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     CHAPTER 4 

 
CIRCULAR KRIGING 

 
 

4.1  Introduction 
 
 

4.1.1 Objective 

The objective of this chapter is to develop a circular kriging estimate of direction 

with optimum properties based on a sample of circular-spatial data.  Kriging is a body of 

techniques for estimating continuous and spatially correlated data.  The name of the 

technique is derived from Daniel G. Krige, a South African mining geologist, who 

originated the method for linear-spatial data.  The circular kriging estimate is a linear 

combination of observations of direction with weights based on the spatial correlation as 

estimated by the cosine model fitted to the empirical cosineogram (Chapter 3), and may 

be imaged using arrow plots or the circular dataimage (Chapter 2).  Figure 4-1 illustrates 

the kriging of simulated circular-spatial data.  The R package CircSpatial function 

KrigCRF is documented in Appendix J, Section J.5. 

 
 

 

Figure 4-1.  Circular Kriging, the Interpolation of Circular-Spatial Data Based on Spatial 
Correlation.  The left plot shows simulated circular-spatial data.  In the right plot, the 
simulated data (black) is superimposed on the kriged estimate of the simulated data 
(tan). 
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4.1.2 Chapter Organization 

This chapter is organized as follows: Section 4.2 derives the circular kriging 

estimator, correcting the result from McNeill (1993).  Section 4.3 proves that the 

estimator is optimal.  Section 4.4 gives an alternate formula, which is computationally 

efficient.  Section 4.5 shows the kriging behavior around a sampled location, and proves 

that the estimated direction at a sampled location is the observed direction.  This is 

called “exact interpolation” in linear kriging.  Section 4.6 derives the circular kriging 

variance of the circular kriging estimator, correcting the result from McNeill (1993).   

Section 4.7 shows how the circular kriging variance varies with distance and the circular-

spatial correlation model.  Section 4.8 concludes with the summary and description of 

future work. 

 
4.2  Solution 

 
 

4.2.1 A Linear Combination of Observations 

The estimated spatial correlation parameters (see nugget, range, and sill in 

Chapter 3) are assumed to be reasonably accurate.  Inaccuracy increases error and the 

variability of the estimate.  The circular random field (CRF), as introduced in Chapter 1 

and further discussed in Chapter 5, is assumed to be isotropic (spatial correlation 

independent of direction). 

See Appendix A for a description of the notation and Appendix B for referenced 

Equations (B.1) to (B.12).  In Chapter 3, the direction at location 0x  was denoted by the 

scalar 0θ  in radians.  The conversion from the scalar to the unit vector representation of 

direction is 
( )
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unmeasured location 0x , and ni ,,2,1,i L=u  be observations of direction as unit 

vectors at measured locations ,,,2,1,i ni L=x  respectively. 

Spatially correlated observations contain information about 0u .  Because spatial 

correlation increases as distance decreases, observations nearer to the estimation 

location carry more information about 0u  than observations more distant.  Hence a 

weighted linear combination of the observations ni ,,2,1,i L=u , is required.  Let 

,,,2,1, niw i L=  be the weights with Rw i ∈  (the set of real numbers).  
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w will ultimately be determined by a constrained optimization in Subsection 4.2.7 such 

that 0û is a unit vector.  In general, the length of the vector estimate 0û  for any nR∈w  

is 
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* For unit vectors iu , the diagonal elements of UUT  are 

( )
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4.2.2 Optimality 

Let 0e  be the error vector equal to the unit vector estimate of direction 0û  minus 

the unobserved direction 0u  (unit vector), or 000
ˆ uue −= .  0e , 0û , and 0u  are located at 

0x .  The addition of the unit vector 0u  and 0e  is shown in Figure 4-2 as 

( ) 000000
ˆˆ uuuueu =−+=+ .  In words, the unobserved direction plus the error vector 

equals the estimate of direction.  Hence, 0e is a vector from the head of 0u  to the head 

of 0û , and the length of the error vector is the distance from the head of 0u  to the head 

of 0û .  Let θ  be the angle between these vectors in [ ]π,0 .  When ,0,0 0 == eθ  and 

when .2, 0 == eπθ   Hence, 20 0 ≤≤ e . 

 
 

 
 

Figure 4-2.  Directions Represented by the Unobserved 0u , Estimate 0û , and Error 

000
ˆ uue −=  Vectors.  θ  is the angle between 0u  and 0û . 
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The unit vectors 0u  and 0û  can be visualized as the hands of a clock when 

the tails of the vectors are positioned at the center of a clock.  For any 0u  and 0û , while 

holding θ  and 0e  constant, the minute and hour hands (vectors) can be transposed so 

0û  is counterclockwise of 0u , and the hands can be rotated so that the line joining the 

hands is vertical with 0e  pointing upward.  Since we are interested in 0e  for 

minimization, Figure 4-2 illustrates the case of any 0u  and 0û . 

Uwu =0
ˆ , the estimate of the unobserved direction, will be considered optimal 

when the choice of w results a unit vector estimate 0û  with an error vector 0e  of 

minimum squared length over all such estimates.  With θ  the angle between 0û  and 

0u , the squared length of the error vector is 
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The result (4.3) can be further transformed.  
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Hence, the squared length of the error vector (4.4) is minimized by maximizing θcos , 

or minimizing the angle between unit vectors 0û and 0u .  With ( )0cos iθ  denoting the 

cosine of the angle between observation iu  and unobserved 0u ,  and referencing 

Appendix B, Equation (B.1), it follows that 
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4.2.3 Cosineogram 

c~  must be estimated since 0u is unknown.  Also, the eigenvalues of UUK T=
~

 

have been observed to be not all positive indicating that K
~

 is generally not positive 

definite according to Appendix B, Equation (B.3).  However, positive definiteness is 

required for maximum fit (Section 4.3).  This is accomplished by replacing c~ and K
~

 with 

estimates c and K, respectively,  which are computed on smooth and positive definite 

functions as is done in the kriging of linear-spatial data (Bailey and Gatrell 1995). 
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For circular-spatial data, the empirical cosineogram,  a rough plot  of circular-

spatial correlation (Chapter 3, Section 3.2), is modeled by the positive definite cosine 

model (Chapter 3, Section 3.6 and Appendix M) with best fit.  The elements of c and 

K are computed using the selected cosine model and the distances between 

measurement locations.  c , which depends on the estimation location, must be updated 

for each location to be estimated.  K , which depends only on the distances between 

observations, is computed once. 

 
4.2.4 First Iteration of the Circular Kriging Solution w 
 

 Recall that cwT  is a linear combination of the expected cosines of the angles 

between the unobserved direction as a unit vector 0u  and the sampled directions 

nii ,,2,1, L=u , with c~  replaced by c in (4.5).  It expresses the fit of 0û to 0u .  wKwT  is 

the squared length of 0û , with K
~

 replaced by K in (4.2).  01=−wKwT  expresses that 

the squared length of 0û is constrained to 1.  The vector of weights w will be solved by 

maximizing cwT  relative to w with the maximization constrained such that wKwT  is 

equal to one.  The method of Lagrange multipliers (Grossman 1988), for finding the 

extrema of a function of several variables subject to a constraint,  introduces a new 

unknown scalar variable, which is called the Lagrange multiplier, and defines a new 

function, which is called the Lagrangian, in terms of the original function, the constraint, 

and the Lagrange multiplier.  At the stationary point, the Lagrange multiplier is the 

proportionality of the gradient of the function to be maximized and the gradient of the 

constraint.  Let ν  be the Lagrange multiplier and q  be the Lagrangian. 

        ( )1
2

−−= wKwcw TTq
ν

        (4.6) 
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ν  is divided by two to simplify a subsequent result. 

Differentiating (4.6) with respect to w according Appendix B, Equations (B.8) and 

(B.9),  
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 Setting the derivative (4.7) equal to the zero vector [ ]T
000 L=0 , 

.cwK0wKc =⇒=− νν   From the invertibility of K (Appendix B, Equation (B.4)) it 

follows that 

      .11 cKw −−=ν          (4.8) 

 ν can be determined from the unit length constraint 1=wKwT . 
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 The Lagrange multiplier ν is a scalar representing the proportionality of parallel 

gradient vectors of the function being optimized and the constraint.  The positive sign of 

ν  is selected to maximize fit as will be explained in detail in Section 4.3.  It follows that 

               ,1cKc −+= Tν          (4.9) 
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and        
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(4.10) is McNeill’s result (1993, p. 40, eq. 6). 

 

4.2.5 Length of the Estimator 0û  

 Substituting the solution into the estimator, the squared length is 
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Is 0û  a unit vector? 

 

4.2.6 0û Is Likely Not a Unit Vector 

If 
( )

1ˆ
2

0

11.4

=⇒= uKUU
T .  However, with UUT  a realization of the continuous 

random matrix VV T , 
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( )
( )

( ) 01ˆ0 0

11.4

==⇒== uKVV yprobabilityprobabilit T .  Thus, it is likely that 0û  is not a 

unit vector (except for a set of Borel-measure 0).  

 
4.2.7 Corrected Circular Kriging Solution w 
 

Equation (4.11) suggests that the matrix of cosines K be scaled by s.  It will be 

shown in Section 4.3 that scaling K by s leads to a unit vector solution.  The revised 

function to maximize is 
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Setting the derivative (4.13) equal to the zero vector 0, 
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From the constraint 1=wKw sT  in (4.12), and keeping the sign of ν  from  (4.9), 
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Substituting s (4.11) and ν  (4.15) into w (4.14), we arrive at the principal result of this 

chapter. 
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This result differs from McNeill (1993, p. 40, eq. 6), who obtained 
cKc

cK
w

1

1
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=
T

. 

 
4.3  Verification of Optimality 

 

In this section, it will be proven that the estimated direction, which is a linear 

combination of the observations of direction as unit vectors, Uw , is also a unit vector, 

that the expression of constrained optimization of the cosine of the angle between the 

direction to be estimated and the estimator has derivatives of zero at the estimated 

direction, and that the estimated direction has a maximum fit as opposed to a minimum 

fit to the direction being estimated. 
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First, it will be shown that 0û  is a unit vector. 
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Thus, the squared length of the estimate of direction as a vector is one.  Hence, the 

direction estimate is a unit vector such as the observations. 

Next, it will be shown that the vector of derivatives of the expression of 

constrained optimization (4.12) at the solution w is the zero vector 0. 
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Thus, the vector of derivatives at the solution w is the zero vector, 0.  Hence, the 

direction estimate has either a minimum or a maximum fit to the direction being 

estimated. 

Last, it will be shown that the solution has a maximum fit.  The quadratic part of 

(4.12) is ( ) ( )wKwKww ss TT νν 5.05.0 −=− .  K is positive definite (Chapter 3, 

Subsection 3.6.3) and symmetric (Appendix B, Section B.2), hence, K is orthonormally 

diagonalizable.  Let Q be the diagonalizing matrix of eigenvectors of K, and Λ  be the 

diagonal matrix of the eigenvalues of K.  Hence, the diagonalization of the symmetric 

matrix Ksν5.0−  is ( ) ΛQKQQKQ sss TT ννν 5.05.05.0 −=−=− .  By Appendix B, 

Equation (B.3), the eigenvalues of K, which are the elements iλ  of Λ , are all positive.  

Therefore, the eigenvalues of Ksν5.0− , which are the diagonal elements of the matrix 

Λsν5.0− , are all negative.  Since all the eigenvalues are negative, Ksν5.0− is 

negative definite by equivalence (B.7).   The Hessian of (4.12) is Ksν− by Equation 

(B.11).  Hence, the Hessian is also negative definite.  The point of zero derivatives (4.18) 

has a negative definite Hessian.  According to Appendix B, Subsection B.8.1, the point 

of zero derivatives is a maximum.  Hence, the direction estimate has maximum fit to the 

direction being estimated. 

 
4.4  Computationally Efficient Formula 

 
 

From (4.1) and (4.16), cUKUKccUKu 111
0 /ˆ −−−= TT .  The denominator 

cUKUKc 11 −− TT  scales the vector cUK 1−  to a unit vector, but does not affect the signs 

and the ratio of the magnitudes of the components of the vector cUK 1− .  Hence,   

computational efficiency may be obtained by eliminating the computation of 
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cUKUKc 11 −− TT  and computing direction directly from the components of cUK 1− .  

Let h and v be the horizontal and vertical components of the vector cUK 1− , respectively, 

i.e., cUK 1−=








v

h
.  Then, the estimated direction in [ )π2,0  radians at location 0x  is  
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This is called the quadrant specific inverse tangent as in Chapter 3, Subsection 3.3.1, 

(3.1). 

 
4.5  Kriging Behavior Around a Sampled Location 

 
 

The kriging behavior around an observation location depends on which cosine 

model is used.  Figure 4-3, which was constructed using the R code in Appendix L, 

Section L.14, shows the kriging estimate in degrees around a direction of 90º observed 

at location 0 with nearest observations of 0º at a distance of 10 units away, which is the 

range.  The curve of estimated direction from the spherical cosine model is dashed and 

red, the curve from the gaussian cosine model is tan and thick, and the curve from the 

exponential model is solid and black.  The exponential curve of direction vs. location has 

a discontinuity in the derivative of direction with respect to location at the observation 

location.  With nugget=0.0, the Gaussian and spherical curves appear smooth.  With 

nugget = 0.1, the spherical curve is smooth, but the exponential and gaussian curves 

spike with a discontinuity at the observation location.  With or without a nugget, the 

kriging solution produces “exact interpolation” at a sampled location 

(estimate=observation).  Exact interpolation will now be proven. 
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Figure 4-3.  Effect of Cosine Model on the Kriging Estimate Around the Measurement 
Location.  The curve from the spherical cosine model is dashed and red, the curve from 
the gaussian cosine model is tan and thick, and the curve from the exponential model is 
solid and black.  Estimation at a sampled location produces exact interpolation. 

 
 

With ( )jidς  being the mean cosine computed from the cosine model (Chapter 3, 
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The key to this proof is to observe that jc  is the thj  row or column of K. 

With P the diagonalizing orthonormal matrix of eigenvectors (Appendix B, 

Section B.2, point 4) of the positive definite matrix K (Chapter 3, Subsection 3.6.3 ), Λ  

the diagonal matrix of eigenvalues of K (Appendix B, Section B.2, point 4), I the diagonal 

matrix of 1s (the identity matrix), and ( ) j ColM  the thj  column of matrix M, and the fact (1) 

that the thj  column of the product of matrix P post multiplied by a matrix ( )TΛP  equals 

the product of the matrix ( )ΛP  post multiplied by the thj  column of TP , the numerator of 

the solution vector jw  (4.16) is 
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So jcK
1−  is a column vector of 0’s with 1 in the thj  position.  Using this result we will 

see that the estimated direction is the observed direction. 
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Thus, at a sampled location, the estimated direction equals the observed direction, 

which is a unit vector.  This is called “exact interpolation” as in the kriging of linear RVs.   

 

4.6  Circular Kriging Variance, 2
CKσ  

 
 

In this section, let U be the random sample of directions.  Let nii L,2,1, =u  be 

the random direction at location nii L,2,1, =x , iû  be the estimator of iu , and ie  be the 

error vector of iû  (Subsection 4.2.2, Figure 4-2).  Let 0u  be the random direction at 

unobserved (unsampled) location ,0x  0û be the estimator of ,0u  0e  be the random error 

vector equal to 00
ˆ uu − (Subsection 4.2.2, Figure 4-2), and Θ  be the random angle 

between 0û  and 0u .  Let 2
CKσ  be called the circular kriging variance and be defined as 

the mean squared length of the error vector, which is a measure of the variability of the 

circular kriging estimator. 

At a sampled location, ii uu =ˆ  (Section 4.5),  0e =i , and 

{ } { } 0EE
222 === 0eiCKσ .  If Θ  were always the maximum of π , per Figure 4-2 0e  

would always be 2 and 2
CKσ  would always be 4.  However, in a circular random field, Θ  

is random and cannot always be π .  Hence,  40 2 <≤ CKσ . 
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The estimate of the circular kriging variance will now be derived.  With vector c 

and matrix K containing real-valued constants computed from the cosine model ς  of 

circular-spatial correlation (Chapter 3, Subsection 3.6.2), let 

        0uUX T=        (4.20) 

           cUKUKc 11 −−= TTY       (4.21) 

     ( ) .,
Y

Yg
X

X =                   (4.22) 

Note that X is a random vector and Y is a random scalar.  By the above definition of 

2
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     ( ){ }.,E22 12 YgT
CK XKc −−=σ       (4.23) 

( )Yg ,X  is a nonlinear function of X and Y.  When confronted with a nonlinear 

function,  we can approximate using a method in probability and statistics called the 
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“delta method” or “propagation of errors” (Rice 1995, p. 149).  With ( )Yµ,Xµ  being the 

expectation of ( )Y,X , ( )Yg ,X  is approximated by a Taylor series about the fixed point 

( )Yµ,Xµ  with expansion to the random point ( )Y,X .  The expansion consists of one 

term which is nonrandom and random terms containing powers of the deltas ( )XµX −  

and ( )YµY − .  Hence, the method is called the “delta method.” 

The Taylor series expansion of ( )Yg ,X  to a first order or linear approximation is 
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This approximation improves as the joint probability of X and Y increases in an area of 

the domain of ( )Yg ,X  where ( )Yg ,X  is approximately linear. 

Taking the expectation of the first order linear approximation, 
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      ( ){ } { } { }( ).E,E,E YgYg XX ≈       (4.24) 

 

In general, ( ){ } { } { }( ).E,E,E YgYg XX ≠   What (4.24) means is that { } { }( )Yg E,E X  is a first 

order linear approximation of ( ){ }.,E Yg X  
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Next, with ( )ijdς  the expectation of the cosine of the angle between 

observations i and j  estimated by the cosine model of circular-spatial correlation 

(Chapter 3, Section 3.6), { } { }( )Yg E,E X  is evaluated. 
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Last, the first order linear approximation of the circular kriging variance will be 

completed. 
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           cKc 12 22ˆ −−= T
CKσ       (4.26) 

 

4.7  How Distance and the Cosine Model Affect 2ˆCKσ  

 
 

When direction is estimated at a sample location ,jx  ,,2,1 nj L=  the vector of 

mean cosines jc  is the thj  row or column of the positive definite matrix of mean cosines 

K (Section 4.5).  From p. 90, we know that [ ]T

j 0010001 LL=− cK  with 1 in 

the jth position, hence, 
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       ( ) .0ˆ 2 =jCK xσ        (4.27) 

 
Further, in Section 4.5, it was proven that the estimate of direction at a sampled 

location is the observed direction.  Then, at a sampled location, the error vector 
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njj ,,2,1, L=e  is always the zero vector 0 (Figure 4-2).  Hence, at a sampled location, 

02 =CKσ , and .0ˆ 22 == CKCK σσ   In contrast to result (4.26), McNeill (1993, p. 46) obtained 

cKc 1−T  for the circular kriging variance.  By (4.26), 2ˆCKσ  decreases when cKc 1−T  

increases.  Hence, McNeill’s result is a measure of concentration, which is opposite the 

sense of spread or variance. 

The model parameters are the range, mean resultant length ρ  of the circular 

distribution component of the CRF, and the nugget gn  from measurement error and 

close sampling.  To see their effects, Figure 4-4 was constructed using the R code in 

Appendices K.18 and L.14, which simulates observation one with location at the origin of 

location coordinates, observation two with location at 1 unit of distance due north of 

observation one, and the estimation location at a variable distance due east of 

observation one.  Hence, zero distance corresponds to estimation at the location of 

observation one. 

The shape of the 2ˆCKσ  curve resembles the inverted curve of the circular-spatial 

correlation model identified in the legend.  The spherical curve attains the maximum at 

distances greater than and equal to the range.  The exponential and gaussian curves 

appear to be asymptotic with the gaussian curve exceeding the exponential curve at a 

distance approximately equal to the range. 

The upper left and lower right plots indicate that increasing the range increases 

the distance at which the maximum 2ˆCKσ  occurs.  The upper plots indicate that when ρ  

is increased (the distribution of the CRV is more concentrated), the estimator of 

direction, which depends on the variability of the CRV, is also more concentrated, and 

hence the 2ˆCKσ  is reduced.  The left plots indicate that the nugget introduces a  
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Figure 4-4.  Effect of Range, Mean Resultant Length ρ , and nugget gn  on the Circular 

Kriging Variance 2ˆCKσ . 

 
 

discontinuity at zero distance and increases 2ˆCKσ  at small distances relative to the range.  

The maximum precision of the estimator at nonzero distances is limited by the nugget. 
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4.8  Chapter Summary and Future Work 

 
 

The principal result of this chapter is the vector of weights w of the circular 

kriging solution, which is  

cUKUKccKw 111 −−−= TT . 

It was derived in full detail, and shown to be optimal producing a unit vector estimate 

(4.17) at a stationary point (4.18) of maximum fit (Section 4.3).  The approach avoided 

the first order Taylor series approximation of McNeill (1993, p. 39), which results in a 

nonunit vector estimator of direction (4.11). 

A computationally efficient form of the estimator of direction (4.19) was derived 

with elimination of the scalar function cUKUKc 11 −− TT   in the denominator of the kriging 

solution.  The scalar function does not affect the signs and the ratio of the magnitudes of 

the vector components.  With h and v being the horizontal and vertical components of 

the vector cUK 1− , respectively, i.e., cUK
1−=
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radians at location 0x  is 
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The estimated direction at a sampled location was proven to be the observed 

direction.  This is called “exact interpolation” as in the kriging of linear RV. 
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The variability of the circular kriging estimator 2
CKσ was defined as the mean 

squared length of the error vector, 40 2 <≤ CKσ .  The  first order linear approximation was 

derived (4.26) as  

cKc 12 22ˆ −−= T
CKσ . 

It was proven that the circular kriging variance at a sampled location is zero.  The effects 

on 2ˆCKσ  of the distance to an observation and the cosine model parameters were shown. 

Future work includes derivation of 2ˆCKσ  to a higher order approximation to 

increase the accuracy.  A nonzero nugget gn such as from measurement error has the 

effect of smoothing the estimates at locations where data does not exist and not 

smoothing the estimates at observation locations (exact interpolation).  This suggests 

deriving a circular kriging solution for estimation “without measurement error” as in linear 

kriging where the smoothing of estimates at all locations varies with the magnitude of the 

nugget. 


