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1 Introduction

This software package contains functions to fit several different non-linear sur-
vival models. There are three main functions, each with predict, print, and sum-
mary methods.

The first function, survnnet, fits discrete time models of various sorts, and para-
metric models in continuous time. The second, phnnet, fits proportional hazards
models in continuous time, and the third phtnnet, fits a time-varying version of
phnnet, where the ratio of hazards varies over time.

This explanation is written in terms of analysing the time to relapse of breast
cancer patients but the software is applicable in any survival context.

2 Background

Traditional survival models are linear in the predictors. Various non-linear meth-
ods have been suggested (splines, trees and local methods), but none has become
widely used. Neural network models provide an alternative to these methods and
offer a relatively parsimonious framework compared to that of splines.

Details of nnet, the neural network package on which these functions are based,
may be found in Venables and Ripley (2002).

In our survival problem, we take our covariates as inputs to the net and the time
to relapse as the output(s): neural network models can then be used to extend
the various statistical models. We can fit unspecified non-linear functions of the
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covariates and also allow the effect of the covariates to vary with time. In some
models the time to relapse appears as an input rather than an output, the output
being an indicator of relapse or not at that time.

The simplest method considers survival for some fixed number of months or years,
and ignores patients censored before that time, thereby giving a standard two-class
classification problem. Omitting censored patients may bias the result, however.
If we can estimate the survival probability for these censored patients, we can
include them and hope to reduce the bias.

There are several ways to use more than two intervals, but only one will be de-
scribed here: this estimates the probabilities of relapse in the time periods less
than one year, one to two years, two to three years, three to five years, and greater
than five years. We can now include all patients for whom the outcome for at least
the first time period is known, thus reducing the bias due to censoring. We fit a
model which ignores the ordering of the outputs, since this can be done with a
softmax network: an ordinal model is available in the package nolr developed by
Mathieson (1996), and in our experience is a better model.

Using continuous time values allows the problem to be treated as regression rather
than classification. The package allows fitting of four non-linear parametric mod-
els: exponential, Weibull, log-logistic and log-normal. It also includes functions
to fit non-linear proportional hazards models, and a time-varying model based on
the proportional hazards model where the ratio of hazards is allowed to vary over
time.

Two new models have been added in the latest version: a log-normal model where
the shape is also allowed to vary with the covariates, and a model directly fitting
the log hazard as the output of a regression network with time as an additional
input. The cumulative hazard is evaluated as an integral from the log hazard.

3 Models

We work in the framework of a non-zero random variable T representing the time
to relapse of a patient, or in the discrete time case, a multinomial (or binomial)
variable Y which takes the value 1 if a relapse occurs within a particular time
period and 0 otherwise.
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3.1 Discrete time

The simple model which predicts directly the probability of relapse within 5 years
is a standard classification network with likelihood function

∏

patients

pti
i (1− pi)

(1−ti)

and log likelihood

∑

patients

ti log pi + (1− ti) log(1− pi) (1)

where pi is the probability of relapse within five years for the ith patient and ti,
the target, is 1 if the patient relapsed within five years and 0 if not.

In the case of censored observations we do not know the outcome. If we wish
to include these patients with an estimate of their outcomes, we would include
them twice, once with target 1, with weight equal to their estimated probability of
relapse before five years, t̂i say, and once with target 0, with weight 1 − t̂i. This
weights their contribution to the log likelihood, and leads to the same expression
as (1), using t̂i in place of ti.

The model requires entropy likelihood fitting, one logistic output unit, and may
include skip-layer connections if desired:

plearn <- survnnet(ti ~ ., data=X, decay = 0.1, size=2,

bias.decay=25, entropy = T, skip = T)

The other classification network estimates probabilities of relapse in the time pe-
riods less than one year, one to two years, two to three years, three to five years,
and greater than five years. We include all patients for whom the outcome for at
least the first time period is known and obtain the likelihood

∏

patients

li
∑

k=mi+1

pki (2)

where mi is the last time period the ith patient is known to have survived without
relapse, li is the final time period during which the patient may have relapsed, and
pki is the probability that the ith patient relapses in time period k. For a patient
known to relapse in the second year, say, mi + 1 = li = 2, while for a patient
lost to follow-up in the third time period without known relapse we would have
mi = 2, li = 5.
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We ignore the ordering of the time periods, and fit the model

log pk − log p1 = ηk(x) (k = 2, . . . , 5)

(an η1(x) is not required: since the probabilities must add to 1 only four can vary
independently). This model is fitted using a softmax neural network where we first
obtain the outputs yk from a network with five linear output units:

yk =
∑

j

wjkxj +
∑

h

whk`

(

∑

j

wjhxj

)

(k = 1, . . . , 5)

and then calculate the probabilities by

pk =
exp(yk)
∑

l exp(yl)
.

(Here we have set ηk(x) = yk − y1, for k = 2, . . . , 5. The output y1 is not
necessary, but a symmetric model is preferred when using weight decay.)

This can be fitted with the following

plearn <- survnnet(cat ~ .,data=X, decay = 0.1, size = 2,

bias.decay=25, censored=T, skip = T)

Here the variable cat should be set up to be a matrix, the ith row corresponding
to the ith patient, with value 1 for time periods between mi + 1 and li and zero
otherwise.

The output is the estimated absolute probability of relapse in each of the intervals:
to predict prognosis, consider the cumulative probability over the intervals.

3.2 Continuous time

3.2.1 Parametric models

Details of the density functions and survivor functions are standard: they are
quoted here to demonstrate the parametrisation used in the network. This differs
from that used in survreg, for example, in having the coefficients of the model
reversed in sign.

Exponential distribution

f(t) = λ exp(−λt), S(t) = exp(−λt).
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Weibull distribution

f(t) = λp(λt)(p−1) exp(−(λt)p), S(t) = exp(−(λt)p).

Log-logistic distribution

f(t) =
λp(λt)(p−1)

[1 + (λt)p]2
, S(t) =

1

1 + (λt)p
.

Log-normal distributtion

f(t) = 2(π)−1/2pt−1 exp

(

−p2(log(λt))2

2

)

, S(t) = 1− Φ(p log(λt))

where Φ is the incomplete normal integral.

In all cases, we model log λ as a function of x by a neural network with a single
linear output. Since p must be positive, we use α = log p in the optimisation. The
shape parameter does not depend on the inputs: a single value for the training data
will be fitted. Again, skip-layer units may be used if desired.

For example, to fit a log-logistic model,

plearn <- survnnet(Surv(RFS,Relapse) ~ ., data = X,

model = ’llog’, decay = 0.1, bias.decay = 25, size = 2,

skip = T, alpha =0.1)

Allowing the shape parameter to vary An additional model is available, which
fits a log normal distribution allowing the shape parameter to vary with the covari-
ates. It is selected as model=’lnormvar’, and uses a neural network with two
outputs. A parameter varWt is available to control the relative size of the outputs,
as one would normally want the shape (variance) to vary more slowly than the
mean. The neural network output corresponding to the shape parameter is divided
by varWt, which has default value 10. (It should be possible to achieve more flex-
ible control over this behaviour using variable weight decays, but the parameter
varWt may suffice and is easier to use.)

Modelling the log hazard directly The option model=’hazard’ simply uses
the output from the network as the log hazard, and calculates the cumulative haz-
ard (which is required for the likelihood) by summing over a fixed number of
intervals between zero and the survival time. Ths bins used are all the same width
for a particular subject, but will vary between subjects. The number of intervals
used is a parameter Nintervals, with default value 20. The larger the number of
intervals the slower the model fit will be.
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3.2.2 Proportional hazards

For this model we assume only that the ratio of the hazards for two patients is
constant over time:

h(x, t) = h0(t) exp η(x).

where h0, the baseline hazard, is unspecified.

We model η(x) as the output from a neural network with one linear output unit.
We omit the bias on the output unit since this is incorporated in the baseline hazard
h0.

The log partial likelihood is

∑

r

(

η(xr)− log
∑

a

exp η(xa)

)

. (3)

where r runs over the relapses only and a runs over all the patients at risk at the
time of this event. The censored patients only occur in the denominator. The
partial likelihood is invariant if a constant is added to each of the scores η(x).

In practice relapse times may be tied: they may be recorded only to the nearest day.
Various adjustments are possible for this case: we chose to break them arbitrarily,
as the difference in partial likelihood will be small unless there are many ties.

This may be fitted using the following

plearn <- phnnet(Surv(RFS,Relapse) ~ ., data=X, decay = 0.1,

size = 2, skip=T, bias.decay=25)

plearn <- phnnet(Relapse ~ ., data=X, decay = 0.1, size = 2,

skip=T, bias.decay=25)

The second form is acceptable if the data are sorted in decreasing order of RFS,
otherwise the former will allow the sort to be performed by phnnet.

The baseline cumulative hazard (estimated by the Breslow estimator) can be ob-
tained by using the option dohaz=T.

3.2.3 Time-varying

This model is similar to the proportional hazards one above but relaxes the re-
striction that the effect of covariates must be constant over time. We allow the
function η to depend on time as well as the covariates x. We want the model to
vary smoothly with time, so we divide the whole range of follow-up times into a
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small number of zones, and use the number of the zone as an input to the neural
network, alongside the covariates. The model becomes

h(x, t) = ho(t) exp η(x, t).

This is a very flexible model, since each patient can have a different shaped hazard
function. The amount of flexibility can be controlled by the number of zones used,
and by the regularisation used in the fitting process. The log partial likelihood
changes subtly:

E = −
∑

r

(

η(xr, tr)− log
∑

a

exp η(xa, tr)

)

The terms η(xr, tr) are calculated using the value of η at the time zone corre-
sponding to tr, the time of the event r, and the partial sums over the risk set must
also be calculated using this time zone for all the patients. Thus as the time of the
event changes, so does the contribution to the partial sums of each patient in the
risk set. The same values of η are used in calculating the derivatives.

The survival probability at 5 years differs from the proportional hazard case since
the cumulative hazard is different. The Breslow estimator can be used as before
to obtain a baseline cumulative hazard estimate (using times as in the calculation
of the partial likelihood and the derivatives), but the relationship of the patient’s
cumulative hazard H(x, t) and the baseline hazard H0(t) is different: if we define
zi to be the half-open interval [zi1, zi2), and let the zi denote the zones into which
we have divided t we have

H(x, t) =

∫ t

0

h0(u) exp η(x, u)du

=
∑

i

exp η(x, zi)

∫

zi

h0(u)du

=
∑

i

exp η(x, zi)[H0(zi2)−H0(zi1)].

From this formula we can derive the survival probability using the relationship
S(x, t) = exp(−H(x, t)).

The simplest way to use this model is

plearn <- phtnnet(Surv(RFS,Relapse) ~ ., data=X, decay = 0.1,

size = 2, skip=T, bias.decay=25, breakpts=c(0,733,1826,5000))

Other options for specifying the time zones are described in the help page.

Further details of these models and their use may be found in Ripley (1998).

7



References

Mathieson, M. J. (1996) Ordinal models for neural networks. In Neural Networks
in Financial Engineering. Proceedings of the Third International Conference
on Neural Networks in the Capital Markets (Eds A.-P. N. Refenes, Y. Abu-
Mostafa, J. Moody and A. Weigend), pp. 523–536, Singapore. World Scientific.

Ripley, R. M. (1998) Neural network models for breast cancer prognosis. D.Phil.
thesis, University of Oxford. Available at http://www.stats.ox.ac.uk/
~ruth/.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New
York: Springer-Verlag, Fourth edition.

8


