
Introduction to Spatstat

1 OVERVIEW

This library provides functions for the statistical analysis of spatial point
patterns and binary images* in two dimensions. It supports

• creation, manipulation and plotting of point patterns

• exploratory data analysis using the statistics F, G, J and K

• parametric model-fitting by maximum pseudolikelihood

The window of observation for the point pattern may have arbitrary shape
and the points may have marks.

The point process models may be quite general; they may include spatial
trend, dependence on covariates, and interpoint interactions (which are not
restricted to pairwise interactions).

[* The current version 0.6 only handles spatial point pattern data.]

2 EXAMPLE

The following code will read in a data file containing a point pattern in the
unit square, plot it, compute and plot the estimate of the nearest neighbour
function G, fit the Strauss point process model by maximum pseudolikeli-
hood, and plot the fitted conditional intensity.

xy <- scan("myfile", what=list(x=0,y=0))

pp <- point.pattern(xyx, xyy, 0:1, 0:1)

plot(pp)

G <- Gest(pp)

plot(Gr, Gkm, type="l")

fit <- mpl(pp, ~1, Strauss(0.07), rbord=0.07)

fit

plot(fit, trend=F)

3 FUNCTIONS

Here is a more detailed listing of the functions available.

3.1 CREATION, MANIPULATION AND PLOTTING
OF POINT PATTERNS

The library supports a class “point.pattern” representing two dimensional
point patterns and a class “owin” representing the window of observation. A
window may have arbitrary shape. The points of a point pattern may carry
marks.

To create a window:

make.rectangle Defines a rectangle in R2.
make.raster Defines a raster

(a rectangle divided into pixels)
convex.poly.mask Define a convex polygonal window
make.mask Define a window of arbitrary shape.

A mask is a raster containing a binary image
(i.e. a logical matrix) whose pixel values are
T wherever the pixel is inside the window.

matrix.to.mask

coerce.to.mask

coerce.to.raster

as.owin Convert various other kinds of data
to an ”owin”.

To manipulate a window:

plot.owin plot a window.
(a method for ”plot”)

area.owin compute window’s area
diameter compute window frame’s diameter
erode.mask erode window by a distance r
erode.owin ” ” ” ” ” ”
eroded.areas compute areas of eroded windows
inside.owin determine whether a point is inside a window
nearest.raster.point map continuous coordinates to raster locations
negate.mask invert (inside ↔ outside)

2

To create a point pattern:

point.pattern create a point pattern from (x, y) and window
as.point.pattern convert other types of data to a point.pattern
rpoispp generate an inhomogeneous Poisson point pattern
To manipulate a point pattern:
plot.point.pattern plot a point pattern

(a method for ”plot”)
"[.point.pattern" extract a subset of a point.pattern

pp[subset]
pp[, subwindow]

3.2 EXPLORATORY DATA ANALYSIS

Functions:

Summary statistics for a point pattern:

Fest() empty space function F
Gest() nearest neighbour distribution function G
Kest() Ripley’s K-function
Jest() estimate the J-function J = (1−G)/(1− F)

Summary statistics for a marked point pattern:

Gcross,Gdot,Gmulti counterparts of Gest
Jcross,Jdot,Jmulti counterparts of Jest
Kcross,Kcross.multi counterparts of Kest

Supporting functions:

bdist Distance from (x, y) to boundary of window
bdry.dist.image Distance from each pixel to boundary of window
exactdt Exact distance transform of a point pattern.

A rectangular array of values giving the
Euclidean distance from each array location
to the nearest point of the point pattern.

exactPdt Exact distance transform of a binary image.

3

Details:

The library will compute estimates of the summary statistics

F (r), the empty space function

G(r), the nearest neighbour distance distribution function

K(r), the reduced second moment function (”Ripley’s K”)

J(r), the J function of Van Lieshout and Baddeley (1995)

for a point pattern, and their analogues for marked point patterns.
These estimates can be used for exploratory data analysis and in formal

inference about a spatial point pattern.
The point pattern has to be assumed to be ”stationary” (statistically

homogeneous under translations) in order that the functions F, G, J,K be
well-defined and the corresponding estimators approximately unbiased.

The empty space function F of a stationary point process X is the cu-
mulative distribution function of the distance from a fixed point in space to
the nearest point of X. The nearest neighbour function G is the c.d.f. of
the distance from a point of the pattern X to the nearest other point of X.
The J function is the ratio J(r) = (1 − G(r))/(1 − F (r)). The K function
is defined so that λK(r) equals the expected number of additional points of
X within a distance r of a point of X, where λ is the intensity (expected
number of points per unit area).

In exploratory analyses, the estimates of F, G, J and K are useful statis-
tics. F summarises the sizes of gaps in the pattern; G summarises the clus-
tering of close pairs of points; J is a comparison between these two effects;
and K is a second order measure of spatial association.

For inferential purposes, the estimates of F, G, J,K are usually compared
to their true values for a completely random (Poisson) point process, which
are

F (r) = 1− exp(−λπr2)

G(r) = 1− exp(−λπr2)

J(r) = 1

K(r) = πr2

where again λ is the intensity. Deviations between the empirical and theo-
retical curves may suggest spatial clustering or spatial regularity.

4

3.3 MODEL FITTING

FUNCTIONS:

To fit a point process model:

mpl Fit a point process model
to a two-dimensional point pattern

plot.ppm Plot the fitted model
predict.ppm Compute the spatial trend

and conditional intensity
of the fitted point process model

quadscheme generate a Berman-Turner quadrature scheme
for use by mpl

To specify a point process model:

Poisson() the Poisson point process
Strauss() the Strauss process
StraussHard() the Strauss/hard core point process
Softcore() pairwise interaction, soft core potential
PairPiece() pairwise interaction, piecewise constant
Pairwise() pairwise interaction, user-supplied potential
Geyer() Geyer’s saturation process
Saturated() Saturated pair model, user-supplied potential
OrdThresh() Ord process, threshold potential
Ord() Ord model, user-supplied potential

DETAILS:

The function mpl() estimates the “exponential family” type parameters of
a model for a point process (values for parameters not of this type must be
specified a priori, as arguments to the interaction function). The estimation
procedure is based on the maximum pseudolikelihood technique as discussed
in Baddeley & Turner (2000).

The usage of mpl() is analogous to that of glm(). To fit a point pro-
cess model, we specify its systematic component (”spatial trend” or spatial
covariate effects) by an Splus formula, and its random component (the inter-
point interaction) by a an ”interaction family”. For example the stationary
Strauss process is fitted by

5

mpl(pp, ~1, Strauss(r=0.07),)

while the non-stationary Strauss process with spatial trend of the form
b(x, y) = exp(a + bx) is fitted by

mpl(pp, ~x, Strauss(r=0.07),)

The formula ~x~ can be replaced by any Splus formula (with empty left hand
side) in terms of the Cartesian coordinates x, y or in terms of some spatial
covariates which you must then supply.

The expression Strauss(..) can be replaced by any of several interaction
structures such as

Poisson() Poisson process
StraussHard()Strauss process with a hard core
Softcore() . . . Pairwise interaction, soft core potential
PairPiece() . . Pairwise interaction, piecewise constant potential
Geyer()Geyer’s saturation process
OrdThresh() . . Ord process with threshold potential

The following will accept ”user-defined potentials” in the form of an ar-
bitrary Splus function. They effectively allow arbitrary point process models
of the given type.

Pairwise() .Pairwise interaction, user-supplied potential
Ord()Ord model, user-supplied potential
Saturated()Saturated pairwise model, user-supplied potential

The brave user may also generate completely new point process models
using the foregoing as templates.

The function mpl() prefers to be provided with a “quadrature scheme”
as its first argument (although it will make do with a point pattern and
calculate a default quadrature scheme, grumbling all the while). Thus one
might proceed as follows:

Q.simdat <- quadscheme(simdat,gridcentres(simdat,50,50),

nx=40,ny=40)

fit.simdat <- mpl(Q.simdat,~poly(x,y,3),Softcore(0.5),

correction="periodic")

6

The resulting object fit.simdat is of class “ppm”. A method for predict()
(predict.ppm) to calculate values of the conditional intensity function cor-
responding to a fitted model is provided.

Plotting methods plot.point.process and plot.ppm are provided. One
can say, e.g.

plot(simdat)

to obtain a scatterplot of the point pattern, and

plot(fit.simdat)

to obtain plots of the fitted trend and the conditional intensity function
surfaces.

References

[1] A. Baddeley and R. Turner. Practical maximum pseudolikelihood for
spatial point patterns. Australian and New Zealand Journal of Statistics
42 (2000) 283–322.

[2] A.J. Baddeley and R.D. Gill. Kaplan-Meier estimators for interpoint
distance distributions of spatial point processes. Annals of Statistics 25
(1997) 263–292.

[3] M.B. Hansen, R.D. Gill and A.J. Baddeley. Kaplan-Meier type estima-
tors for linear contact distributions. Scandinavian Journal of Statistics
23 (1996) 129–155.

[4] M.B. Hansen, A.J. Baddeley and R.D. Gill. First contact distributions
for spatial patterns: regularity and estimation. Advances in Applied
Probability (SGSA) 31 (1999) 15–33.

[5] M.N.M. van Lieshout and A.J. Baddeley. A non-parametric measure of
spatial interaction in point patterns. Statistica Neerlandica 50 (1996)
344–361.

[6] M.N.M. van Lieshout and A.J. Baddeley. Indices of dependence between
types in multivariate point patterns. Scandinavian Journal of Statistics
26 (1999) 511–532.

7

