in the plot usingid-

Labels . If given as a one-sided formula, its right hand side must evaluate to a
logical, integer, or character vector which is used to identify observations in the
plot. If missing, no observations are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted to
character mode and used to label the observations identified according toid . If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character mode and used to label the identified observations. De-
fault is the innermost grouping factor.

194

idResType: an optional character string specifying the type of residuals to be used in
identifying outliers, whenid is a numeric value. If"pearson" , the standard-
ized residuals (raw residuals divided by the corresponding standard errors) are
used; else, if"normalized" , the normalized residuals (standardized residuals
pre-multiplied by the inverse square-root factor of the estimated error correla-
tion matrix) are used. Partial matching of arguments is used, so only the first
character needs to be provided. Defaults to"pearson" . .AG subset an optional
expression indicating the subset of the observations that should be used in the
plot. This can be a logical vector, or a numeric vector indicating which obser-
vation numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

grid: an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: ifxyplot defaults toTRUE, else
defaults toFALSE.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot.

SEE ALSO
gls , xyplot , bwplot , histogram

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

standardized residuals versus fitted values by Mare
plot(fm1, resid(., type = "p") ∼ fitted(.) | Mare, abline = 0)
box-plots of residuals by Mare
plot(fm1, Mare ∼ resid(.))
observed versus fitted values by Mare
plot(fm1, follicles ∼ fitted(.) | Mare, abline = c(0,1))

195

plot.intervals.lmList Plot lmList Confidence Intervals plot.intervals.lmList

A Trellis dot-plot of the confidence intervals on the linear model coefficients
is generated, with a different panel for each coefficient. Rows in the dot-plot
correspond to the names of thelm components of thelmList object used to
produceobject . The lower and upper confidence limits are connected by a
line segment and the estimated coefficients are marked with a"+" . The Trellis
functiondotplot is used in this method function.

plot(object, ...)

ARGUMENTS

object: an object inheriting from classintervals.lmList , representing confidence
intervals and estimates for the coefficients in thelm components of thelmList

object used to produceobject .

...: optional arguments passed to the Trellisdotplot function.

VALUE
a Trellis plot with the confidence intervals on the coefficients of the individual
lm components of thelmList that generatedobject .

SEE ALSO
intervals.lmList , lmList , dotplot

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
plot(intervals(fm1))

196

plot.lmList Plot an lmList Object plot.lmList

Diagnostic plots for the linear model fits corresponding to theobject compo-
nents are obtained. Theform argument gives considerable flexibility in the type
of plot specification. A conditioning expression (on the right side of a| operator)
always implies that different panels are used for each level of the conditioning
factor, according to a Trellis display. Ifform is a one-sided formula, histograms
of the variable on the right hand side of the formula, before a| operator, are dis-
played (the Trellis functionhistogram is used). Ifform is two-sided and both
its left and right hand side variables are numeric, scatter plots are displayed (the
Trellis functionxyplot is used). Finally, ifform is two-sided and its left had
side variable is a factor, box-plots of the right hand side variable by the levels of
the left hand side variable are displayed (the Trellis functionbwplot is used).

plot(object, form, abline, id, idLabels, grid, subset, ...)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

form: an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtainobject can be referenced. In addition,
object itself can be referenced in the formula using the symbol"." . Condi-
tional expressions on the right of a| operator can be used to define separate pan-
els in a Trellis display. Default isresid(., type = "pool") ∼fitted(.) ,
corresponding to a plot of the standardized residuals (using a pooled estimate for
the residual standard error) versus fitted values.

abline: an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id: an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residuals.
Observations with absolute standardized residuals greater than the 1 - value/2
quantile of the standard normal distribution are identified in the plot usingid-

Labels . If given as a one-sided formula, its right hand side must evaluate to a
logical, integer, or character vector which is used to identify observations in the
plot. If missing, no observations are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the observations identified according toid . If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character and used to label the identified observations. Default is
getGroups(object) . .AG subset an optional expression indicating the subset

197

of the observations that should be used in the plot. This can be a logical vector,
or a numeric vector indicating which observation numbers are to be included, or
a character vector of the row names to be included. All observations are included
by default.

grid: an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: ifxyplot defaults toTRUE, else
defaults toFALSE.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot.

SEE ALSO
lmList , xyplot , bwplot , histogram

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
standardized residuals versus fitted values by gender
plot(fm1, resid(., type = "pool") ∼ fitted(.)| Sex,

abline = 0, id = 0.05)
box-plots of residuals by Subject
plot(fm1, Subject ∼ resid(.))
observed versus fitted values by Subject
plot(fm1, distance ∼ fitted(.)| Subject, abline = c(0,1))

plot.lme Plot an lme Object plot.lme

Diagnostic plots for the linear mixed-effects fit are obtained. Theform argument
gives considerable flexibility in the type of plot specification. A conditioning
expression (on the right side of a| operator) always implies that different panels
are used for each level of the conditioning factor, according to a Trellis display. If
form is a one-sided formula, histograms of the variable on the right hand side of
the formula, before a| operator, are displayed (the Trellis functionhistogram

is used). Ifform is two-sided and both its left and right hand side variables
are numeric, scatter plots are displayed (the Trellis functionxyplot is used).
Finally, if form is two-sided and its left had side variable is a factor, box-plots
of the right hand side variable by the levels of the left hand side variable are
displayed (the Trellis functionbwplot is used).

plot(object, form, abline, id, idLabels, idResType, grid, sub-
set, ...)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

198

form: an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtainobject can be referenced. In addition,
object itself can be referenced in the formula using the symbol"." . Condi-
tional expressions on the right of a| operator can be used to define separate
panels in a Trellis display. Default isresid(., type = "p") ∼fitted(.)

, corresponding to a plot of the standardized residuals versus fitted values, both
evaluated at the innermost level of nesting.

abline: an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id: an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residu-
als. Observations with absolute standardized residuals greater than the1-id/2

quantile of the standard normal distribution are identified in the plot usingid-

Labels . If given as a one-sided formula, its right hand side must evaluate to a
logical, integer, or character vector which is used to identify observations in the
plot. If missing, no observations are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the observations identified according toid . If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character and used to label the identified observations. Default is
the innermost grouping factor.

idResType: an optional character string specifying the type of residuals to be used in
identifying outliers, whenid is a numeric value. If"pearson" , the standard-
ized residuals (raw residuals divided by the corresponding standard errors) are
used; else, if"normalized" , the normalized residuals (standardized residuals
pre-multiplied by the inverse square-root factor of the estimated error correla-
tion matrix) are used. Partial matching of arguments is used, so only the first
character needs to be provided. Defaults to"pearson" .

grid: an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: ifxyplot defaults toTRUE, else
defaults toFALSE.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot.

SEE ALSO
lme , xyplot , bwplot , histogram

199

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
standardized residuals versus fitted values by gender
plot(fm1, resid(., type = "p") ∼ fitted(.) | Sex, abline = 0)
box-plots of residuals by Subject
plot(fm1, Subject ∼ resid(.))
observed versus fitted values by Subject
plot(fm1, distance ∼ fitted(.) | Subject, abline = c(0,1))

plot.nffGroupedData Plot nffGroupedData Object plot.nffGroupedData

A Trellis dot-plot of the response by group is generated. If outer variables are
specified, the combination of their levels are used to determine the panels of the
Trellis display. The Trellis functiondotplot is used.

plot(x, outer, inner, innerGroups, xlab, ylab, strip, panel,
subset, grid, key, ...)

ARGUMENTS

x: an object inheriting from classnffGroupedData , representing agroupedData

object with a factor primary covariate and a single grouping level.

outer: an optional logical value or one-sided formula, indicating covariates that are
outer to the grouping factor, which are used to determine the panels of the Trellis
plot. If equal toTRUE, attr(object, "outer") is used to indicate the outer
covariates. An outer covariate is invariant within the sets of rows defined by
the grouping factor. Ordering of the groups is done in such a way as to preserve
adjacency of groups with the same value of the outer variables. Defaults toNULL,
meaning that no outer covariates are to be used.

inner: an optional logical value or one-sided formula, indicating a covariate that is inner
to the grouping factor, which is used to associate points within each panel of the
Trellis plot. If equal toTRUE, attr(object, "inner") is used to indicate the
inner covariate. An inner covariate can change within the sets of rows defined by
the grouping factor. Defaults toNULL, meaning that no inner covariate is present.

innerGroups: an optional one-sided formula specifying a factor to be used for group-
ing the levels of theinner covariate. Different colors, or symbols, are used
for each level of theinnerGroups factor. Default isNULL, meaning that no
innerGroups covariate is present.

xlab: an optional character string with the label for the horizontal axis. Default is they

elements ofattr(object, "labels") andattr(object, "units") pasted
together.

ylab: an optional character string with the label for the vertical axis. Default is the
grouping factor name.

200

strip: an optional function passed as thestrip argument to thedotplot function.
Default isstrip.default(..., style = 1) (seetrellis.args).

panel: an optional function used to generate the individual panels in the Trellis display,
passed as thepanel argument to thedotplot function. .AG subset an optional
expression indicating the subset of the observations that should be used in the
plot. This can be a logical vector, or a numeric vector indicating which obser-
vation numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

key: an optional logical function or function. IfTRUEand eitherinner or inner-

Groups are non-NULL, a legend for the differentinner (innerGroups) levels
is included at the top of the plot. If given as a function, it is passed as thekey

argument to thedotplot function. Default isTRUEis eitherinner or inner-

Groups are non-NULLandFALSEotherwise.

grid: this argument is included for consistency with theplot.nfnGroupedData method
calling sequence. It is ignored in this method function.

...: optional arguments passed to thedotplot function.

VALUE
a Trellis dot-plot of the response by group.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1997), ”Software Design for Longitudinal Data”,
in ”Modeling Longitudinal and Spatially Correlated Data: Methods, Applica-
tions and Future Directions”, T.G. Gregoire (ed.), Springer-Verlag, New York.
Pinheiro, J.C. and Bates, D.M. (1997) ”Future Directions in Mixed-Effects Soft-
ware: Design of NLME 3.0” available at http://nlme.stat.wisc.edu.

SEE ALSO
groupedData , dotplot

EXAMPLE

plot(Machines)
plot(Machines, inner = TRUE)

201

plot.nfnGroupedData Plot nfnGroupedData Object plot.nfnGroupedData

A Trellis plot of the response versus the primary covariate is generated. If outer
variables are specified, the combination of their levels are used to determine
the panels of the Trellis display. Otherwise, the levels of the grouping variable
determine the panels. A scatter plot of the response versus the primary covariate
is displayed in each panel, with observations corresponding to same inner group
joined by line segments. The Trellis functionxyplot is used.

plot(x, outer, inner, innerGroups, xlab, ylab, strip, aspect,
panel, subset, key, grid, ...)

ARGUMENTS

x: an object inheriting from classnfnGroupedData , representing agroupedData

object with a numeric primary covariate and a single grouping level.

outer: an optional logical value or one-sided formula, indicating covariates that are
outer to the grouping factor, which are used to determine the panels of the Trellis
plot. If equal toTRUE, attr(object, "outer") is used to indicate the outer
covariates. An outer covariate is invariant within the sets of rows defined by
the grouping factor. Ordering of the groups is done in such a way as to preserve
adjacency of groups with the same value of the outer variables. Defaults toNULL,
meaning that no outer covariates are to be used.

inner: an optional logical value or one-sided formula, indicating a covariate that is inner
to the grouping factor, which is used to associate points within each panel of the
Trellis plot. If equal toTRUE, attr(object, "inner") is used to indicate the
inner covariate. An inner covariate can change within the sets of rows defined by
the grouping factor. Defaults toNULL, meaning that no inner covariate is present.

innerGroups: an optional one-sided formula specifying a factor to be used for group-
ing the levels of theinner covariate. Different colors, or line types, are used
for each level of theinnerGroups factor. Default isNULL, meaning that no
innerGroups covariate is present.

xlab, ylab: optional character strings with the labels for the plot. Default is the corre-
sponding elements ofattr(object, "labels") andattr(object, "units")

pasted together.

strip: an optional function passed as thestrip argument to thexyplot function.
Default isstrip.default(..., style = 1) (seetrellis.args).

aspect: an optional character string indicating the aspect ratio for the plot passed as
the aspect argument to thexyplot function. Default is"xy" (seetrel-

lis.args).

202

panel: an optional function used to generate the individual panels in the Trellis display,
passed as thepanel argument to thexyplot function. .AG subset an optional
expression indicating the subset of the observations that should be used in the
plot. This can be a logical vector, or a numeric vector indicating which obser-
vation numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

key: an optional logical function or function. IfTRUEand innerGroups is non-
NULL, a legend for the differentinnerGroups levels is included at the top of
the plot. If given as a function, it is passed as thekey argument to thexyplot

function. Default isTRUEif innerGroups is non-NULLandFALSEotherwise.

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toTRUE.

...: optional arguments passed to thexyplot function.

VALUE
a Trellis plot of the response versus the primary covariate.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1997), ”Software Design for Longitudinal Data”,
in ”Modeling Longitudinal and Spatially Correlated Data: Methods, Applica-
tions and Future Directions”, T.G. Gregoire (ed.), Springer-Verlag, New York.
Pinheiro, J.C. and Bates, D.M. (1997) ”Future Directions in Mixed-Effects Soft-
ware: Design of NLME 3.0” available at http://nlme.stat.wisc.edu.

SEE ALSO
groupedData , xyplot

EXAMPLE

different panels per Subject
plot(Orthodont)
different panels per gender
plot(Orthodont, outer = TRUE)

203

plot.nmGroupedData Plot nmGroupedData Object plot.nmGroupedData

The groupedData object is summarized by the values of thedisplayLevel

grouping factor (or the combination of its values and the values of the covariate
indicated inpreserve , if any is present). The collapsed data is used to produce
a newgroupedData object, with grouping factor given by thedisplayLevel

factor, which is plotted using the appropriateplot method forgroupedData

objects with single level of grouping.

plot(x, collapseLevel, displayLevel, outer, inner, preserve,
FUN, subset, grid, ...)

ARGUMENTS

x: an object inheriting from classnmGroupedData , representing agroupedData

object with multiple grouping factors.

collapseLevel: an optional positive integer or character string indicating the grouping
level to use when collapsing the data. Level values increase from outermost to
innermost grouping. Default is the highest or innermost level of grouping.

displayLevel: an optional positive integer or character string indicating the grouping
level to use for determining the panels in the Trellis display, whenouter is
missing. Default iscollapseLevel .

outer: an optional logical value or one-sided formula, indicating covariates that are
outer to thedisplayLevel grouping factor, which are used to determine the
panels of the Trellis plot. If equal toTRUE, thedisplayLevel elementattr(object,

"outer") is used to indicate the outer covariates. An outer covariate is invariant
within the sets of rows defined by the grouping factor. Ordering of the groups
is done in such a way as to preserve adjacency of groups with the same value of
the outer variables. Defaults toNULL, meaning that no outer covariates are to be
used.

inner: an optional logical value or one-sided formula, indicating a covariate that is inner
to thedisplayLevel grouping factor, which is used to associate points within
each panel of the Trellis plot. If equal toTRUE, attr(object, "inner") is
used to indicate the inner covariate. An inner covariate can change within the
sets of rows defined by the grouping factor. Defaults toNULL, meaning that no
inner covariate is present.

preserve: an optional one-sided formula indicating a covariate whose levels should be
preserved when collapsing the data according to thecollapseLevel grouping
factor. The collapsing factor is obtained by pasting together the levels of the
collapseLevel grouping factor and the values of the covariate to be preserved.
Default isNULL, meaning that no covariates need to be preserved.

204

FUN: an optional summary function or a list of summary functions to be used for
collapsing the data. The function or functions are applied only to variables in
object that vary within the groups defined bycollapseLevel . Invariant vari-
ables are always summarized by group using the unique value that they assume
within that group. IfFUN is a single function it will be applied to each non-
invariant variable by group to produce the summary for that variable. IfFUNis
a list of functions, the names in the list should designate classes of variables in
the data such asordered , factor , or numeric . The indicated function will
be applied to any non-invariant variables of that class. The default functions to
be used aremean for numeric factors, andMode for bothfactor andordered .
TheMode function, defined internally ingsummary , returns the modal or most
popular value of the variable. It is different from themode function that returns
the S-language mode of the variable.

subset: an optional named list. Names can be either positive integers representing
grouping levels, or names of grouping factors. Each element in the list is a
vector indicating the levels of the corresponding grouping factor to be used for
plotting the data. Default isNULL, meaning that all levels are used.

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toTRUE.

...: optional arguments passed to the Trellis plot function.

VALUE
a Trellis display of the data collapsed over the values of thecollapseLevel

grouping factor and grouped according to thedisplayLevel grouping factor.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1997), ”Software Design for Longitudinal Data”,
in ”Modeling Longitudinal and Spatially Correlated Data: Methods, Applica-
tions and Future Directions”, T.G. Gregoire (ed.), Springer-Verlag, New York.
Pinheiro, J.C. and Bates, D.M. (1997) ”Future Directions in Mixed-Effects Soft-
ware: Design of NLME 3.0” available at http://nlme.stat.wisc.edu.

SEE ALSO
groupedData , collapse.groupedData , plot.nfnGroupedData , plot.nffGroupedData

EXAMPLE

no collapsing, panels by Dog
plot(Pixel, display = "Dog", inner = ∼ Side)
collapsing by Dog, preserving day
plot(Pixel, collapse = "Dog", preserve = ∼ day)

205

plot.ranef.lme Plot a ranef.lme Object plot.ranef.lme

If form is missing, or is given as a one-sided formula, a Trellis dot-plot of the
random effects is generated, with a different panel for each random effect (co-
efficient). Rows in the dot-plot are determined by theform argument (if not
missing) or by the row names of the random effects (coefficients). If a single
factor is specified inform , its levels determine the dot-plot rows (with possibly
multiple dots per row); otherwise, ifform specifies a crossing of factors, the
dot-plot rows are determined by all combinations of the levels of the individ-
ual factors in the formula. The Trellis functiondotplot is used in this method
function.

If form is a two-sided formula, a Trellis display is generated, with a differ-
ent panel for each variable listed in the right hand side ofform . Scatter plots
are generated for numeric variables and boxplots are generated for categorical
(factor or ordered) variables.

plot(object, form, omitFixed, level, grid, control, ...)

ARGUMENTS

object: an object inheriting from classranef.lme , representing the estimated coeffi-
cients or estimated random effects for thelme object from which it was pro-
duced.

form: an optional formula specifying the desired type of plot. If given as a one-sided
formula, adotplot of the estimated random effects (coefficients) grouped ac-
cording to all combinations of the levels of the factors named inform is returned.
Single factors (∼g) or crossed factors (∼g1*g2) are allowed. If given as a two-
sided formula, the left hand side must be a single random effects (coefficient) and
the right hand side is formed by covariates inobject separated by+. A Trellis
display of the random effect (coefficient) versus the named covariates is returned
in this case. Default isNULL, in which case the row names of the random effects
(coefficients) are used.

omitFixed: an optional logical value indicating whether columns with values that are
constant across groups should be omitted. Default isTRUE.

level: an optional integer value giving the level of grouping to be used forobject .
Only used whenobject is a list with different components for each grouping
level. Defaults to the highest or innermost level of grouping.

grid: an optional logical value indicating whether a grid should be added to plot. Only
applies to plots associated with two-sided formulas inform . Default isFALSE.

control: an optional list with control values for the plot, whenform is given as a two-
sided formula. The control values are referenced by name in thecontrol list
and only the ones to be modified from the default need to be specified. Available

206

values include:drawLine , a logical value indicating whether aloess smoother
should be added to the scatter plots and a line connecting the medians should be
added to the boxplots (default isTRUE); span.loess , used as thespan argu-
ment in the call topanel.loess (default is2/3); degree.loess , used as the
degree argument in the call topanel.loess (default is1); cex.axis , the
character expansion factor for the x-axis (default is0.8); srt.axis , the rota-
tion factor for the x-axis (default is0); andmgp.axis , the margin parameters
for the x-axis (default isc(2, 0.5, 0)).

...: optional arguments passed to the Trellisdotplot function.

VALUE
a Trellis plot of the estimated random-effects (coefficients) versus covariates, or
groups.

SEE ALSO
ranef.lme , lme , dotplot

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
plot(ranef(fm1))
fm1RE <- ranef(fm1, aug = TRUE)
plot(fm1RE, form = ∼ Sex)
plot(fm1RE, form = age ∼ Sex)

plot.ranef.lmList Plot a ranef.lmList Object plot.ranef.lmList

If form is missing, or is given as a one-sided formula, a Trellis dot-plot of the
random effects is generated, with a different panel for each random effect (co-
efficient). Rows in the dot-plot are determined by theform argument (if not
missing) or by the row names of the random effects (coefficients). If a single
factor is specified inform , its levels determine the dot-plot rows (with possibly
multiple dots per row); otherwise, ifform specifies a crossing of factors, the
dot-plot rows are determined by all combinations of the levels of the individ-
ual factors in the formula. The Trellis functiondotplot is used in this method
function.

If form is a two-sided formula, a Trellis display is generated, with a differ-
ent panel for each variable listed in the right hand side ofform . Scatter plots
are generated for numeric variables and boxplots are generated for categorical
(factor or ordered) variables.

plot(object, form, grid, control, ...)

ARGUMENTS

object: an object inheriting from classranef.lmList , representing the estimated co-
efficients or estimated random effects for thelmList object from which it was
produced.

207

form: an optional formula specifying the desired type of plot. If given as a one-sided
formula, adotplot of the estimated random effects (coefficients) grouped ac-
cording to all combinations of the levels of the factors named inform is returned.
Single factors (∼g) or crossed factors (∼g1*g2) are allowed. If given as a two-
sided formula, the left hand side must be a single random effects (coefficient) and
the right hand side is formed by covariates inobject separated by+. A Trellis
display of the random effect (coefficient) versus the named covariates is returned
in this case. Default isNULL, in which case the row names of the random effects
(coefficients) are used.

grid: an optional logical value indicating whether a grid should be added to plot. Only
applies to plots associated with two-sided formulas inform . Default isFALSE.

control: an optional list with control values for the plot, whenform is given as a two-
sided formula. The control values are referenced by name in thecontrol list
and only the ones to be modified from the default need to be specified. Available
values include:drawLine , a logical value indicating whether aloess smoother
should be added to the scatter plots and a line connecting the medians should be
added to the boxplots (default isTRUE); span.loess , used as thespan argu-
ment in the call topanel.loess (default is2/3); degree.loess , used as the
degree argument in the call topanel.loess (default is1); cex.axis , the
character expansion factor for the x-axis (default is0.8); srt.axis , the rota-
tion factor for the x-axis (default is0); andmgp.axis , the margin parameters
for the x-axis (default isc(2, 0.5, 0)).

..: optional arguments passed to the Trellisdotplot function.

VALUE
a Trellis plot of the estimated random-effects (coefficients) versus covariates, or
groups.

SEE ALSO
lmList , dotplot

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
plot(ranef(fm1))
fm1RE <- ranef(fm1, aug = TRUE)
plot(fm1RE, form = ∼ Sex)
plot(fm1RE, form = age ∼ Sex)

208

plot.Variogram Plot a Variogram Object plot.Variogram

anxyplot of the semi-variogram versus the distances is produced. Ifsmooth =

TRUE, a loess smoother is added to the plot. IfshowModel = TRUE andob-

ject includes an"modelVariog" attribute, the corresponding semi-variogram
is added to the plot.

plot(object, smooth, showModel, sigma, span, xlab, ylab, type, ylim, ...)

ARGUMENTS

object: an object inheriting from classVariogram , consisting of a data frame with two
columns namedvariog anddist , representing the semi-variogram values and
the corresponding distances.

smooth: an optional logical value controlling whether aloess smoother should be added
to the plot. Defaults toTRUE, whenshowModel is FALSE.

showModel: an optional logical value controlling whether the semi-variogram correspond-
ing to an "modelVariog" attribute ofobject , if any is present, should be
added to the plot. Defaults toTRUE, when the"modelVariog" attribute is
present.

sigma: an optional numeric value used as the height of a horizontal line displayed in the
plot. Can be used to represent the process standard deviation. Default isNULL,
implying that no horizontal line is drawn.

span: an optional numeric value with the smoothing parameter for theloess fit. De-
fault is 0.6.

xlab,ylab: optional character strings with the x- and y-axis labels. Default respectively
to "Distance" and"Semivariogram" .

type: an optional character indicating the type of plot. Defaults to ”p”.

ylim: an optional numeric vector with the limits for the y-axis. Defaults toc(0,

max(object$variog)) .

...: optional arguments passed to the Trellisxyplot function.

VALUE
anxyplot Trellis plot.

SEE ALSO
Variogram , xyplot , loess

EXAMPLE

fm1 <- lme(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
plot(Variogram(fm1, form = ∼ Time | Mare, maxDist = 0.7))

209

pooledSD Extract Pooled Standard Deviation pooledSD

The pooled estimated standard deviation is obtained by adding together the resid-
ual sum of squares for each non-null element ofobject , dividing by the sum of
the corresponding residual degrees-of-freedom, and taking the square-root.

pooledSD(object)

ARGUMENTS

object: an object inheriting from classlmList .

VALUE
the pooled standard deviation for the non-null elements ofobject , with an at-
tributedf with the number of degrees-of-freedom used in the estimation.

SEE ALSO
lmList , lm

EXAMPLE

fm1 <- lmList(Orthodont)
pooledSD(fm1)

predict.gls Predictions from a gls Object predict.gls

The predictions for the linear model represented byobject are obtained at the
covariate values defined innewdata .

predict(object, newdata, na.action)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

newdata: an optional data frame to be used for obtaining the predictions. All variables
used in the linear model must be present in the data frame. If missing, the fitted
values are returned.

na.action: a function that indicates what should happen whennewdata containsNAs.
The default action (na.fail) causes the function to print an error message and
terminate if there are any incomplete observations.

VALUE
a vector with the predicted values.

SEE ALSO
gls , fitted.gls

210

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

newOvary <- data.frame(Time = c(-0.75, -0.5, 0, 0.5, 0.75))
predict(fm1, newOvary)

predict.gnls Predictions from a gnls Object predict.gnls

The predictions for the nonlinear model represented byobject are obtained at
the covariate values defined innewdata .

predict(object, newdata, na.action, naPattern)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

newdata: an optional data frame to be used for obtaining the predictions. All variables
used in the nonlinear model must be present in the data frame. If missing, the
fitted values are returned.

na.action: a function that indicates what should happen whennewdata containsNAs.
The default action (na.fail) causes the function to print an error message and
terminate if there are any incomplete observations.

naPattern: an expression or formula object, specifying which returned values are to be
regarded as missing.

VALUE
a vector with the predicted values.

SEE ALSO
gnls , fitted.gnls

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

newSoybean <- data.frame(Time = c(10,30,50,80,100))
predict(fm1, newSoybean)

211

predict.lmList Predictions from an lmList Object predict.lmList

If the grouping factor corresponding toobject is included innewdata , the
data frame is partitioned according to the grouping factor levels; else,newdata

is repeated for alllm components. The predictions and, optionally, the standard
errors for the predictions, are obtained for eachlm component ofobject , using
the corresponding element of the partitionednewdata , and arranged into a list
with as many components asobject , or combined into a single vector or data
frame (if se.fit=TRUE).

predict(object, newdata, subset, pool, asList, se.fit)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

newdata: an optional data frame to be used for obtaining the predictions. All variables
used in theobject model formula must be present in the data frame. If missing,
the same data frame used to produceobject is used.

subset: an optional character or integer vector naming thelm components ofobject

from which the predictions are to be extracted. Default isNULL, in which case
all components are used.

asList: an optional logical value. IfTRUE, the returned object is a list with the predic-
tions split by groups; else the returned value is a vector. Defaults toFALSE.

pool: an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default isattr(object, "pool") .

se.fit: an optional logical value indicating whether pointwise standard errors should be
computed along with the predictions. Default isFALSE.

VALUE
a list with components given by the predictions (and, optionally, the standard
errors for the predictions) from eachlm component ofobject , a vector with the
predictions from alllm components ofobject , or a data frame with columns
given by the predictions and their corresponding standard errors.

SEE ALSO
lmList , predict.lm

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
predict(fm1, se.fit = TRUE)

212

predict.lme Predictions from an lme Object predict.lme

The predictions at level i are obtained by adding together the population predic-
tions (based only on the fixed effects estimates) and the estimated contributions
of the random effects to the predictions at grouping levels less or equal to i. The
resulting values estimate the best linear unbiased predictions (BLUPs) at level
i. If group values not included in the original grouping factors are present in
newdata , the corresponding predictions will be set toNA for levels greater or
equal to the level at which the unknown groups occur.

predict(object, newdata, level, asList, na.action)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

newdata: an optional data frame to be used for obtaining the predictions. All variables
used in the fixed and random effects models, as well as the grouping factors,
must be present in the data frame. If missing, the fitted values are returned.

level: an optional integer vector giving the level(s) of grouping to be used in obtain-
ing the predictions. Level values increase from outermost to innermost group-
ing, with level zero corresponding to the population predictions. Defaults to the
highest or innermost level of grouping.

asList: an optional logical value. IfTRUEand a single value is given inlevel , the
returned object is a list with the predictions split by groups; else the returned
value is either a vector or a data frame, according to the length oflevel .

na.action: a function that indicates what should happen whennewdata containsNAs.
The default action (na.fail) causes the function to print an error message and
terminate if there are any incomplete observations.

VALUE
if a single level of grouping is specified inlevel , the returned value is either a
list with the predictions split by groups (asList = TRUE) or a vector with the
predictions (asList = FALSE); else, when multiple grouping levels are spec-
ified in level , the returned object is a data frame with columns given by the
predictions at different levels and the grouping factors.

SEE ALSO
lme , fitted.lme

213

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
newOrth <- data.frame(Sex = c("Male","Male","Female","Female","Male","Male"),

age = c(15, 20, 10, 12, 2, 4),
Subject = c("M01","M01","F30","F30","M04","M04"))

predict(fm1, newOrth, level = 0:1)

predict.nlme Predictions from an nlme Object predict.nlme

The predictions at level i are obtained by adding together the contributions from
the estimated fixed effects and the estimated random effects at levels less or equal
to i and evaluating the model function at the resulting estimated parameters. If
group values not included in the original grouping factors are present innew-

data , the corresponding predictions will be set toNA for levels greater or equal
to the level at which the unknown groups occur.

predict(object, newdata, level, asList, na.action, naPattern)

ARGUMENTS

object: an object inheriting from classnlme , representing a fitted nonlinear mixed-
effects model.

newdata: an optional data frame to be used for obtaining the predictions. All variables
used in the nonlinear model, the fixed and the random effects models, as well
as the grouping factors, must be present in the data frame. If missing, the fitted
values are returned.

level: an optional integer vector giving the level(s) of grouping to be used in obtain-
ing the predictions. Level values increase from outermost to innermost group-
ing, with level zero corresponding to the population predictions. Defaults to the
highest or innermost level of grouping.

asList: an optional logical value. IfTRUEand a single value is given inlevel , the
returned object is a list with the predictions split by groups; else the returned
value is either a vector or a data frame, according to the length oflevel .

na.action: a function that indicates what should happen whennewdata containsNAs.
The default action (na.fail) causes the function to print an error message and
terminate if there are any incomplete observations.

naPattern: an expression or formula object, specifying which returned values are to be
regarded as missing.

VALUE
if a single level of grouping is specified inlevel , the returned value is either a
list with the predictions split by groups (asList = TRUE) or a vector with the

214

predictions (asList = FALSE); else, when multiple grouping levels are spec-
ified in level , the returned object is a data frame with columns given by the
predictions at different levels and the grouping factors.

SEE ALSO
nlme , fitted.nlme

EXAMPLE

fm1 <- nlme(weight ∼ SSlogis(Time, Asym, xmid, scal),
data = Soybean, fixed = Asym + xmid + scal ∼ 1,
start = c(18, 52, 7.5))

newSoybean <- data.frame(Time = c(10,30,50,80,100),
Plot = c("1988F1", "1988F1","1988F1", "1988F1","1988F1"))

predict(fm1, newSoybean, level = 0:1)

print.anova.lme Print an anova.lme Object print.anova.lme

When only one fitted model object is used in the call toanova.lme , a data frame
with the estimated values, the approximate standard errors, the z-ratios, and the
p-values for the fixed effects is printed. Otherwise, when multiple fitted objects
are being compared, a data frame with the degrees of freedom, the (restricted)
log-likelihood, the Akaike Information Criterion (AIC), and the Bayesian Infor-
mation Criterion (BIC) of each fitted model object is printed. If included inx ,
likelihood ratio statistics, with associated p-values, are included in the output.

print(x, verbose)

ARGUMENTS

x: an object inheriting from classanova.lme , generally obtained by applying the
anova.lme method to anlme object.

verbose: an optional logical value. IfTRUE, the calling sequences for each fitted model
object are printed with the rest of the output, being omitted ifverbose = FALSE .
Defaults toattr(x, "verbose") .

SEE ALSO
anova.lme , lme

EXAMPLE

fm1 <- lme(distance ˜ age * Sex, Orthodont, random = ˜ age | Subject)
print(anova(fm1)) # single argument form
fm2 <- update(fm1, random = ˜ 1 | Subject)
print(anova(fm1, fm2)) # multiple argument form

215

print.corStruct Print a corStruct Object print.corStruct

If x has been initialized, its coefficients are printed in constrained form.

print(x, ...)

ARGUMENTS

x: an object inheriting from classcorStruct , representing a correlation structure.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

VALUE
the printed coefficients ofx in constrained form.

SEE ALSO
print.default , coef.corStruct

EXAMPLE

cs1 <- corAR1(0.3)
print(cs1)

print.gls Print a gls Object print.gls

Information describing the fitted linear model represented byx is printed. This
includes the coefficients, correlation and variance function parameters, if any are
present, and the residual standard error.

print(x, ...)

ARGUMENTS

x: an object inheriting from classgls , representing a generalized least squares fit-
ted linear model.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
gls , print.summary.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

print(fm1)

216

print.groupedData Print a groupedData Object print.groupedData

Prints the display formula and the data frame associated withobject .

print(x, ...)

ARGUMENTS

x: an object inheriting from classgroupedData .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
groupedData

EXAMPLE

print(Orthodont)

print.intervals.gls Print an intervals.gls Object print.intervals.gls

The individual components ofx are printed.

print(x, ...)

ARGUMENTS

x: an object inheriting from classintervals.gls , representing a list of data
frames with confidence intervals and estimates for the coefficients in thegls

object that producedx .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
intervals.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

print(intervals(fm1))

217

print.intervals.lme Print an intervals.lme Object print.intervals.lme

The individual components ofx are printed.

print(x, ...)

ARGUMENTS

x: an object inheriting from classintervals.lme , representing a list of data
frames with confidence intervals and estimates for the coefficients in thelme

object that producedx .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
intervals.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
print(intervals(fm1))

print.lmList Print an lmList Object print.lmList

Information describing the individuallm fits corresponding toobject is printed.
This includes the estimated coefficients and the residual standard error.

print(x, pool, ...)

ARGUMENTS

x: an object inheriting from classlmList , representing a list of fittedlm objects.

pool: an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default isattr(object, "pool") .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(Orthodont)
print(fm1)

218

print.lme Print an lme Object print.lme

Information describing the fitted linear mixed-effects model represented byx

is printed. This includes the fixed effects, the standard deviations and correla-
tions for the random effects, the within-group correlation and variance function
parameters, if any are present, and the within-group standard deviation.

print(x, ...)

ARGUMENTS

x: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
lme , print.summary.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
print(fm1)

print.modelStruct Print a modelStruct Object print.modelStruct

This method function appliesprint to each element ofobject .

print(x, ...)

ARGUMENTS

x: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

VALUE
the printed elements ofobject .

SEE ALSO
print

EXAMPLE

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ∼ age)),
corStruct = corAR1(0.3))

print(lms1)

219

print.pdMat Print a pdMat Object print.pdMat

Print the standard deviations and correlations (if any) associated the positive-
definite matrix represented byx (considered as a variance-covariance matrix).

print(x, ...)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
print.summary.pdMat

EXAMPLE

pd1 <- pdSymm(diag(1:3), nam = c("A","B","C"))
print(pd1)

print.reStruct Print an reStruct Object print.reStruct

EachpdMat component ofobject is printed, together with its formula and the
associated grouping level.

print(x, sigma, reEstimates, verbose=F, ...)

ARGUMENTS

x: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

sigma: an optional numeric value used as a multiplier for the square-root factors of the
pdMat components (usually the estimated within-group standard deviation from
a mixed-effects model). Defaults to 1.

reEstimates: an optional list with the random effects estimates for each level of group-
ing. Only used whenverbose = TRUE .

verbose: an optional logical value determining if the random effects estimates should be
printed. Defaults toFALSE.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
reStruct

220

EXAMPLE

rs1 <- reStruct(list(Dog = ∼ day, Side = ∼ 1), data = Pixel)
matrix(rs1) <- list(diag(2), 3)
print(rs1)

print.summary.corStruct Print summary.corStruct print.summary.corStruct

This method function prints the constrained coefficients of an initializedcorStruct

object, with a header specifying the type of correlation structure associated with
the object.

print(x, ...)

ARGUMENTS

x: an object inheriting from classsummary.corStruct , generally resulting from
applyingsummary to an object inheriting from classcorStruct .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

VALUE
the printed coefficients ofx in constrained form, with a header specifying the
associated correlation structure type.

SEE ALSO
summary.corStruct

EXAMPLE

cs1 <- corAR1(0.3)
print(summary(cs1))

221

print.summary.gls Print a summary.gls Object print.summary.gls

Information summarizing the fitted linear model represented byx is printed.
This includes the AIC, BIC, and log-likelihood at convergence, the coefficient
estimates and their respective standard errors, correlation and variance function
parameters, if any are present, and the residual standard error.

print(x, verbose, ...)

ARGUMENTS

x: an object inheriting from classsummary.gls , representing a summarizedgls

object.

verbose: an optional logical value used to control the amount of printed output. Defaults
to FALSE.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.gls , gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

print(summary(fm1))

print.summary.lmList Print a summary.lmList Object print.summary.lmList

Information summarizing the individuallm fitted objects corresponding tox is
printed. This includes the estimated coefficients and their respective standard
errors, t-values, and p-values.

print(x, ...)

ARGUMENTS

x: an object inheriting from classsummary.lmList , representing a summarized
lme object.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.lmList , lmList

222

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
print(summary(fm1))

print.summary.lme Print a summary.lme Object print.summary.lme

Information summarizing the fitted linear mixed-effects model represented byx

is printed. This includes the AIC, BIC, and log-likelihood at convergence, the
fixed effects estimates and respective standard errors, the standard deviations and
correlations for the random effects, the within-group correlation and variance
function parameters, if any are present, and the within-group standard deviation.

print(x, verbose, ...)

ARGUMENTS

x: an object inheriting from classsummary.lme , representing a summarizedlme

object.

verbose: an optional logical value used to control the amount of printed output. Defaults
to FALSE.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.lme , lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
print(summary((fm1)))

223

print.summary.modelStruct Print summary.modelStructprint.summary.modelStruct

This method function prints the constrained coefficients of an initializedmod-

elStruct object, with a header specifying the type of correlation structure as-
sociated with the object.

print(x, ...)

ARGUMENTS

x: an object inheriting from classsummary.modelStruct , generally resulting
from applyingsummary to an object inheriting from classmodelStruct .

...: optional arguments passed toprint.default ; see the documentation on that
method function.

VALUE
the printed coefficients ofx in constrained form, with a header specifying the
associated correlation structure type.

SEE ALSO
summary.modelStruct

EXAMPLE

cs1 <- corAR1(0.3)
print(summary(cs1))

print.summary.pdMat Print summary.pdMat print.summary.pdMat

The standard deviations and correlations associated with the positive-definite
matrix represented byobject (considered as a variance-covariance matrix) are
printed, together with the formula and the grouping level associatedobject , if
any are present.

print(x, sigma, rdig, Level, resid, ...)

ARGUMENTS

x: an object inheriting from classsummary.pdMat , generally resulting from ap-
plying summary to an object inheriting from classpdMat .

sigma: an optional numeric value used as a multiplier for the square-root factor of the
positive-definite matrix represented byobject (usually the estimated within-
group standard deviation from a mixed-effects model). Defaults to 1.

rdig: an optional integer value with the number of significant digits to be used in print-
ing correlations. Defaults to 3.

224

Level: an optional character string with a description of the grouping level associated
with object (generally corresponding to levels of grouping in a mixed-effects
model). Defaults to NULL.

resid: an optional logical value. IfTRUEan extra row with the"residual" standard
deviation given insigma will be included in the output. Defaults toFALSE.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.pdMat ,pdMat

EXAMPLE

pd1 <- pdCompSymm(3 * diag(3) + 1, form = ∼ age + ageˆ2,
data = Orthodont)

print(summary(pd1), sigma = 1.2, resid = TRUE)

print.summary.varFunc Print summary.varFunc print.summary.varFunc

The variance function structure description, the formula and the coefficients as-
sociated withx are printed.

print(x, header, ...)

ARGUMENTS

x: an object inheriting from classvarFunc , representing a variance function struc-
ture.

header: an optional logical value controlling whether a header should be included with
the rest of the output. Defaults toTRUE.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.varFunc

EXAMPLE

vf1 <- varPower(0.3, form = ∼ age)
vf1 <- initialize(vf1, Orthodont)
print(summary(vf1))

225

print.varFunc Print a varFunc Object print.varFunc

The class and the coefficients associated withx are printed.

print(x, ...)

ARGUMENTS

x: an object inheriting from classvarFunc , representing a variance function struc-
ture.

...: optional arguments passed toprint.default ; see the documentation on that
method function.

SEE ALSO
summary.varFunc , print.summary.varFunc

EXAMPLE

vf1 <- varPower(0.3, form = ∼ age)
vf1 <- initialize(vf1, Orthodont)
print(vf1)

pruneLevels Prune Factor Levels pruneLevels

The levels attribute ofobject are pruned to contain only the levels occurring
in the factor.

pruneLevels(object)

ARGUMENTS

object: an object inheriting from classfactor .

VALUE
an object identical toobject , but with thelevels attribute containing only
value occurring in the factor.

SEE ALSO
factor , ordered

EXAMPLE

f1 <- factor(c(1,1,2,3,3,4,5))
levels(f1)
f2 <- f1[4:7]
levels(f2)
levels(pruneLevels(f2))

226

qqnorm.gls Normal Plot of gls Residuals qqnorm.gls

Diagnostic plots for assessing the normality of residuals the generalized least
squares fit are obtained. Theform argument gives considerable flexibility in
the type of plot specification. A conditioning expression (on the right side of
a | operator) always implies that different panels are used for each level of the
conditioning factor, according to a Trellis display.

qqnorm(object, form, abline, id, idLabels, grid, ...)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted model.

form: an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtainobject can be referenced.
In addition,object itself can be referenced in the formula using the symbol
"." . Conditional expressions on the right of a| operator can be used to define
separate panels in a Trellis display. The expression on the right hand side of
form and to the left of a| operator must evaluate to a residuals vector. Default is
∼resid(., type = "p") , corresponding to a normal plot of the standardized
residuals.

abline: an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id: an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residuals
(random effects). Observations with absolute standardized residuals (random ef-
fects) greater than the 1 - value/2 quantile of the standard normal distribution are
identified in the plot usingidLabels . If given as a one-sided formula, its right
hand side must evaluate to a logical, integer, or character vector which is used to
identify observations in the plot. If missing, no observations are identified.

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the observations identified according toid . If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character and used to label the identified observations. Default is
the innermost grouping factor.

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toFALSE.

...: optional arguments passed to the Trellis plot function.

227

VALUE
a diagnostic Trellis plot for assessing normality of residuals.

SEE ALSO
gls , plot.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

qqnorm(fm1, abline = c(0,1))

qqnorm.lme Normal Plot of lme Residuals or Random Effects qqnorm.lme

Diagnostic plots for assessing the normality of residuals and random effects in
the linear mixed-effects fit are obtained. Theform argument gives considerable
flexibility in the type of plot specification. A conditioning expression (on the
right side of a| operator) always implies that different panels are used for each
level of the conditioning factor, according to a Trellis display.

qqnorm(object, form, abline, id, idLabels, grid, ...)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

form: an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtainobject can be referenced.
In addition,object itself can be referenced in the formula using the symbol
"." . Conditional expressions on the right of a| operator can be used to define
separate panels in a Trellis display. The expression on the right hand side of
form and to the left of a| operator must evaluate to a residuals vector, or a
random effects matrix. Default is∼resid(., type = "p") , corresponding
to a normal plot of the standardized residuals evaluated at the innermost level of
nesting.

abline: an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id: an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residuals
(random effects). Observations with absolute standardized residuals (random ef-
fects) greater than the 1 - value/2 quantile of the standard normal distribution are
identified in the plot usingidLabels . If given as a one-sided formula, its right
hand side must evaluate to a logical, integer, or character vector which is used to
identify observations in the plot. If missing, no observations are identified.

228

idLabels: an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the observations identified according toid . If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character and used to label the identified observations. Default is
the innermost grouping factor.

grid: an optional logical value indicating whether a grid should be added to plot. De-
faults toFALSE.

...: optional arguments passed to the Trellis plot function.

VALUE
a diagnostic Trellis plot for assessing normality of residuals or random effects.

SEE ALSO
lme , plot.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
normal plot of standardized residuals by gender
qqnorm(fm1, ∼ resid(., type = "p") | Sex, abline = c(0, 1))
normal plots of random effects
qqnorm(fm1, ∼ ranef(.))

random.effects Extract Random Effects random.effects

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
lmList andlme .

random.effects(object, ...)
ranef(object, ...)

ARGUMENTS

object: any fitted model object from which random effects estimates can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
ranef.lmList ,ranef.lme

EXAMPLE

see the method function documentation

229

ranef Extract Random Effects ranef

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include
lmList andlme .

ranef(object, ...)

ARGUMENTS

object: any fitted model object from which random effects estimates can be extracted.

...: some methods for this generic function require additional arguments.

VALUE
will depend on the method function used; see the appropriate documentation.

SEE ALSO
ranef.lmList , ranef.lme

EXAMPLE

see the method function documentation

ranef.lmList Extract lmList Random Effects ranef.lmList

A data frame containing the differences between the coefficients of the individual
lm fits and the average coefficients.

ranef(object, augFrame, data, which, FUN, standard, omitGroupingFactor)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

augFrame: an optional logical value. IfTRUE, the returned data frame is augmented with
variables defined in the data frame used to produceobject ; else, ifFALSE, only
the random effects are returned. Defaults toFALSE.

data: an optional data frame with the variables to be used for augmenting the returned
data frame whenaugFrame = TRUE. Defaults to the data frame used to fitob-

ject .

which: an optional positive integer or character vector specifying which columns of the
data frame used to produceobject should be used in the augmentation of the
returned data frame. Defaults to all variables in the data.

230

FUN: an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing the data by groups. Group-invariant
variables are always summarized by the unique value that they assume within
that group. IfFUN is a single function it will be applied to each non-invariant
variable by group to produce the summary for that variable. IfFUN is a list
of functions, the names in the list should designate classes of variables in the
frame such asordered , factor , or numeric . The indicated function will be
applied to any group-varying variables of that class. The default functions to be
used aremean for numeric factors, andMode for both factor andordered .
TheMode function, defined internally ingsummary , returns the modal or most
popular value of the variable. It is different from themode function that returns
the S-language mode of the variable.

standard: an optional logical value indicating whether the estimated random effects
should be ”standardized” (i.e. divided by the corresponding estimated standard
error). Defaults toFALSE.

omitGroupingFactor: an optional logical value. WhenTRUEthe grouping factor itself
will be omitted from the group-wise summary ofdata but the levels of the
grouping factor will continue to be used as the row names for the returned data
frame. Defaults toFALSE.

VALUE
a data frame with the differences between the individuallm coefficients inob-

ject and their average. Optionally, the returned data frame may be augmented
with covariates summarized over groups or the differences may be standardized.

SEE ALSO
lmList , fixef.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
ranef(fm1)
ranef(fm1, standard = TRUE)
ranef(fm1, augFrame = TRUE)

231

ranef.lme lme Random Effects ranef.lme

The estimated random effects at level i are represented as a data frame with
rows given by the different groups at that level and columns given by the ran-
dom effects. If a single level of grouping is specified, the returned object is a
data frame; else, the returned object is a list of such data frames. Optionally,
the returned data frame(s) may be augmented with covariates summarized over
groups.

ranef(object, augFrame, level, data, which, FUN, standard,
omitGroupingFactor)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

augFrame: an optional logical value. IfTRUE, the returned data frame is augmented with
variables defined indata ; else, if FALSE, only the coefficients are returned.
Defaults toFALSE.

level: an optional vector of positive integers giving the levels of grouping to be used
in extracting the random effects from an object with multiple nested grouping
levels. Defaults to all levels of grouping.

data: an optional data frame with the variables to be used for augmenting the returned
data frame whenaugFrame = TRUE. Defaults to the data frame used to fitob-

ject .

which: an optional positive integer vector specifying which columns ofdata should be
used in the augmentation of the returned data frame. Defaults to all columns in
data .

FUN: an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsingdata by groups. Group-invariant vari-
ables are always summarized by the unique value that they assume within that
group. IfFUNis a single function it will be applied to each non-invariant variable
by group to produce the summary for that variable. IfFUNis a list of functions,
the names in the list should designate classes of variables in the frame such as
ordered , factor , or numeric . The indicated function will be applied to any
group-varying variables of that class. The default functions to be used aremean

for numeric factors, andMode for both factor andordered . TheMode func-
tion, defined internally ingsummary , returns the modal or most popular value
of the variable. It is different from themode function that returns the S-language
mode of the variable.

standard: an optional logical value indicating whether the estimated random effects
should be ”standardized” (i.e. divided by the corresponding estimated standard
error). Defaults toFALSE.

232

omitGroupingFactor: an optional logical value. WhenTRUEthe grouping factor itself
will be omitted from the group-wise summary ofdata but the levels of the
grouping factor will continue to be used as the row names for the returned data
frame. Defaults toFALSE.

VALUE
a data frame, or list of data frames, with the estimated random effects at the
grouping level(s) specified inlevel and, optionally, other covariates summa-
rized over groups. The returned object inherits from classesranef.lme and
data.frame .

SEE ALSO
lme , fixef.lme , coef.lme , plot.ranef.lme , gsummary

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
ranef(fm1)
ranef(fm1, augFrame = TRUE)

recalc Recalculate Condensed Linear Model Object recalc

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function include:
corStruct , modelStruct , reStruct , andvarFunc .

recalc(object, conLin)

ARGUMENTS

object: any object which induces a recalculation of the condensed linear model object
conLin .

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

...: some methods for this generic function may require additional arguments.

VALUE
the recalculated condensed linear model object.

NOTE
This function is only used inside model fitting functions, such aslme andgls ,
that require recalculation of a condensed linear model object.

EXAMPLE

see the method function documentation

233

recalc.corStruct Recalculate for corStruct Object recalc.corStruct

This method function pre-multiples the"Xy" component ofconLin by the trans-
pose square-root factor(s) of the correlation matrix (matrices) associated with
object and adds the log-likelihood contribution ofobject , given by log-

Lik(object) , to the"logLik" component ofconLin .

recalc(object, conLin)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

VALUE
the recalculated condensed linear model object.

NOTE
This method function is only used inside model fitting functions, such aslme

andgls , that allow correlated error terms.

SEE ALSO
corFactor , logLik.corStruct

recalc.modelStruct Recalculate for modelStruct Object recalc.modelStruct

This method function recalculates the condensed linear model object using each
element ofobject sequentially from last to first.

recalc(object, conLin)

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying model.
Defaults toattr(object, "conLin") .

VALUE
the recalculated condensed linear model object.

234

NOTE
This method function is primarily used inside model fitting functions, such as
lme andgls , that allow model components, such as correlated error terms and
variance functions.

SEE ALSO
recalc.corStruct , recalc.reStruct , recalc.varFunc

recalc.reStruct Recalculate for reStruct Object recalc.reStruct

The log-likelihood, or restricted log-likelihood, of the Gaussian linear mixed-
effects model represented byobject andconLin (assuming spherical within-
group covariance structure), evaluated atcoef(object) is calculated and added
to thelogLik component ofconLin . Thesettings attribute ofobject deter-
mines whether the log-likelihood, or the restricted log-likelihood, is to be calcu-
lated. The computational methods for the (restricted) log-likelihood calculations
are described in Bates and Pinheiro (1998).

recalc(object, conLin)

ARGUMENTS

object: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

VALUE
the condensed linear model with itslogLik component updated.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at
http://nlme.stat.wisc.edu

SEE ALSO
reStruct , logLik , lme

235

recalc.varFunc Recalculate for varFunc Object recalc.varFunc

This method function pre-multiples the"Xy" component ofconLin by a diag-
onal matrix with diagonal elements given by the weights corresponding to the
variance structure represented byobject e and adds the log-likelihood contri-
bution ofobject , given bylogLik(object) , to the"logLik" component of
conLin .

recalc(object, conLin)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

conLin: a condensed linear model object, consisting of a list with components"Xy" ,
corresponding to a regression matrix (X) combined with a response vector (y),
and"logLik" , corresponding to the log-likelihood of the underlying model.

VALUE
the recalculated condensed linear model object.

NOTE
This method function is only used inside model fitting functions, such aslme

andgls , that allow heteroscedastic error terms.

SEE ALSO
varWeights , logLik.varFunc

residuals.gls Extract gls Residuals residuals.gls

The residuals for the linear model represented byobject are extracted.

residuals(object, type)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

type: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"response" .

236

VALUE
a vector with the residuals for the linear model represented byobject .

SEE ALSO
gls , fitted.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

residuals(fm1)

residuals.glsStruct Calculate glsStruct Residuals residuals.glsStruct

The residuals for the linear model represented byobject are extracted.

residuals(object, glsFit)

ARGUMENTS

object: an object inheriting from classglsStruct , representing a list of linear model
components, such ascorStruct andvarFunc objects.

glsFit: an optional list with componentslogLik (log-likelihood),beta (coefficients),
sigma (standard deviation for error term),varBeta (coefficients’ covariance
matrix),fitted (fitted values), andresiduals (residuals). Defaults toattr(object,

"glsFit") .

VALUE
a vector with the residuals for the linear model represented byobject .

NOTE
This method function is primarily used insidegls andresiduals.gls .

SEE ALSO
gls , residuals.gls , fitted.glsStruct

237

residuals.gnls Extract gnls Residuals residuals.gnls

The residuals for the linear model represented byobject are extracted.

residuals(object, type)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized least squares
fitted linear model.

type: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"response" .

VALUE
a vector with the residuals for the linear model represented byobject .

SEE ALSO
gnls , fitted.gnls

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

fitted(fm1)

residuals.gnlsStruct Calculate gnlsStruct Residuals residuals.gnlsStruct

The residuals for the nonlinear model represented byobject are extracted.

fitted(object)

ARGUMENTS

object: an object inheriting from classgnlsStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

VALUE
a vector with the residuals for the nonlinear model represented byobject .

NOTE
This method function is primarily used insidegnls andresiduals.gnls .

SEE ALSO
gnls , residuals.gnlsStruct , fitted.gnlsStruct

238

residuals.lmList Extract lmList Residuals residuals.lmList

The residuals are extracted from eachlm component ofobject and arranged
into a list with as many components asobject , or combined into a single vector.

residuals(object, type, subset, asList)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm objects with a
common model.

subset: an optional character or integer vector naming thelm components ofobject

from which the residuals are to be extracted. Default isNULL, in which case all
components are used.

type: an optional character string specifying the type of residuals to be extracted. Op-
tions include"response" for the ”raw” residuals (observed - fitted),"pear-

son" for the standardized residuals (raw residuals divided by the estimated resid-
ual standard error) using different standard errors for eachlm fit, and"pooled.pearson"

for the standardized residuals using a pooled estimate of the residual standard er-
ror. Partial matching of arguments is used, so only the first character needs to be
provided. Defaults to"response" .

asList: an optional logical value. IfTRUE, the returned object is a list with the residuals
split by groups; else the returned value is a vector. Defaults toFALSE.

VALUE
a list with components given by the residuals of eachlm component ofobject ,
or a vector with the residuals for alllm components ofobject .

SEE ALSO
lmList , fitted.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
residuals(fm1)

239

residuals.lme Extract lme Residuals residuals.lme

The residuals at level i are obtained by subtracting the fitted levels at that level
from the response vector (and dividing by the estimated within-group standard
error, if type="pearson"). The fitted values at level i are obtained by adding
together the population fitted values (based only on the fixed effects estimates)
and the estimated contributions of the random effects to the fitted values at
grouping levels less or equal to i.

residuals(object, level, type, asList)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals fromobject . Level values increase from outermost to innermost
grouping, with level zero corresponding to the population residuals. Defaults to
the highest or innermost level of grouping.

type: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"response" .

asList: an optional logical value. IfTRUEand a single value is given inlevel , the
returned object is a list with the residuals split by groups; else the returned value
is either a vector or a data frame, according to the length oflevel . Defaults to
FALSE.

VALUE
if a single level of grouping is specified inlevel , the returned value is either
a list with the residuals split by groups (asList = TRUE) or a vector with the
residuals (asList = FALSE); else, when multiple grouping levels are specified
in level , the returned object is a data frame with columns given by the residuals
at different levels and the grouping factors.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
lme , fitted.lme

240

EXAMPLE

fm1 <- lme(distance ∼ age + Sex, data = Orthodont, random = ∼ 1)
residuals(fm1, level = 0:1)

residuals.lmeStruct Calculate lmeStruct Residuals residuals.lmeStruct

The residuals at level i are obtained by subtracting the fitted values at that level
from the response vector. The fitted values at level i are obtained by adding to-
gether the population fitted values (based only on the fixed effects estimates) and
the estimated contributions of the random effects to the fitted values at grouping
levels less or equal to i.

residuals(object, levels, lmeFit, conLin)

ARGUMENTS

object: an object inheriting from classlmeStruct , representing a list of linear mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals fromobject . Level values increase from outermost to innermost
grouping, with level zero corresponding to the population fitted values. Defaults
to the highest or innermost level of grouping.

lmeFit: an optional list with componentsbeta andb containing respectively the fixed
effects estimates and the random effects estimates to be used to calculate the
residuals. Defaults toattr(object, "lmeFit") .

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying lme
model. Defaults toattr(object, "conLin") .

VALUE
if a single level of grouping is specified inlevel , the returned value is a vector
with the residuals at the desired level; else, when multiple grouping levels are
specified inlevel , the returned object is a matrix with columns given by the
residuals at different levels.

NOTE
This method function is primarily used inside thelme function.

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
lme , residuals.lme , fitted.lmeStruct

241

residuals.nlmeStruct Calculate nlmeStruct Residuals residuals.nlmeStruct

The residuals at level i are obtained by subtracting the fitted values at that level
from the response vector. The fitted values at level i are obtained by adding
together the contributions from the estimated fixed effects and the estimated ran-
dom effects at levels less or equal to i and evaluating the model function at the
resulting estimated parameters.

residuals(object, levels, conLin)

ARGUMENTS

object: an object inheriting from classnlmeStruct , representing a list of mixed-effects
model components, such asreStruct , corStruct , andvarFunc objects.

level: an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals fromobject . Level values increase from outermost to innermost
grouping, with level zero corresponding to the population fitted values. Defaults
to the highest or innermost level of grouping.

conLin: an optional condensed linear model object, consisting of a list with components
"Xy" , corresponding to a regression matrix (X) combined with a response vector
(y), and"logLik" , corresponding to the log-likelihood of the underlying nlme
model. Defaults toattr(object, "conLin") .

VALUE
if a single level of grouping is specified inlevel , the returned value is a vector
with the residuals at the desired level; else, when multiple grouping levels are
specified inlevel , the returned object is a matrix with columns given by the
residuals at different levels.

NOTE
This method function is primarily used inside thenlme function

REFERENCES
Bates, D.M. and Pinheiro, J.C. (1998) ”Computational methods for multilevel
models” available in PostScript or PDF formats at http://nlme.stat.wisc.edu

SEE ALSO
nlme , fitted.nlmeStruct

242

reStruct Random Effects Structure reStruct

This function is a constructor for thereStruct class, representing a random
effects structure and consisting of a list ofpdMat objects, plus asettings

attribute containing information for the optimization algorithm used to fit the
associated mixed-effects model.

reStruct(object, pdClass, REML, data)

ARGUMENTS

object: any of the following: (i) a one-sided formula of the form∼x1+...+xn |

g1/.../gm , with x1+...+xn specifying the model for the random effects and
g1/.../gm the grouping structure (mmay be equal to 1, in which case no/ is
required). The random effects formula will be repeated for all levels of grouping,
in the case of multiple levels of grouping; (ii) a list of one-sided formulas of the
form∼x1+...+xn | g , with possibly different random effects models for each
grouping level. The order of nesting will be assumed the same as the order of
the elements in the list; (iii) a one-sided formula of the form∼x1+...+xn , or a
pdMat object with a formula (i.e. a non-NULLvalue forformula(object)), or
a list of such formulas orpdMat objects. In this case, the grouping structure for-
mula will be derived from the data used to to fit the mixed-effects model, which
should inherit from classgroupedData ; (iv) a named list of formulas orpdMat

objects as in (iii), with the grouping factors as names. The order of nesting will
be assumed the same as the order of the order of the elements in the list; (v) an
reStruct object.

pdClass: an optional character string with the name of thepdMat class to be used for
the formulas inobject . Defaults to"pdSymm" which corresponds to a general
positive-definite matrix.

REML: an optional logical value. IfTRUE, the associated mixed-effects model will be
fitted using restricted maximum likelihood; else, ifFALSE, maximum likelihood
will be used. Defaults toFALSE.

data: an optional data frame in which to evaluate the variables used in the random
effects formulas inobject . It is used to obtain the levels forfactors , which
affect the dimensions and the row/column names of the underlyingpdMat ob-
jects. IfNULL, no attempt is made to obtain information onfactors appearing
in the formulas. Defaults to the parent frame from which the function was called.

VALUE
an object inheriting from classreStruct , representing a random effects struc-
ture.

SEE ALSO
pdMat , lme , groupedData

243

EXAMPLE

rs1 <- reStruct(list(Dog = ∼ day, Side = ∼ 1), data = Pixel)
rs1

selfStart Construct Self-starting Nonlinear Models selfStart

This function is generic; methods functions can be written to handle specific
classes of objects. Available methods includeselfStart.default andself-

Start.formula . See the documentation on the appropriate method function.

selfStart(model, initial, parameters, template)

VALUE
a function object of theselfStart class.

SEE ALSO
selfStart.default , selfStart.formula## see documentation for the methods

selfStart.default Construct Self-starting Nonlinear Models selfStart.default

A method for the generic functionselfStart for function objects.

selfStart(model, initial, parameters, template)

ARGUMENTS

model: a function object defining a nonlinear model.

initial: a function object taking three arguments:mCall , data , andLHS, representing,
respectively, a matched call to the functionmodel , a data frame in which to
interpret the variables inmCall , and the expression from the left hand side of
the model formula in the call tonls . This function should return initial values
for the parameters inmodel .

parameters, template: these arguments are included for consistency with the call to
the generic function, but are not used in thedefault method. See the documen-
tation onselfStart.formula .

VALUE
a function object of classselfStart , corresponding to a self-starting nonlinear
model function. Aninitial attribute (defined by theinitial argument) is
added to the function to calculate starting estimates for the parameters in the
model automatically.

SEE ALSO
selfStart.formula

244

EXAMPLE

first.order.log.model is a function object defining a
first order compartment model
first.order.log.initial is a function object which calculates
initial values for the parameters in first.order.log.model
self-starting first order compartment model
SSfol <- selfStart(first.order.log.model, first.order.log.initial)

selfStart.formula Construct Self-starting Nonlinear Models selfStart.formula

A method for the generic functionselfStart for formula objects.

selfStart(model, initial, parameters, template)

ARGUMENTS

model: a nonlinear formula object of the form∼expression .

initial: a function object taking three arguments:mCall , data , andLHS, representing,
respectively, a matched call to the functionmodel , a data frame in which to
interpret the variables inmCall , and the expression from the left hand side of
the model formula in the call tonls . This function should return initial values
for the parameters inmodel .

parameters: a character vector specifying the terms on the right hand side ofmodel for
which initial estimates should be calculated. Passed as thenamevec argument
to thederiv function.

template: an optional prototype for the calling sequence of the returned object, passed
as thefunction.arg argument to thederiv function. By default, a template is
generated with the covariates inmodel coming first and the parameters inmodel

coming last in the calling sequence.

VALUE
a function object of classselfStart , obtained by applyingderiv to the right
hand side of themodel formula. An initial attribute (defined by theini-

tial argument) is added to the function to calculate starting estimates for the
parameters in the model automatically.

SEE ALSO
selfStart.default , deriv

EXAMPLE

self-starting logistic model
SSlogis <- selfStart(∼ Asym/(1 + exp((xmid - x)/scal)),

function(mCall, data, LHS)
{

xy <- sortedXyData(mCall[["x"]], LHS, data)

245

if(nrow(xy) < 4) {
stop("Too few distinct x values to fit a logistic")

}
z <- xy[["y"]]
if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes
z <- z/(1.05 * max(z)) # scale to within unit height
xy[["z"]] <- log(z/(1 - z)) # logit transformation
aux <- coef(lm(x ∼ z, xy))
parameters(xy) <- list(xmid = aux[1], scal = aux[2])
pars <- as.vector(coef(nls(y ∼ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))
value <- c(pars[3], pars[1], pars[2])
names(value) <- mCall[c("Asym", "xmid", "scal")]
value

}, c("Asym", "xmid", "scal"))

simulate.lme simulate lme models simulate.lme

The modelm1 is fit to the data. Using the fitted values of the parameters,nsim

new data vectors from this model are simulated. Bothm1 and m2 are fit by
maximum likelihood (ML) and/or by restricted maximum likelihood (REML) to
each of the simulated data vectors.

simulate.lme(m1, m2, Random.seed, method, nsim, niterEM, useGen)

ARGUMENTS

m1: an object inheriting from classlme , representing a fitted linear mixed-effects
model, or a list containing an lme model specification. If given as a list, it should
contain componentsfixed , data , andrandom with values suitable for a call to
lme . This argument defines the null model.

m2: an lme object, or a list, likem1 containing a second lme model specification.
This argument defines the alternative model. If given as a list, only those parts
of the specification that change between modelm1andm2need to be specified.

Random.seed: an optional vector to seed the random number generator so as to repro-
duce a simulation. This vector should be the same form as the.Random.seed

object.

method: an optional character array. If it includes"REML" the models are fit by max-
imizing the restricted log-likelihood. If it includes"ML" the log-likelihood is
maximized. Defaults toc("REML", "ML") , in which case both methods are
used.

nsim: an optional positive integer specifying the number of simulations to perform.
Defaults to 1000.

246

niterEM: an optional integer vector of length 2 giving the number of iterations of the
EM algorithm to apply when fitting them1andm2 to each simulated set of data.
Defaults toc(40,200) .

useGen: an optional logical value. IfTRUE, numerical derivatives are used to obtain the
gradient and the Hessian of the log-likelihood in the optimization algorithm in
the ms function. If FALSE, the default algorithm inms for functions that do
not incorporate gradient and Hessian attributes is used. Default depends on the
pdMat classes used inm1andm2: if both are standard classes (seepdClasses)
then defaults toTRUE, otherwise defaults toFALSE.

VALUE
an object of classsimulate.lme with componentsnull and alt . Each of
these has componentsML and/orREMLwhich are matrices. An attribute called
Random.seed contains the seed that was used for the random number generator.

SEE ALSO
lme

EXAMPLE

orthSim <-
simulate.lme(m1 = list(fixed = distance ∼ age, data = Orthodont,

random = ∼ 1 | Subject),
m2 = list(random = ∼ age | Subject))

solve.pdMat Calculate Inverse of a Positive-Definite Matrix solve.pdMat

The positive-definite matrix represented bya is inverted and assigned toa.

solve(a, b, tol)

ARGUMENTS

a: an object inheriting from classpdMat , representing a positive definite matrix.

b: this argument is only included for consistency with the generic function and is
not used in this method function.

tol: an optional numeric value for the tolerance used in the numerical algorithm.
Defaults to1e-7 .

VALUE
apdMat object similar toa, but with coefficients corresponding to the inverse of
the positive-definite matrix represented bya.

SEE ALSO
pdMat

247

EXAMPLE

pd1 <- pdCompSymm(3 * diag(3) + 1)
solve(pd1)

solve.reStruct Apply Solve to an reStruct Object solve.reStruct

Solve is applied to eachpdMat component ofa, which results in inverting the
positive-definite matrices they represent.

solve(a, b, tol)

ARGUMENTS

a: an object inheriting from classreStruct , representing a random effects struc-
ture and consisting of a list ofpdMat objects.

b: this argument is only included for consistency with the generic function and is
not used in this method function.

tol: an optional numeric value for the tolerance used in the numerical algorithm.
Defaults to1e-7 .

VALUE
an reStruct object similar toa, but with thepdMat components representing
the inverses of the matrices represented by the components ofa.

SEE ALSO
solve.pdMat , reStruct

EXAMPLE

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ∼ Score),
B = pdDiag(2 * diag(4), form = ∼ Educ)))

solve(rs1)

248

sortedXyData Create a sortedXyData object sortedXyData

This is a constructor function for the class ofsortedXyData objects. These
objects are mostly used in theinitial function for a self-starting nonlinear
regression model, which will be of theselfStart class.

sortedXyData(x, y, data)

ARGUMENTS

x: a numeric vector or an expression that will evaluate indata to a numeric vector

y: a numeric vector or an expression that will evaluate indata to a numeric vector

data: an optional data frame in which to evaluate expressions forx andy , if they are
given as expressions

VALUE
A sortedXyData object. This is a data frame with exactly two numeric columns,
namedx andy . The rows are sorted so thex column is in increasing order. Du-
plicatex values are eliminated by averaging the correspondingy values.

SEE ALSO
selfStart , NLSstClosestX , NLSstLfAsymptote , NLSstRtAsymptote

EXAMPLE

DNase.2 <- DNase[DNase$Run == "2",]
sortedXyData(expression(log(conc)), expression(density), DNase.2)

splitFormula Split a Formula splitFormula

Splits the right hand side ofform into a list of subformulas according to the
presence ofsep . The left hand side ofform , if present, will be ignored. The
length of the returned list will be equal to the number of occurrences ofsep in
form plus one.

splitFormula(frm, sep)

ARGUMENTS

form: a formula object.

sep: an optional character string specifying the separator to be used for splitting the
formula. Defaults to"/" .

VALUE
a list of formulas, corresponding to the split ofform according tosep .

SEE ALSO
formula

249

EXAMPLE

splitFormula(∼ g1/g2/g3)

SSasymp Asymptotic regression model SSasymp

ThisselfStart model evaluates the asymptotic regression function and its gra-
dient. It has aninitial attribute that will evaluate initial estimates of the pa-
rametersAsym, R0, andlrc for a given set of data.

SSasymp(input, Asym, R0, lrc)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model

Asym: a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput)

R0: a numeric parameter representing the response wheninput is zero.

lrc: a numeric parameter representing the natural logarithm of the rate constant

VALUE
a numeric vector of the same length asinput . It is the value of the expression
Asym+(R0−Asym) exp(− exp(lrc)input). If all of the argumentsAsym, R0,
andlrc are names of objects, the gradient matrix with respect to these names is
attached as an attribute namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only
Asym <- 100
resp0 <- -8.5
lrc <- -3.2
SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient

250

SSasympOff Asymptotic Regression Model with an Offset SSasympOff

This selfStart model evaluates an alternative parameterization of the asymp-
totic regression function and the gradient with respect to those parameters. It has
an initial attribute that creates initial estimates of the parametersAsym, lrc ,
andc0 .

SSasympOff(input, Asym, lrc, c0)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

Asym: a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput).

lrc: a numeric parameter representing the natural logarithm of the rate constant.

c0: a numeric parameter representing theinput for which the response is zero.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
Asym{1 − exp[− exp(lrc)(input − c0)]}. If all of the argumentsAsym, lrc ,
and c0 are names of objects, as opposed to expressions or explicit numerical
values, the gradient matrix with respect to these names is attached as an attribute
namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]
SSasympOff(CO2.Qn1$conc, 32, 43, -4) # response only
Asym <- 32
lrc <- -4
c0 <- 43
SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient

251

SSasympOrig Asypmtotic Regression Model through the Origin SSasympOrig

This selfStart model evaluates the asymptotic regression function through
the origin and its gradient. It has aninitial attribute that will evaluate initial
estimates of the parametersAsym andlrc for a given set of data.

SSasympOrig(input, Asym, lrc)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

Asym: a numeric parameter representing the horizontal asymptote.

lrc: a numeric parameter representing the natural logarithm of the rate constant.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
Asym{1− exp[− exp(lrc) · input]}. If all of the argumentsAsym andlrc are
names of objects, the gradient matrix with respect to these names is attached as
an attribute namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasympOrig(Lob.329$age, 100, -3.2) # response only
Asym <- 100
lrc <- -3.2
SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient

252

SSbiexp Biexponential model SSbiexp

This selfStart model evaluates the biexponential model function and its gra-
dient. It has aninitial attribute that creates evaluate initial estimates of the
parametersA1, lrc1 , A2, andlrc2 .

SSbiexp(input, A1, lrc1, A2, lrc2)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

A1: a numeric parameter representing the multiplier of the first exponential.

lrc1: a numeric parameter representing the natural logarithm of the rate constant of
the first exponential.

A2: a numeric parameter representing the multiplier of the second exponential.

lrc2: a numeric parameter representing the natural logarithm of the rate constant of
the second exponential.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
A1 exp[− exp(lrc1) · input] + A2 exp[− exp(lrc2) · input]. If all of the argu-
mentsA1, lrc1 , A2, and lrc2 are names of objects, the gradient matrix with
respect to these names is attached as an attribute namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Indo.1 <- Indometh[Indometh$Subject == 1,]
SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only
A1 <- 3
lrc1 <- 1
A2 <- 0.6
lrc2 <- -1.3
SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient

253

SSfol First-order Compartment Model SSfol

This selfStart model evaluates the first-order compartment function and its
gradient. It has aninitial attribute that will evaluate initial estimates of the
parameterslKe , lKa , andlCl for a given set of data.

SSfol(Dose, input, lKe, lKa, lCl)

ARGUMENTS

Dose: a numeric value representing the initial dose.

input: a numeric vector at which to evaluate the model.

lKe: a numeric parameter representing the natural logarithm of the elimination rate
constant.

lKe: a numeric parameter representing the natural logarithm of the absorption rate
constant.

lCl: a numeric parameter representing the natural logarithm of the clearance.

VALUE
a numeric vector of the same length asinput . It is the value of the expression

Dose exp(lKe+ lKa− lCl)
exp(lKa)− exp(lKe)

{exp[− exp(lKe) · input]− exp[− exp(lKa) · input]}

. If all of the argumentslKe , lKa , andlCl are names of objects, the gradient
matrix with respect to these names is attached as an attribute namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Theoph.1 <- Theoph[Theoph$Subject == 1,]
response only
SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3)
lKe <- -2.5
lKa <- 0.5
lCl <- -3
response and gradient
SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl)

254

SSfpl Four-parameter Logistic Model SSfpl

This selfStart model evaluates the four-parameter logistic function and its
gradient. It has aninitial attribute that will evaluate initial estimates of the
parametersA, B, xmid , andscal for a given set of data.

SSfpl(input, A, B, xmid, scal)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

A: a numeric parameter representing the horizontal asymptote on the left side (very
small values ofinput).

B: a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput).

xmid: a numeric parameter representing theinput value at the inflection point of the
curve. The value ofSSfpl will be midway betweenA andB at xmid .

scal: a numeric scale parameter on theinput axis.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
A + (B − A)/{1 + exp[(xmid − input)/scal]}. If all of the argumentsA, B,
xmid , andscal are names of objects, the gradient matrix with respect to these
names is attached as an attribute namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only
A <- 13
B <- 368
xmid <- 14
scal <- 6
SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient

255

SSlogis Logistic model SSlogis

This selfStart model evaluates the logistic function and its gradient. It has
an initial attribute that will evaluate initial estimates of the parametersAsym,
xmid , andscal for a given set of data.

SSlogis(input, Asym, xmid, scal)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

Asym: a numeric parameter representing the asymptote.

xmid: a numeric parameter representing thex value at the inflection point of the curve.
The value ofSSlogis will be Asym/2 at xmid .

scal: a numeric scale parameter on theinput axis.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
Asym/{1 + exp[(xmid − input)/scal]}. If all of the argumentsAsym, xmid ,
andscal are names of objects, as opposed to expressions or explicit numerical
values, the gradient matrix with respect to these names is attached as an attribute
namedgradient .

SEE ALSO
nls , selfStart

EXAMPLE

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSlogis(Chick.1$Time, 368, 14, 6) # response only
Asym <- 368
xmid <- 14
scal <- 6
SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient

256

SSmicmen Michaelis-Menten model SSmicmen

ThisselfStart model evaluates the Michaelis-Menten model and its gradient.
It has aninitial attribute that will evaluate initial estimates of the parameters
VmandK

SSmicmen(input, Vm, K)

ARGUMENTS

input: a numeric vector of values at which to evaluate the model.

Vm: a numeric parameter representing the maximum value of the response.

K: a numeric parameter representing theinput value at which half the maximum
response is attained. In the field of enzyme kinetics this is called the Michaelis
parameter.

VALUE
a numeric vector of the same length asinput . It is the value of the expression
V m · input/(K + input). If both the argumentsVmandK are names of objects,
the gradient matrix with respect to these names is attached as an attribute named
gradient .

SEE ALSO
nls , selfStart

EXAMPLE

PurTrt <- Puromycin[Puromycin$state == "treated",]
SSmicmen(PurTrt$conc, 200, 0.05) # response only
Vm <- 200
K <- 0.05
SSmicmen(PurTrt$conc, Vm, K) # response and gradient

257

summary.corStruct Summarize a corStruct Object summary.corStruct

This method function preparesobject to be printed using theprint.summary

method, by changing its class and adding astructName attribute to it.

summary(object, structName)

ARGUMENTS

object: an object inheriting from classcorStruct , representing a correlation structure.

structName: an optional character string defining the type of correlation structure as-
sociated withobject , to be used in theprint.summary method. Defaults to
class(object)[1] .

VALUE
an object identical toobject , but with its class changed tosummary.corStruct

and an additional attributestructName . The returned value inherits from the
same classes asobject .

SEE ALSO
print.summary.corStruct

EXAMPLE

cs1 <- corAR1(0.2)
summary(cs1)

summary.gls Summarize a gls Object summary.gls

Additional information about the linear model fit represented byobject is ex-
tracted and included as components ofobject . The returned object is suitable
for printing with theprint.summary.gls method.

summary(object, adjustSigma, verbose)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

adjustSigma: an optional logical value. IfTRUEand the estimation method used to
obtainobject was maximum likelihood, the standard errors of the coefficients
are multiplied by

√
nobs/(nobs − npar), with nobs andnpar denoting, respec-

tively, the number of observations and the number of coefficients. This converts
the standard errors to REML-like estimates. Default isTRUE.

verbose: an optional logical value used to control the amount of output in theprint.summary.gls

method. Defaults toFALSE.

258

VALUE
an object inheriting from classsummary.gls with all components included in
object (seeglsObject for a full description of the components) plus the fol-
lowing components:

corBeta: approximate correlation matrix for the coefficients estimates

tTable: a data frame with columnsValue , Std. Error , t-value , andp-value rep-
resenting respectively the coefficients estimates, their approximate standard er-
rors, the ratios between the estimates and their standard errors, and the associated
p-value under a t approximation. Rows correspond to the different coefficients.

residuals: if more than five observations are used in thegls fit, a vector with the
minimum, first quartile, median, third quartile, and maximum of the residuals
distribution; else the residuals.

AIC: the Akaike Information Criterion corresponding toobject .

BIC: the Bayesian Information Criterion corresponding toobject .

SEE ALSO
gls , AIC , BIC , print.summary.gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

summary(fm1)

summary.lmList Summarize an lmList Object summary.lmList

The summary.lm method is applied to eachlm component ofobject to pro-
duce summary information on the individual fits, which is organized into a
list of summary statistics. The returned object is suitable for printing with the
print.summary.lmList method.

summary(object, pool)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm fitted objects.

pool: an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default isattr(object, "pool") .

VALUE
a list with summary statistics obtained by applyingsummary.lm to the elements
of object , inheriting from classsummary.lmList . The components ofvalue

are:

259

call: a list containing an image of thelmList call that producedobject .

coefficients: a three dimensional array with summary information on thelm coeffi-
cients. The first dimension corresponds to the names of theobject components,
the second dimension is given by"Value" , "Std. Error" , "t value" , and
"Pr(>|t|)" , corresponding, respectively, to the coefficient estimates and their
associated standard errors, t-values, and p-values. The third dimension is given
by the coefficients names.

correlation: a three dimensional array with the correlations between the individuallm

coefficient estimates. The first dimension corresponds to the names of theob-

ject components. The third dimension is given by the coefficients names. For
each coefficient, the rows of the associated array give the correlations between
that coefficient and the remaining coefficients, bylm component.

cov.unscaled: a three dimensional array with the unscaled variances/covariances for
the individuallm coefficient estimates (giving the estimated variance/covariance
for the coefficients, when multiplied by the estimated residual errors). The first
dimension corresponds to the names of theobject components. The third di-
mension is given by the coefficients names. For each coefficient, the rows of the
associated array give the unscaled covariances between that coefficient and the
remaining coefficients, bylm component.

df: an array with the number of degrees of freedom for the model and for residuals,
for eachlm component.

df.residual: the total number of degrees of freedom for residuals, corresponding to
the sum of residuals df of alllm components.

fstatistics: an array with the F test statistics and corresponding degrees of freedom,
for eachlm component.

pool: the value of thepool argument to the function.

r.squared: a vector with the multiple R-squared statistics for eachlm component.

residuals: a list with components given by the residuals from individuallm fits.

RSE: the pooled estimate of the residual standard error.

sigma: a vector with the residual standard error estimates for the individuallm fits.

terms: the terms object used in fitting the individuallm components.

SEE ALSO
lmList , print.summary.lmList

EXAMPLE

fm1 <- lmList(distance ∼ age | Subject, Orthodont)
summary(fm1)

260

summary.lme Summarize an lme Object summary.lme

Additional information about the linear mixed-effects fit represented byobject

is extracted and included as components ofobject . The returned object is
suitable for printing with theprint.summary.lme method.

summary(object, adjustSigma, verbose)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

adjustSigma: an optional logical value. IfTRUEand the estimation method used to ob-
tain object was maximum likelihood, the standard errors of the fixed effects
are multiplied by

√
nobs/(nobs − npar), with nobs andnpar denoting, respec-

tively, the number of observations and the number of fixed effects. This converts
the standard errors to REML-like estimates. Default isTRUE.

verbose: an optional logical value used to control the amount of output in theprint.summary.lme

method. Defaults toFALSE.

VALUE
an object inheriting from classsummary.lme with all components included in
object (seelmeObject for a full description of the components) plus the fol-
lowing components:

corFixed: approximate correlation matrix for the fixed effects estimates

tTable: a data frame with columnsValue , Std. Error , DF, t-value , andp-value

representing respectively the fixed effects estimates, their approximate standard
errors, the denominator degrees of freedom, the ratios between the estimates
and their standard errors, and the associated p-value from a t distribution. Rows
correspond to the different fixed effects.

residuals: if more than five observations are used in thelme fit, a vector with the
minimum, 25 quantile, and maximum of the innermost grouping level residuals
distribution; else the innermost grouping level residuals.

AIC: the Akaike Information Criterion corresponding toobject .

BIC: the Bayesian Information Criterion corresponding toobject .

SEE ALSO
lme , AIC , BIC , print.summary.lme

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
summary(fm1)

261

summary.modelStruct Summarize modelStruct summary.modelStruct

This method function appliessummary to each element ofobject .

summary(object)

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

VALUE
a list with elements given by the summarized components ofobject . The re-
turned value is of classsummary.modelStruct , also inheriting from the same
classes asobject .

SEE ALSO
print.summary.modelStruct

EXAMPLE

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ∼ age)),
corStruct = corAR1(0.3))

summary(lms1)

summary.nlsList Summarize an nlsList Object summary.nlsList

The summary.nls method is applied to eachnls component ofobject to
produce summary information on the individual fits, which is organized into a
list of summary statistics. The returned object is suitable for printing with the
print.summary.nlsList method.

summary(object, pool)

ARGUMENTS

object: an object inheriting from classnlsList , representing a list ofnls fitted objects.

pool: an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default isattr(object, "pool") .

VALUE
a list with summary statistics obtained by applyingsummary.nls to the ele-
ments ofobject , inheriting from classsummary.nlsList . The components
of value are:

call: a list containing an image of thenlsList call that producedobject .

262

parameters: a three dimensional array with summary information on thenls coeffi-
cients. The first dimension corresponds to the names of theobject components,
the second dimension is given by"Value" , "Std. Error" , "t value" , and
"Pr(>|t|)" , corresponding, respectively, to the coefficient estimates and their
associated standard errors, t-values, and p-values. The third dimension is given
by the coefficients names.

correlation: a three dimensional array with the correlations between the individual
nls coefficient estimates. The first dimension corresponds to the names of the
object components. The third dimension is given by the coefficients names.
For each coefficient, the rows of the associated array give the correlations be-
tween that coefficient and the remaining coefficients, bynls component.

cov.unscaled: a three dimensional array with the unscaled variances/covariances for
the individuallm coefficient estimates (giving the estimated variance/covariance
for the coefficients, when multiplied by the estimated residual errors). The first
dimension corresponds to the names of theobject components. The third di-
mension is given by the coefficients names. For each coefficient, the rows of the
associated array give the unscaled covariances between that coefficient and the
remaining coefficients, bynls component.

df: an array with the number of degrees of freedom for the model and for residuals,
for eachnls component.

df.residual: the total number of degrees of freedom for residuals, corresponding to
the sum of residuals df of allnls components.

pool: the value of thepool argument to the function.

RSE: the pooled estimate of the residual standard error.

sigma: a vector with the residual standard error estimates for the individuallm fits.

SEE ALSO
nlsList , summary.nls

EXAMPLE

fm1 <- nlsList(weight ∼ SSlogis(Time, Asym, xmid, scal) | Plot,
Soybean)

summary(fm1)

263

summary.pdMat Summarize a pdMat Object summary.pdMat

Attributes structName and noCorrelation , with the values of the corre-
sponding arguments to the method function, are appended toobject and its
class is changed tosummary.pdMat .

summary(object, structName, noCorrelation)

ARGUMENTS

object: an object inheriting from classpdMat , representing a positive definite matrix.

structName: an optional character string with a description of thepdMat class. De-
fault depends on the method function:"Blocked" for pdBlocked , "Compound

Symmetry" for pdCompSymm, "Diagonal" for pdDiag , "Multiple of an

Identity" for pdIdent , "General Positive-Definite" for pdSymm, and
data.class(object) for pdMat .

noCorrelation: an optional logical value indicating whether correlations are to be printed
in print.summary.pdMat . Default depends on the method function:FALSE

for pdDiag andpdIdent , andTRUEfor all other classes.

VALUE
an object similar toobject , with additional attributesstructName andno-

Correlation , inheriting from classsummary.pdMat .

SEE ALSO
print.summary.pdMat , pdMat

EXAMPLE

summary(pdSymm(diag(4)))

264

summary.varFunc Summarize varFunc Object summary.varFunc

A structName attribute, with the value of corresponding argument, is appended
to object and its class is changed tosummary.varFunc .

summary(object, structName)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

structName: an optional character string with a description of thevarFunc class. De-
fault depends on the method function:"Combination of variance func-

tions" for varComb , "Constant plus power of covariate" for var-

ConstPower , "Exponential of variance covariate" for varExp , "Dif-

ferent standard deviations per stratum" for varIdent , "Power of

variance covariate" for varPower , anddata.class(object) for var-

Func .

VALUE
an object similar toobject , with an additional attributestructName , inheriting
from classsummary.varFunc .

SEE ALSO
print.summary.varFunc

EXAMPLE

vf1 <- varPower(0.3, form = ∼ age)
vf1 <- initialize(vf1, Orthodont)
summary(vf1)

265

update.gls Update a gls Object update.gls

The non-missing arguments in the call to theupdate.gls method replace the
corresponding arguments in the original call used to produceobject andgls is
used with the modified call to produce an updated fitted object.

update(object, model, data, correlation, weights, subset, method,
na.action, control)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted linear model.

other arguments: defined as ingls . See that function’s documentation for descrip-
tions of and default values for these arguments.

VALUE
an updatedgls object.

SEE ALSO
gls

EXAMPLE

fm1 <- gls(follicles ∼ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ∼ 1 | Mare))

fm2 <- update(fm1, weights = varPower())

update.gnls Update a gnls Object update.gnls

The non-missing arguments in the call to theupdate.gnls method replace the
corresponding arguments in the original call used to produceobject andgnls

is used with the modified call to produce an updated fitted object.

update(object, model, data, params, start, correlation, weights,
subset, na.action, naPattern, control, verbose)

ARGUMENTS

object: an object inheriting from classgnls , representing a generalized nonlinear least
squares fitted model.

other arguments: defined as ingnls . See that function’s documentation for descrip-
tions of and default values for these arguments.

VALUE
an updatedgnls object.

SEE ALSO
gnls

266

EXAMPLE

fm1 <- gnls(weight ∼ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

fm2 <- update(fm1, correlation = corAR1(form = ∼ 1|Plot))

update.groupedData Update a groupedData Object update.groupedData

The non-missing arguments in the call to theupdate.groupedData method
replace the corresponding arguments in the original call used to produceobject

andgroupedData is used with the modified call to produce an updated fitted
object.

update(object, formula, data, order.groups, FUN, outer, inner,
labels, units)

ARGUMENTS

object: an object inheriting from classgroupedData .

other arguments: defined as ingroupedData . See that function’s documentation for
descriptions of and default values for these arguments.

VALUE
an updatedgroupedData object.

SEE ALSO
groupedData

EXAMPLE

Orthodont2 <- update(Orthodont, FUN = mean)

267

update.lmList Update an lmList Object update.lmList

The non-missing arguments in the call to theupdate.lmList method replace
the corresponding arguments in the original call used to produceobject and
lmList is used with the modified call to produce an updated fitted object.

update(object, formula, data, level, subset, na.action,
control, pool)

ARGUMENTS

object: an object inheriting from classlmList , representing a list oflm fitted objects.

formula: a two-sided linear formula with the common model for the individualslm fits.

other arguments: defined as inlmList . See that function’s documentation for de-
scriptions of and default values for these arguments.

VALUE
an updatedlmList object.

SEE ALSO
lmList

EXAMPLE

fm1 <- lmList(Orthodont)
fm2 <- update(fm1, distance ∼ I(age - 11))

update.lme Update an lme Object update.lme

The non-missing arguments in the call to theupdate.lme method replace the
corresponding arguments in the original call used to produceobject andlme is
used with the modified call to produce an updated fitted object.

update(object, fixed, data, random, correlation, weights,
subset, method, na.action, control)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

other arguments: defined as inlme . See that function’s documentation for descrip-
tions of and default values for these arguments.

VALUE
an updatedlme object.

SEE ALSO
lme

268

EXAMPLE

fm1 <- lme(distance ∼ age, Orthodont, random = ∼ age | Subject)
fm2 <- update(fm1, distance ∼ age * Sex)

update.modelStruct Update a modelStruct Object update.modelStruct

This method function updates each element ofobject , allowing the access to
data .

update(object, data)

ARGUMENTS

object: an object inheriting from classmodelStruct , representing a list of model com-
ponents, such ascorStruct andvarFunc objects.

data: a data frame in which to evaluate the variables needed for updating the elements
of object .

VALUE
an object similar toobject (same class, length, and names), but with updated
elements.

NOTE
This method function is primarily used within model fitting functions, such as
lme andgls , that allow model components such as variance functions.

update.nlme Update an nlme Object update.nlme

The non-missing arguments in the call to theupdate.nlme method replace the
corresponding arguments in the original call used to produceobject andnlme

is used with the modified call to produce an updated fitted object.

update(object, model, data, fixed, random, groups, start,
correlation, weights, subset, method, na.action,
naPattern, control, verbose)

ARGUMENTS

object: an object inheriting from classnlme , representing a fitted nonlinear mixed-
effects model.

other arguments: defined as innlme . See that function’s documentation for descrip-
tions of and default values for these arguments.

VALUE
an updatednlme object.

SEE ALSO
nlme

269

EXAMPLE

fm1 <- nlme(weight ∼ SSlogis(Time, Asym, xmid, scal),
data = Soybean, fixed = Asym + xmid + scal ∼ 1,
start = c(18, 52, 7.5))

fm2 <- update(fm1, weights = varPower())

update.nlsList Update an nlsList Object update.nlsList

The non-missing arguments in the call to theupdate.nlsList method replace
the corresponding arguments in the original call used to produceobject and
nlsList is used with the modified call to produce an updated fitted object.

update(object, model, data, start, control, level, subset,
na.action, control, pool)

ARGUMENTS

object: an object inheriting from classnlsList , representing a list of fittednls objects.

other arguments: defined as innlsList . See that function’s documentation for de-
scriptions of and default values for these arguments.

VALUE
an updatednlsList object.

SEE ALSO
nlsList

EXAMPLE

fm1 <- nlsList(weight ∼ SSlogis(Time, Asym, xmid, scal) | Plot,
Soybean)

fm2 <- update(fm1, start = list(Asym = 23, xmid = 57, scal = 9))

270

update.varFunc Update varFunc Object update.varFunc

If the formula(object) includes a"." term, representing a fitted object, the
variance covariate needs to be updated upon completion of an optimization cycle
(in which the variance function weights are kept fixed). This method function
allows a reevaluation of the variance covariate using the current fitted object and,
optionally, other variables in the original data.

update(object, data)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

data: a list with a component named"." with the current version of the fitted object
(from which fitted values, coefficients, and residuals can be extracted) and, if
necessary, other variables used to evaluate the variance covariate(s).

VALUE
if formula(object) includes a"." term, anvarFunc object similar toob-

ject , but with the variance covariate reevaluated at the current fitted object
value; elseobject is returned unchanged.

SEE ALSO
needUpdate , covariate<-.varFunc

varClasses Variance Function Classes varClasses

Standard classes of variance function structures (varFunc) available in thenlme

library. Covariates included in the variance function, denoted by variance covari-
ates, may involve functions of the fitted model object, such as the fitted values
and the residuals. Different coefficients may be assigned to the levels of a clas-
sification factor.

STANDARD CLASSES

varExp: exponential of a variance covariate.

varPower: power of a variance covariate.

varConstPower: constant plus power of a variance covariate.

varIdent: constant variance(s), generally used to allow different variances according to
the levels of a classification factor.

varFixed: fixed weights, determined by a variance covariate.

271

varComb: combination of variance functions.

NOTE
Users may define their ownvarFunc classes by specifying aconstructor

function and, at a minimum, methods for the functionscoef , coef<- , andini-

tialize . For examples of these functions, see the methods for classvarPower .

SEE ALSO
varExp , varPower , varConstPower , varIdent , varFixed , varComb

varComb Combination of Variance Functions varComb

This function is a constructor for thevarComb class, representing a combina-
tion of variance functions. The corresponding variance function is equal to the
product of the variance functions of thevarFunc objects listed in... .

varComb(...)

ARGUMENTS

...: objects inheriting from classvarFunc representing variance function structures.

VALUE
a varComb object representing a combination of variance functions, also inher-
iting from classvarFunc .

SEE ALSO
varWeights.varComb , coef.varComb

EXAMPLE

vf1 <- varComb(varIdent(form = ∼ 1|Sex), varPower())

272

varConstPower Constant Plus Power Variance Function varConstPower

This function is a constructor for thevarConstPower class, representing a con-
stant plus power variance function structure. Lettingv denote the variance co-
variate andσ2(v) denote the variance function evaluated atv, the constant plus

power variance function is defined asσ2(v) =
(
θ1 + |v|θ2

)2
, whereθ1, θ2 are

the variance function coefficients. When a grouping factor is present, different
θ1, θ2 are used for each factor level.

varConstPower(const, power, form, fixed)

ARGUMENTS

const, power: optional numeric vectors, or lists of numeric values, with, respectively,
the coefficients for the constant and the power terms. Both arguments must have
length one, unless a grouping factor is specified inform . If either argument has
length greater than one, it must have names which identify its elements to the
levels of the grouping factor defined inform . If a grouping factor is present in
form and the argument has length one, its value will be assigned to all grouping
levels. Only positive values are allowed forconst . Default isnumeric(0) ,
which results in a vector of zeros of appropriate length being assigned to the co-
efficients whenobject is initialized (corresponding to constant variance equal
to one).

form: an optional one-sided formula of the form∼v , or∼v | g , specifying a variance
covariatev and, optionally, a grouping factorg for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
"." , representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate to
be updated during the optimization of an objective function). When a grouping
factor is present inform , a different coefficient value is used for each of its
levels. Several grouping variables may be simultaneously specified, separated
by the* operator, like in∼v | g1 * g2 * g3 . In this case, the levels of each
grouping variable are pasted together and the resulting factor is used to group the
observations. Defaults to∼fitted(.) representing a variance covariate given
by the fitted values of a fitted model object and no grouping factor.

fixed: an optional list with componentsconst and/orpower , consisting of numeric
vectors, or lists of numeric values, specifying the values at which some or all of
the coefficients in the variance function should be fixed. If a grouping factor is
specified inform , the components offixed must have names identifying which
coefficients are to be fixed. Coefficients included infixed are not allowed to
vary during the optimization of an objective function. Defaults toNULL, corre-
sponding to no fixed coefficients.

273

VALUE
a varConstPower object representing a constant plus power variance function
structure, also inheriting from classvarFunc .

SEE ALSO
varWeights.varFunc , coef.varConstPower

EXAMPLE

vf1 <- varConstPower(1.2, 0.2, form = ∼ age|Sex)

VarCorr Extract variance and correlation components VarCorr

This function calculates the estimated variances, standard deviations, and cor-
relations between the random-effects terms in a linear mixed-effects model, of
classlme , or a nonlinear mixed-effects model, of classnlme . The within-group
error variance and standard deviation are also calculated.

VarCorr(object, sigma, rdig)

ARGUMENTS

object: a fitted model object, usually an object inheriting from classlme .

sigma: an optional numeric value used as a multiplier for the standard deviations. De-
fault is 1.

rdig: an optional integer value specifying the number of digits used to represent cor-
relation estimates. Default is3.

VALUE
a matrix with the estimated variances, standard deviations, and correlations for
the random effects. The first two columns, namedVariance andStdDev , give,
respectively, the variance and the standard deviations. If there are correlation
components in the random effects model, the third column, namedCorr , and
the remaining unnamed columns give the estimated correlations among random
effects within the same level of grouping. The within-group error variance and
standard deviation are included as the last row in the matrix.

EXAMPLE

fm1 <- lme(distance ∼ age, data = Orthodont, random = ∼ age)
VarCorr(fm1)

274

varExp Exponential Variance Function varExp

This function is a constructor for thevarExp class, representing an exponential
variance function structure. Lettingv denote the variance covariate andσ2(v)
denote the variance function evaluated atv, the exponential variance function
is defined asσ2(v) = exp(2θv), whereθ is the variance function coefficient.
When a grouping factor is present, a differentθ is used for each factor level.

varExp(value, form, fixed)

ARGUMENTS

value: an optional numeric vector, or list of numeric values, with the variance function
coefficients.Value must have length one, unless a grouping factor is specified in
form . If value has length greater than one, it must have names which identify
its elements to the levels of the grouping factor defined inform . If a grouping
factor is present inform andvalue has length one, its value will be assigned to
all grouping levels. Default isnumeric(0) , which results in a vector of zeros of
appropriate length being assigned to the coefficients whenobject is initialized
(corresponding to constant variance equal to one).

form: an optional one-sided formula of the form∼v , or∼v | g , specifying a variance
covariatev and, optionally, a grouping factorg for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
"." , representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate to
be updated during the optimization of an objective function). When a grouping
factor is present inform , a different coefficient value is used for each of its
levels. Several grouping variables may be simultaneously specified, separated
by the* operator, like in∼v | g1 * g2 * g3 . In this case, the levels of each
grouping variable are pasted together and the resulting factor is used to group the
observations. Defaults to∼fitted(.) representing a variance covariate given
by the fitted values of a fitted model object and no grouping factor.

fixed: an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed.
If a grouping factor is specified inform , fixed must have names identifying
which coefficients are to be fixed. Coefficients included infixed are not al-
lowed to vary during the optimization of an objective function. Defaults toNULL,
corresponding to no fixed coefficients.

VALUE
a varExp object representing an exponential variance function structure, also
inheriting from classvarFunc .

SEE ALSO
varWeights.varFunc , coef.varExp

275

EXAMPLE

vf1 <- varExp(0.2, form = ∼ age|Sex)

varFixed Fixed Variance Function varFixed

This function is a constructor for thevarFixed class, representing a variance
function with fixed variances. Lettingv denote the variance covariate defined in
value , the variance functionσ2(v) for this class isσ2(v) = |v|. The variance
covariatev is evaluated once at initialization and remains fixed thereafter. No
coefficients are required to represent this variance function.

varFixed(value)

ARGUMENTS

value: a one-sided formula of the form∼v specifying a variance covariatev . Grouping
factors are ignored.

VALUE
avarFixed object representing a fixed variance function structure, also inherit-
ing from classvarFunc .

SEE ALSO
varWeights.varFunc , varFunc

EXAMPLE

vf1 <- varFixed(∼ age)

varFunc Variance Function Structure varFunc

If object is a one-sided formula, it is used as the argument tovarFixed and
the resulting object is returned. Else, ifobject inherits from classvarFunc , it
is returned unchanged.

varFunc(object)

ARGUMENTS

object: either an one-sided formula specifying a variance covariate, or an object inher-
iting from classvarFunc , representing a variance function structure.

VALUE
an object from classvarFunc , representing a variance function structure.

SEE ALSO
varFixed , varWeights.varFunc , coef.varFunc

276

EXAMPLE

vf1 <- varFunc(∼ age)

varIdent Different Variances per Group varIdent

This function is a constructor for thevarIdent class, representing a constant
variance function structure. If no grouping factor is present inform , the variance
function is constant and equal to one, and no coefficients required to represent it.
Whenform includes a grouping factor withM > 1 levels, the variance function
allowsM different variances, one for each level of the factor. For identifiability
reasons, the coefficients of the variance function represent the ratios between the
variances and a reference variance (corresponding to a reference group level).
Therefore, onlyM−1 coefficients are needed to represent the variance function.
By default, if the elements invalue are unnamed, the first group level is taken
as the reference level.

varIdent(value, form, fixed)

ARGUMENTS

value: an optional numeric vector, or list of numeric values, with the variance function
coefficients. If no grouping factor is present inform , this argument is ignored,
as the resulting variance function contains no coefficients. Ifvalue has length
one, its value is repeated for all coefficients in the variance function. Ifvalue

has length greater than one, it must have length equal to the number of group-
ing levels minus one and names which identify its elements to the levels of the
grouping factor. Only positive values are allowed for this argument. Default is
numeric(0) , which results in a vector of zeros of appropriate length being as-
signed to the coefficients whenobject is initialized (corresponding to constant
variance equal to one).

form: an optional one-sided formula of the form∼v , or∼v | g , specifying a variance
covariatev and, optionally, a grouping factorg for the coefficients. The variance
covariate is ignored in this variance function. When a grouping factor is present
in form , a different coefficient value is used for each of its levels less one ref-
erence level (see description section below). Several grouping variables may be
simultaneously specified, separated by the* operator, like in∼v | g1 * g2 *

g3. In this case, the levels of each grouping variable are pasted together and the
resulting factor is used to group the observations. Defaults to∼1.

fixed: an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed.
It must have names identifying which coefficients are to be fixed. Coefficients
included infixed are not allowed to vary during the optimization of an objective
function. Defaults toNULL, corresponding to no fixed coefficients.

277

VALUE
a varIdent object representing a constant variance function structure, also in-
heriting from classvarFunc .

SEE ALSO
varWeights.varFunc , coef.varIdent

EXAMPLE

vf1 <- varIdent(c(F = 0.5), form = ∼ 1 | Sex)

Variogram Calculate Semi-Variogram Variogram

This function is generic; method functions can be written to handle specific
classes of objects. Classes which already have methods for this function in-
cludedefault , gls andlme . See the appropriate method documentation for a
description of the arguments.

Variogram(object, distance, ...)

VALUE
will depend on the method function used; see the appropriate documentation.

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Diggle, P.J., Liang, K.Y. and Zeger, S. L. (1994) ”Analysis of Longitudinal
Data”, Oxford University Press Inc.

SEE ALSO
Variogram.default ,Variogram.gls , Variogram.lme , plot.Variogram

EXAMPLE

see the method function documentation

278

Variogram.corExp Calculate Semi-Variogram for a corExp ObjectVariogram.corExp

This method function calculates the semi-variogram values corresponding to the
Exponential correlation model, using the estimated coefficients corresponding to
object , at the distances defined bydistance .

Variogram(object, distance, sig2, length.out)

ARGUMENTS

object: an object inheriting from classcorExp , representing an exponential spatial cor-
relation structure.

distance: an optional numeric vector with the distances at which the semi-variogram is
to be calculated. Defaults toNULL, in which case a sequence of lengthlength.out

between the minimum and maximum values ofgetCovariate(object) is
used.

sig2: an optional numeric value representing the process variance. Defaults to1.

length.out: an optional integer specifying the length of the sequence of distances to be
used for calculating the semi-variogram, whendistance = NULL . Defaults to
50.

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.

SEE ALSO
corExp , plot.Variogram

EXAMPLE

cs1 <- corExp(3, form = ∼ Time | Rat)
cs1 <- initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

279

Variogram.corGausCalculate Semi-Variogram for a corGaus ObjectVariogram.corGaus

This method function calculates the semi-variogram values corresponding to the
Gaussian correlation model, using the estimated coefficients corresponding to
object , at the distances defined bydistance .

Variogram(object, distance, sig2, length.out)

ARGUMENTS

object: an object inheriting from classcorGaus , representing an Gaussian spatial cor-
relation structure.

distance: an optional numeric vector with the distances at which the semi-variogram is
to be calculated. Defaults toNULL, in which case a sequence of lengthlength.out

between the minimum and maximum values ofgetCovariate(object) is
used.

sig2: an optional numeric value representing the process variance. Defaults to1.

length.out: an optional integer specifying the length of the sequence of distances to be
used for calculating the semi-variogram, whendistance = NULL . Defaults to
50.

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.

SEE ALSO
corGaus , plot.Variogram

EXAMPLE

cs1 <- corGaus(3, form = ∼ Time | Rat)
cs1 <- initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

280

Variogram.corLin Calculate Semi-Variogram for a corLin ObjectVariogram.corLin

This method function calculates the semi-variogram values corresponding to the
Linear correlation model, using the estimated coefficients corresponding toob-

ject , at the distances defined bydistance .

Variogram(object, distance, sig2, length.out)

ARGUMENTS

object: an object inheriting from classcorLin , representing an Linear spatial correla-
tion structure.

distance: an optional numeric vector with the distances at which the semi-variogram is
to be calculated. Defaults toNULL, in which case a sequence of lengthlength.out

between the minimum and maximum values ofgetCovariate(object) is
used.

sig2: an optional numeric value representing the process variance. Defaults to1.

length.out: an optional integer specifying the length of the sequence of distances to be
used for calculating the semi-variogram, whendistance = NULL . Defaults to
50.

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.

SEE ALSO
corLin , plot.Variogram

EXAMPLE

cs1 <- corLin(15, form = ∼ Time | Rat)
cs1 <- initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

281

Variogram.corRatioCalculate Semi-Variogram for a corRatio ObjectVariogram.corRatio

This method function calculates the semi-variogram values corresponding to the
Rational Quadratic correlation model, using the estimated coefficients corre-
sponding toobject , at the distances defined bydistance .

Variogram(object, distance, sig2, length.out)

ARGUMENTS

object: an object inheriting from classcorRatio , representing an Rational Quadratic
spatial correlation structure.

distance: an optional numeric vector with the distances at which the semi-variogram is
to be calculated. Defaults toNULL, in which case a sequence of lengthlength.out

between the minimum and maximum values ofgetCovariate(object) is
used.

sig2: an optional numeric value representing the process variance. Defaults to1.

length.out: an optional integer specifying the length of the sequence of distances to be
used for calculating the semi-variogram, whendistance = NULL . Defaults to
50.

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.

SEE ALSO
corRatio , plot.Variogram

EXAMPLE

cs1 <- corRatio(7, form = ∼ Time | Rat)
cs1 <- initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

282

Variogram.corSpherCalculate Semi-Variogram for a corSpher ObjectVariogram.corSpher

This method function calculates the semi-variogram values corresponding to the
Spherical correlation model, using the estimated coefficients corresponding to
object , at the distances defined bydistance .

Variogram(object, distance, sig2, length.out)

ARGUMENTS

object: an object inheriting from classcorSpher , representing an Spherical spatial cor-
relation structure.

distance: an optional numeric vector with the distances at which the semi-variogram is
to be calculated. Defaults toNULL, in which case a sequence of lengthlength.out

between the minimum and maximum values ofgetCovariate(object) is
used.

sig2: an optional numeric value representing the process variance. Defaults to1.

length.out: an optional integer specifying the length of the sequence of distances to be
used for calculating the semi-variogram, whendistance = NULL . Defaults to
50.

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.

SEE ALSO
corSpher , plot.Variogram

EXAMPLE

cs1 <- corSpher(15, form = ∼ Time | Rat)
cs1 <- initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

283

Variogram.default Calculate Semi-Variogram Variogram.default

This method function calculates the semi-variogram for an arbitrary vectorob-

ject , according to the distances indistance . For each pair of elementsx, y in
object , the corresponding semi-variogram is(x− y)2/2. The semi-variogram
is useful for identifying and modeling spatial correlation structures in observa-
tions with constant expectation and constant variance.

Variogram(object, distance)

ARGUMENTS

object: a numeric vector with the values to be used in calculating the semi-variogram,
usually a residual vector from a fitted model.

distance: a numeric vector with the pairwise distances corresponding to the elements of
object . The order of the elements indistance must correspond to the pairs
(1,2), (1,3), ..., (n-1,n) , with n representing the length ofobject ,
and must have lengthn(n-1)/2 .

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. The returned value in-
herits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Diggle, P.J., Liang, K.Y. and Zeger, S. L. (1994) ”Analysis of Longitudinal
Data”, Oxford University Press Inc.

SEE ALSO
Variogram.gls , Variogram.lme , plot.Variogram

EXAMPLE

fm1 <- lm(follicles ∼ sin(2 * pi * Time) + cos(2 * pi * Time),
Ovary, subset = Mare == 1)

Variogram(resid(fm1), dist(1:29))[1:10,]

284

Variogram.gls Calculate Semi-Variogram of gls Residuals Variogram.gls

This method function calculates the semi-variogram for the residuals from an
gls fit. The semi-variogram values are calculated for pairs of residuals within
the same group level, if a grouping factor is present. Ifcollapse is different
from "none" , the individual semi-variogram values are collapsed using either a
robust estimator (robust = TRUE) defined in Cressie (1993), or the average of
the values within the same distance interval. The semi-variogram is useful for
modeling the error term correlation structure.

Variogram(object, distance, form, resType, data, na.action, maxDist,
length.out, collapse, nint, breaks, robust, metric)

ARGUMENTS

object: an object inheriting from classgls , representing a generalized least squares
fitted model.

distance: an optional numeric vector with the distances between residual pairs. If a
grouping variable is present, only the distances between residual pairs within the
same group should be given. If missing, the distances are calculated based on
the values of the argumentsform , data , andmetric , unlessobject includes a
corSpatial element, in which case the associated covariate (obtained with the
getCovariate method) is used.

form: an optional one-sided formula specifying the covariate(s) to be used for calcu-
lating the distances between residual pairs and, optionally, a grouping factor
for partitioning the residuals (which must appear to the right of a| operator in
form). Default is∼1, implying that the observation order within the groups is
used to obtain the distances.

resType: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"pearson" .

data: an optional data frame in which to interpret the variables inform . By default,
the same data used to fitobject is used.

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causes an error message to be printed and the function
to terminate, if there are any incomplete observations.

maxDist: an optional numeric value for the maximum distance used for calculating the
semi-variogram between two residuals. By default all residual pairs are included.

285

length.out: an optional integer value. Whenobject includes acorSpatial ele-
ment, its semi-variogram values are calculated and this argument is used as the
length.out argument to the correspondingVariogram method. Defaults to
50.

collapse: an optional character string specifying the type of collapsing to be applied
to the individual semi-variogram values. If equal to"quantiles" , the semi-
variogram values are split according to quantiles of the distance distribution,
with equal number of observations per group, with possibly varying distance
interval lengths. Else, if"fixed" , the semi-variogram values are divided ac-
cording to distance intervals of equal lengths, with possibly different number of
observations per interval. Else, if"none" , no collapsing is used and the individ-
ual semi-variogram values are returned. Defaults to"quantiles" .

nint: an optional integer with the number of intervals to be used when collapsing the
semi-variogram values. Defaults to20.

robust: an optional logical value specifying if a robust semi-variogram estimator should
be used when collapsing the individual values. IfTRUEthe robust estimator is
used. Defaults toFALSE.

breaks: an optional numeric vector with the breakpoints for the distance intervals to be
used in collapsing the semi-variogram values. If not missing, the option specified
in collapse is ignored.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. If the semi-variogram
values are collapsed, an extra column,n.pairs , with the number of residual
pairs used in each semi-variogram calculation, is included in the returned data
frame. Ifobject includes acorSpatial element, a data frame with its corre-
sponding semi-variogram is included in the returned value, as an attribute"mod-

elVariog" . The returned value inherits from classVariogram .

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons.
Diggle, P.J., Liang, K.Y. and Zeger, S. L. (1994) ”Analysis of Longitudinal
Data”, Oxford University Press Inc.

SEE ALSO
gls , Variogram.default , Variogram.gls , plot.Variogram

286

EXAMPLE

fm1 <- gls(weight ∼ Time * Diet, BodyWeight)
Variogram(fm1, form = ∼ Time | Rat, nint = 10, robust = TRUE)

Variogram.lmeCalculate Semi-Variogram for Residuals from an lme ObjectVariogram.lme

This method function calculates the semi-variogram for the within-group residu-
als from anlme fit. The semi-variogram values are calculated for pairs of residu-
als within the same group. Ifcollapse is different from"none" , the individual
semi-variogram values are collapsed using either a robust estimator (robust =

TRUE) defined in Cressie (1993), or the average of the values within the same
distance interval. The semi-variogram is useful for modeling the error term cor-
relation structure.

Variogram(object, distance, form, resType, data, na.action, maxDist,
length.out, collapse, nint, breaks, robust, metric)

ARGUMENTS

object: an object inheriting from classlme , representing a fitted linear mixed-effects
model.

distance: an optional numeric vector with the distances between residual pairs. If a
grouping variable is present, only the distances between residual pairs within the
same group should be given. If missing, the distances are calculated based on
the values of the argumentsform , data , andmetric , unlessobject includes a
corSpatial element, in which case the associated covariate (obtained with the
getCovariate method) is used.

form: an optional one-sided formula specifying the covariate(s) to be used for calcu-
lating the distances between residual pairs and, optionally, a grouping factor
for partitioning the residuals (which must appear to the right of a| operator in
form). Default is∼1, implying that the observation order within the groups is
used to obtain the distances.

resType: an optional character string specifying the type of residuals to be used. If"re-

sponse" , the ”raw” residuals (observed - fitted) are used; else, if"pearson" ,
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if"normalized" , the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to"pearson" .

data: an optional data frame in which to interpret the variables inform . By default,
the same data used to fitobject is used.

287

na.action: a function that indicates what should happen when the data containNAs. The
default action (na.fail) causes an error message to be printed and the function
to terminate, if there are any incomplete observations.

maxDist: an optional numeric value for the maximum distance used for calculating the
semi-variogram between two residuals. By default all residual pairs are included.

length.out: an optional integer value. Whenobject includes acorSpatial ele-
ment, its semi-variogram values are calculated and this argument is used as the
length.out argument to the correspondingVariogram method. Defaults to
50.

collapse: an optional character string specifying the type of collapsing to be applied
to the individual semi-variogram values. If equal to"quantiles" , the semi-
variogram values are split according to quantiles of the distance distribution,
with equal number of observations per group, with possibly varying distance
interval lengths. Else, if"fixed" , the semi-variogram values are divided ac-
cording to distance intervals of equal lengths, with possibly different number of
observations per interval. Else, if"none" , no collapsing is used and the individ-
ual semi-variogram values are returned. Defaults to"quantiles" .

nint: an optional integer with the number of intervals to be used when collapsing the
semi-variogram values. Defaults to20.

robust: an optional logical value specifying if a robust semi-variogram estimator should
be used when collapsing the individual values. IfTRUEthe robust estimator is
used. Defaults toFALSE.

breaks: an optional numeric vector with the breakpoints for the distance intervals to be
used in collapsing the semi-variogram values. If not missing, the option specified
in collapse is ignored.

metric: an optional character string specifying the distance metric to be used. The cur-
rently available options are"euclidean" for the root sum-of-squares of dis-
tances;"maximum" for the maximum difference; and"manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to"euclidean" .

VALUE
a data frame with columnsvariog and dist representing, respectively, the
semi-variogram values and the corresponding distances. If the semi-variogram
values are collapsed, an extra column,n.pairs , with the number of residual
pairs used in each semi-variogram calculation, is included in the returned data
frame. Ifobject includes acorSpatial element, a data frame with its corre-
sponding semi-variogram is included in the returned value, as an attribute"mod-

elVariog" . The returned value inherits from classVariogram .

288

REFERENCES
Cressie, N.A.C. (1993), ”Statistics for Spatial Data”, J. Wiley & Sons. Dig-
gle, P.J., Liang, K.Y. and Zeger, S. L. (1994) ”Analysis of Longitudinal Data”,
Oxford University Press Inc.

SEE ALSO
lme , Variogram.default , Variogram.gls , plot.Variogram

EXAMPLE

fm1 <- lme(weight ∼ Time * Diet, BodyWeight, ∼ Time | Rat)
Variogram(fm1, form = ∼ Time | Rat, nint = 10, robust = TRUE)

varPower Power Variance Function varPower

This function is a constructor for thevarPower class, representing a power vari-
ance function structure. Lettingv denote the variance covariate andσ2(v) denote
the variance function evaluated atv, the power variance function is defined as
σ2(v) = |v|2θ, whereθ is the variance function coefficient. When a grouping
factor is present, a differentθ is used for each factor level.

varPower(value, form, fixed)

ARGUMENTS

value: an optional numeric vector, or list of numeric values, with the variance function
coefficients.Value must have length one, unless a grouping factor is specified in
form . If value has length greater than one, it must have names which identify
its elements to the levels of the grouping factor defined inform . If a grouping
factor is present inform andvalue has length one, its value will be assigned to
all grouping levels. Default isnumeric(0) , which results in a vector of zeros of
appropriate length being assigned to the coefficients whenobject is initialized
(corresponding to constant variance equal to one).

form: an optional one-sided formula of the form∼v , or∼v | g , specifying a variance
covariatev and, optionally, a grouping factorg for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
"." , representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate to
be updated during the optimization of an objective function). When a grouping
factor is present inform , a different coefficient value is used for each of its
levels. Several grouping variables may be simultaneously specified, separated
by the* operator, like in∼v | g1 * g2 * g3 . In this case, the levels of each
grouping variable are pasted together and the resulting factor is used to group the
observations. Defaults to∼fitted(.) representing a variance covariate given
by the fitted values of a fitted model object and no grouping factor.

289

fixed: an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed.
If a grouping factor is specified inform , fixed must have names identifying
which coefficients are to be fixed. Coefficients included infixed are not al-
lowed to vary during the optimization of an objective function. Defaults toNULL,
corresponding to no fixed coefficients.

VALUE
a varPower object representing a power variance function structure, also inher-
iting from classvarFunc .

SEE ALSO
varWeights.varFunc , coef.varPower

EXAMPLE

vf1 <- varPower(0.2, form = ∼ age|Sex)

varWeights Extract Variance Function Weights varWeights

The inverse of the standard deviations corresponding to the variance function
structure represented byobject are returned.

varWeights(object)

ARGUMENTS

object: an object inheriting from classvarFunc , representing a variance function struc-
ture.

VALUE
if object has aweights attribute, its value is returned; elseNULL is returned.

SEE ALSO
logLik.varFunc

EXAMPLE

vf1 <- varPower(form= ∼ age)
vf1 <- initialize(vf1, Orthodont)
coef(vf1) <- 0.3
varWeights(vf1)[1:10]

290

varWeights.glsStruct glsStruct Variance Weights varWeights.glsStruct

If object includes avarStruct component, the inverse of the standard devi-
ations of the variance function structure represented by the correspondingvar-

Func object are returned; else, a vector of ones of length equal to the number of
observations in the data frame used to fit the associated linear model is returned.

varWeights(object)

ARGUMENTS

object: an object inheriting from classglsStruct , representing a list of linear model
components, such ascorStruct andvarFunc objects.

VALUE
if object includes avarStruct component, a vector with the corresponding
variance weights; else, or a vector of ones.

SEE ALSO
varWeights

varWeights.lmeStruct lmeStructVariance Weights varWeights.lmeStruct

If object includes avarStruct component, the inverse of the standard devi-
ations of the variance function structure represented by the correspondingvar-

Func object are returned; else, a vector of ones of length equal to the number
of observations in the data frame used to fit the associated linear mixed-effects
model is returned.

varWeights(object)

ARGUMENTS

object: an object inheriting from classlmeStruct , representing a list of linear mixed-
effects model components, such asreStruct , corStruct , andvarFunc ob-
jects.

VALUE
if object includes avarStruct component, a vector with the corresponding
variance weights; else, or a vector of ones.

SEE ALSO
varWeights

291

	[.pdMat
	ACF
	ACF.gls
	ACF.lme
	AIC
	AIC.logLik
	allCoef
	anova.gls
	anova.lme
	as.matrix.corStruct
	as.matrix.pdMat
	as.matrix.reStruct
	asNatural
	asNatural.corBand
	asNatural.corStruct
	asNatural.corSymm
	asNatural.pdBand
	asNatural.pdMat
	asNatural.pdSymm
	asNatural.varFunc
	asOneFormula
	asOneSidedFormula
	asTable
	augPred
	balancedGrouped
	BIC
	BIC.logLik
	coef.corStruct
	coef.gnls
	coef.lmList
	coef.lme
	coef.modelStruct
	coef.pdCompSymm
	coef.pdDiag
	coef.pdIdent
	coef.pdMat
	coef.reStruct
	coef.varFunc
	coef<-
	collapse
	collapse.groupedData
	compareFits
	comparePred
	corAR1
	corARMA
	corBand
	corCAR1
	corClasses
	corCompSymm
	corExp
	corFactor
	corFactor.corStruct
	corGaus
	corLin
	corMatrix
	corMatrix.corStruct
	corMatrix.pdMat
	corMatrix.reStruct
	corRatio
	corSpatial
	corSpher
	corStrat
	corSymm
	corSymmNat
	covariate<-
	covariate<-.varFunc
	Dim
	Dim.corSpatial
	Dim.corStruct
	Dim.pdMat
	fitted.gls
	fitted.glsStruct
	fitted.gnls
	fitted.gnlsStruct
	fitted.lmList
	fitted.lmList
	fitted.lme
	fitted.lmeStruct
	fitted.nlmeStruct
	fixed.effects
	fixef
	fixef.lmList
	fixef.lme
	formula.corStruct
	formula.gls
	formula.gnls
	formula.groupedData
	formula.lmList
	formula.lme
	formula.modelStruct
	formula.nlme
	formula.nlsList
	formula.nls
	formula.pdBlocked
	formula.pdMat
	formula.reStruct
	formula.varFunc
	gapply
	getCovariate
	getCovariate.corStruct
	getCovariate.data.frame
	getCovariate.varFunc
	getCovariateFormula
	getData
	getData.gls
	getData.lmList
	getData.lme
	getGroups
	getGroups.corStruct
	getGroups.data.frame
	getGroups.gls
	getGroups.lmList
	getGroups.lme
	getGroups.varFunc
	getGroupsFormula
	getGroupsFormula.gls
	getGroupsFormula.lmList
	getGroupsFormula.lme
	getGroupsFormula.reStruct
	getInitial
	getResponse
	getResponse.data.frame
	getResponse.gls
	getResponse.lmList
	getResponse.lme
	getResponseFormula
	getStrata
	getStrata.data.frame
	getStrataFormula
	gls
	glsControl
	glsObject
	glsStruct
	gnls
	gnlsControl
	gnlsObject
	gnlsStruct
	groupedData
	gsummary
	initialize
	initialize.corStruct
	initialize.glsStruct
	initialize.lmeStruct
	initialize.reStruct
	initialize.varFunc
	intervals
	intervals.gls
	intervals.lmList
	intervals.lme
	isBalanced
	isInitialized
	isInitialized.reStruct
	isInitialized<-
	lmList
	lmList.groupedData
	lme
	lme.groupedData
	lme.lmList
	lmeControl
	lmeObject
	lmeScale
	lmeStruct
	logDet
	logDet.corStruct
	logDet.pdMat
	logDet.reStruct
	logLik
	logLik.corStruct
	logLik.gls
	logLik.glsStruct
	logLik.gnls
	logLik.gnlsStruct
	logLik.lm
	logLik.lmList
	logLik.lme
	logLik.lmeStruct
	logLik.reStruct
	logLik.varFunc
	matrix<-
	matrix<-.pdMat
	matrix<-.pdKron
	matrix<-.reStruct
	model.matrix.reStruct
	Names
	Names.formula
	Names.pdBlocked
	Names.pdMat
	Names.reStruct
	needUpdate
	needUpdate.modelStruct
	nlme
	nlme.nlsList
	nlmeControl
	nlmeObject
	nlmeStruct
	nlsList
	nlsList.selfStart
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	pairs.compareFits
	pairs.lmList
	pairs.lme
	pdBand
	pdBandNat
	pdBlocked
	pdClasses
	pdCompSymm
	pdConstruct
	pdConstruct.pdBlocked
	pdDiag
	pdFactor
	pdFactor.reStruct
	pdIdent
	pdKron
	pdMat
	pdMatrix
	pdMatrix.reStruct
	pdStrat
	pdSymm
	pdSymmNat
	plot.ACF
	plot.augPred
	plot.compareFits
	plot.gls
	plot.intervals.lmList
	plot.lmList
	plot.lme
	plot.nffGroupedData
	plot.nfnGroupedData
	plot.nmGroupedData
	plot.ranef.lme
	plot.ranef.lmList
	plot.Variogram
	pooledSD
	predict.gls
	predict.gnls
	predict.lmList
	predict.lme
	predict.nlme
	print.anova.lme
	print.corStruct
	print.gls
	print.groupedData
	print.intervals.gls
	print.intervals.lme
	print.lmList
	print.lme
	print.modelStruct
	print.pdMat
	print.reStruct
	print.summary.corStruct
	print.summary.gls
	print.summary.lmList
	print.summary.lme
	print.summary.modelStruct
	print.summary.pdMat
	print.summary.varFunc
	print.varFunc
	pruneLevels
	qqnorm.gls
	qqnorm.lme
	random.effects
	ranef
	ranef.lmList
	ranef.lme
	recalc
	recalc.corStruct
	recalc.modelStruct
	recalc.reStruct
	recalc.varFunc
	residuals.gls
	residuals.glsStruct
	residuals.gnls
	residuals.gnlsStruct
	residuals.lmList
	residuals.lme
	residuals.lmeStruct
	residuals.nlmeStruct
	reStruct
	selfStart
	selfStart.default
	selfStart.formula
	simulate.lme
	solve.pdMat
	solve.reStruct
	sortedXyData
	splitFormula
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSfol
	SSfpl
	SSlogis
	SSmicmen
	summary.corStruct
	summary.gls
	summary.lmList
	summary.lme
	summary.modelStruct
	summary.nlsList
	summary.pdMat
	summary.varFunc
	update.gls
	update.gnls
	update.groupedData
	update.lmList
	update.lme
	update.modelStruct
	update.nlme
	update.nlsList
	update.varFunc
	varClasses
	varComb
	varConstPower
	VarCorr
	varExp
	varFixed
	varFunc
	varIdent
	Variogram
	Variogram.corExp
	Variogram.corGaus
	Variogram.corLin
	Variogram.corRatio
	Variogram.corSpher
	Variogram.default
	Variogram.gls
	Variogram.lme
	varPower
	varWeights
	varWeights.glsStruct
	varWeights.lmeStruct

