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      Appendix A 

 
Notation 

 
 

A nonbolded lower case letter indicates a scalar.  For example, λ  is the scalar 

Lagrange multiplier, iθ  is the thi observed direction in radians, and jiθ  is the angle 

between the thi  and the thj  observed directions in radians. 

A bolded lower case letter indicates a vector.  For example, with superscript “T” 

indicating the transpose, [ ]T

nwww L21=w is an  n-component column vector 

containing real scalar weights iw .  ,,,0, nii K=x  are vectors of physical locations where 

direction is measured.  Location will be used to determine the distance between 

measurement locations, which in turn, will be used to estimate the spatial correlation 

structure.  ,,,1, nii K=u  are 2-component unit vectors of observed direction at 

location ix . 

A bolded capital letter indicates a matrix.  

[ ]
( ) ( ) ( )
( ) ( ) ( )






==

n

n
n θθθ

θθθ

sinsinsin

coscoscos

21

21
21

L

L
L uuuU is a sample as a matrix whose 

columns are directions as unit vectors.  The first row  is a vector of the horizontal 

components.  The second row is a vector of the vertical components. 

Equation numbers are denoted by (m.n) with m the chapter number or appendix 

letter, and n a sequential number. 
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     Appendix B 

 
Linear Algebra  

 
 
B.1 Identities for Vectors 

Let iu and ju  be unit vectors in 2R  with directions iθ  and jθ  in radians, and ijθ  

be the angle in radians between iu and ju . 

( ) ( ) ( ) ( ) ( )
 VectorsUnitIdentity  Trig

sinsincoscoscos =+=− jijiji θθθθθθ  

           ( )ij

ji

j
T
i

j
T
ijiji uuuu θcos

 VectorsUnit

2211

∗∗∗
===+

uu

uu
uu      (B.1) 

* (Edwards and Penney 1988, p. 211, eq. 1), ** (Edwards and Penney 1988, p. 142, eq. 

6)  

       vvv T=         (B.2) 

 
B.2 Some Properties of the Positive Definite Matrix K 

• A matrix K is positive definite (P. D.) if and only if there exists an invertible matrix 

P such that TPPK = . 

• ( ) ⇒=== KPPPPK TTTT  K symmetric. 

• 0cKccKddcPPcKcc
0c

≠∀>⇒⇒>=≡=
≠−

∑ ,0 D. P. 0
 singular,non

2 T
 P

i

i
TTTT d  

• Let Q and Λ  be the eigenvector and diagonal eigenvalue matrices of K.  

  Kxx
0x

T
≠∀

<0  

       xQQΛx TT=  

    Λyy
xQy

T

T=

=  

     ∑
Λ

=
i

iiy λ2
Diag 
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           ⇒>⇒

=

0

, Let

i

vector elementary
j

λ

ey

 

           0 of D. P. >⇒ ΛK iλ  

Reversing the order of the proof, leads to 

          D. P.0 of KΛ ⇔>iλ        (B.3) 

 
B.3 Theorem: The P. D. Matrix Has an Inverse 

           ⇒= T
B

PPK
2.

 

         ( ) 11 −− = TPPK  

             ( ) .11 −−
= PP

P
T

invertible

 

( ) ( )

( ) ( )
( )
( ) ⇒=

=

⇒=
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−−−
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11

111
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11
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               ( ) 111 −−− = PPK
T

       (B.4) 

 
B.4 Theorem: The Inverse of P. D. Matrix Is Symmetric 
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B.5 Theorem: The Inverse of P. D. Matrix Is P. D. 

   
( )
( ) 11

11

−−

−−

=

=

PP

PPK

T

T

 

           
( ) ( )

( ) 11
:3.

11

−−
=

−−

= PP
PP TB TT

 

      T

T

QQ
PQ 1−=

= . 

    ( )TT 11 −− =⇒= PQPQ . 

    ( ) ( ) ⇒== −− IPPPP
TTT 11  

D. P.  1 Tinvertible QQKQ =⇒ −  

 

             P.D. P.D. 1−⇒ KK        (B.6) 

 
B.6 Some Properties of the Negative Definite Matrix 

• A matrix K is negative definite (N. D.) if 0cKcc ≠∀< 0T . 

• K N. D. ( ) KKMMKMK ⇒=−=−=⇒≡−⇒ TTD. P. symmetric. 

• This Th. will prove that the eigenvalues of a N. D. matrix are negative.  Let Q and Λ  

be the eigenvector and diagonal eigenvalue matrices of K, respectively. 

     ⇒D.N.K  

   Kxx
0x

T
≠∀

>0  
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T
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=  

       ∑=
i

iiy λ2  

           ⇒>⇒

=

i

vector elementary
j

λ0

, Let ey

 

 
0 of D. N. <⇒ ΛK iλ  
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Reversing the order of the proof, leads to 

          D. N.0 of KΛ ⇔<iλ        (B.7)  

 
B.7 Derivatives Required for Kriging 

Let [ ]T

ncc L1=c  and [ ] nn
TT

n cwcwww ++=⇒= LL 111 cww . 
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The following derivative is required by (B.11).  Let jj iji wKy ∑=⇒= Kwy .   
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B.8 The Requirements for Maximization 

 Theorems 1.51 and 1.52 (a) from Rencher (1975) are required to show that the 

kriging solution is a maximum. 

 
B.8.1 Theorem 1.51 

“If ( )nwwwfu ,,, 21 K=  is such that all the first and second partial derivatives are 

continuous, and if B is the matrix whose ( )th
ji,  element is 

ji ww

u

∂∂

∂2

, then at the point 

where 0
w

=
∂

∂u
, u has a minimum if B is positive definite and a maximum if B is negative 

definite.”  In one-dimensional calculus, the first derivative of a function is decreasing 

where the second derivative is negative.  Hence, at the point where the first derivative is 

zero and the second derivative is negative, the function is at a maximum.  In multi-

dimensional calculus, the corresponding second derivative is a matrix of second partial 

derivatives called the Hessian.  Where the first derivatives are zero and the Hessian is 

negative definite, the function is at a maximum. 

 
B.8.2 Theorem 1.52 

“If ( ) dwwwfu TT
n ++== cwwKw,,, 21 K , where K is positive definite and d is a 

scalar, then the matrix KB 2
2

=














∂∂

∂
=

ji ww

u
.” 
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      (B.11) 

B.9 Expectation 

With Z a random matrix of elements ijZ , or ( )][ ijZ=Z , and E the expectation 

operator, Seber (1977, p. 8) defined the expectation of a matrix as 

     { } ( ){ } { }( )[ ].EEE ][ ijij ZZ ==Z      (B.12) 
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Appendix C 

 
Qualitative Evaluations of Other CRFs with Standardization 

 
 

Appendix C extends the example of Chapter 5, Section 5.5, Figure 5-9, to other 

circular distributions: cardioid, triangular, uniform, and wrapped Cauchy.  The purpose of 

these figures is to show that the method produces the desired distributional and spatial 

properties of the CRF.  Figures C-1 to C-4 show the distributional fits on the left as QQ 

plots and the spatial properties of the samples on the right.  Details of the interpretation 

are given in Chapter 5, Subsection 5.5.3.  These figures were constructed as described 

in Chapter 5, Subsection 5.5.2 using the R code in Appendix L, Section L.8.  To facilitate 

verification of the desired spatial properties, the spherical covariance model was chosen 

for the gaussian random field (GRF).  With the spherical covariance, the sill (the plateau 

formed by the mean cosine at distances where the CRV are uncorrelated) and the range 

(the distance at which the mean cosine forms the sill) are easily recognized.  The 

realizations of the GRF were standardized according to Chapter 5, Section 5.3, step 1) 

(Subsections 5.4.3 and 5.4.4).  The mean resultant length parameter ρ  was set to ½ of 

the maximum, which depends on the distribution (Table 5-1). 

Generally, the resulting QQ plots were highly linear, indicating a high degree of 

fit.  The spatial properties of the cosineogram on the bottom right are a mirror of the 

variogram, approximately.  When sampling variation resulted in a GRF realization with 

less than ideal spatial properties, these properties were mirrored from the variogram plot 

of linear-spatial properties of the GRF to the cosineogram plot of the circular-spatial 

properties of the CRF.  An assessment of each figure is given in the figure caption. 

The examples in Appendix C were selected for close fit to the desired distribution 

and spatial properties.  In Appendix D, the circular distribution parameters were set to 
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extremes, the figures were generated sequentially with random seeds, both 

nonstandardized and standardized results were computed, and the distributional and 

spatial properties were scored. 
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Figure C-1.  Evaluation of a Cardioid CRF, 25.0=ρ , Overfit, Range r = 10.  The linearity 

of the QQ plots indicates that the distributional fits are close.  The spatial plots on the 

right show agreement with the desired spatial properties (range r =10, sill 2ρ≈ ). 
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Figure C-2.  Evaluation of a Triangular CRF, 203.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The sill is not well 
defined in the spatial plots on the right.  The range is between 10 and 20. 
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Figure C-3.  Evaluation of a Uniform CRF, Overfit, Range r = 10.  The linearity of the QQ 
plots indicates that the distributional fits are close.  The spatial plots on the right show 
agreement with the desired spatial properties (range r =10, sill=0). 
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Figure C-4.  Evaluation of a Wrapped Cauchy CRF, 5.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The sill is not well 
defined in the spatial plots on the right.  The sill of the variogram is high and the sill of 
the cosineogram is low.  The range is  between 10 and 15.   
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Appendix D 

 
Qualitative Evaluations of CRFs Near Parameter Extremes 

 
 

Appendix D extends the examples of Chapter 5, Section 5.5, Figure 5-8, and 

Appendix C to the selected circular distributions with mean resultant length parameter ρ  

at extremes of 0.05 and 95% of the maximum (Table 5-1).  The purpose of these figures 

is to show that the method produces the desired distributional and spatial properties of 

the CRF.  Standardized and nonstandardized realizations of the GRF with the same 

parameters were computed using the same random seed.  Figures D-1 to D-16 show the 

distributional fits on the left as QQ plots and the spatial properties of the samples on the 

right.  The interpretation is given in Chapter Subsection 5.5.3.  These figures were 

constructed as described in Subsection 5.5.2 using the R code in Appendix L, Section 

L.8.  To facilitate verification of the desired spatial properties, the spherical covariance 

model was chosen for the gaussian random field (GRF) because the spatial properties 

are easily recognized. 

Generally, the QQ plots with standardization were highly linear, indicating a high 

degree of fit, but the QQ plots based on nonstandardized realizations showed typical 

sampling variation.  The QQ wrapped Cauchy plot at high ρ  showed a significant lack of 

distribution fit regardless of standardization.  An assessment of each figure is given in 

the figure caption. 

The cosineogram plot of circular-spatial properties mirrored the variogram plot of 

linear-spatial properties.  When sampling variation resulted in a realization of the GRF 

with less than ideal spatial properties, these properties were mirrored in the cosineogram 

plot of the circular-spatial properties.  The spatial assessments in the figure captions are 

summarized at the end of Appendix D.  Standardization of the GRF had no apparent 
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effect on agreement of the spatial properties of a simulation with the desired spatial 

properties. 
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Figure D-1.  Evaluation of a Cardioid CRF, 05.0=ρ , Overfit, Range r = 10.  The linearity 

of the QQ plots indicates that the distributional fits are close.  The sill is not well defined 
in the spatial plots on the right.  The sill of the cosineogram is 0.  Hence, the range is 
about 10.   
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Figure D-2.  Evaluation of a Cardioid CRF, 05.0=ρ , Range r = 10.  The lack of linearity 

of the QQ plots is due to typical sampling variation.  The sill is not well defined in the 
spatial plots on the right.  The middle red line in the variogram may be the sill.  Then, the 
range is about 10. 
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Figure D-3.  Evaluation of a Cardioid CRF, 475.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 

on the right indicate that the range is around 10 and the sill of the cosineogram is 2ρ≈ . 
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Figure D-4.  Evaluation of a Cardioid CRF, 475.0=ρ , Range r = 10.  The lack of 

linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 

right indicate that the range is around 10 and the sill of the cosineogram is about 2ρ . 
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Figure D-5.  Evaluation of a Triangular CRF, 05.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 
on the right indicate that the range is about 10 and the sill of the cosineogram is 0. 
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Figure D-6.  Evaluation of a Triangular CRF, 05.0=ρ , Range r = 10.  The lack of 

linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right indicate that the range is around 10 and the sill is about 0. 
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Figure D-7.  Evaluation of a Triangular CRF, 385.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The right plots 

indicate a range is about 10 and a sill of about 0.12 2ρ≈ . 
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Figure D-8.  Evaluation of a Triangular CRF, 385.0=ρ , Range r = 10.  The lack of 

linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right indicate that the range is about 10 and the sill is about 0.2 . 
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Figure D-9.  Evaluation of a von Mises CRF, 05.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The cosineogram 

plot shows agreement with the desired spatial characteristics (range r =10, sill 2ρ≈ ). 
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Figure D-10.  Evaluation of a von Mises CRF, 05.0=ρ , Range r = 10.  The lack of 

linearity of the QQ plots is due to typical sampling variation.  The sill is not well defined in 
the right plots.  The variogram suggest that the range is around 15. 
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Figure D-11.  Evaluation of a von Mises CRF, 95.0=ρ , Overfit, Range r = 10.  The 

linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 
on the right show agreement with the desired spatial characteristics (range r =10, 

sill 2ρ≈ ). 
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Figure D-12.  Evaluation of a von Mises CRF, 95.0=ρ , Range r = 10.  The lack of 

linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right show agreement with the desired spatial characteristics (range r =10, sill= 

290.0 ρ≈ ). 
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Figure D-13.  Evaluation of a Wrapped Cauchy CRF, 05.0=ρ , Overfit, Range r = 10.  

The linearity of the QQ plots indicates that the distributional fits are close.  The spatial 
plots on the right show agreement with the desired spatial characteristics (range r =10, 
sill=0). 
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Figure D-14.  Evaluation of a Wrapped Cauchy CRF, 05.0=ρ , Range r = 10.  The lack 

of linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right show agreement with the desired spatial characteristics (range r =10, sill=0). 
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Figure D-15.  Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , Overfit, Range r = 10  

The QQ plots show that the GRV and uniform samples (cumulative probabilities) were a 
close fit to the corresponding distributions, but the wrapped Cauchy circular sample at 
high ρ  had less fit than the other circular samples.  Since the linear Cauchy distribution 

gives samples with poor fit, it is not surprising that sampling from the linear Cauchy 
wrapped on a circle, or the wrapped Cauchy distribution, also gives samples with poor 
fit.  The cosineogram on the right indicates a range of about 10 and a sill of about 0.94, 

which is slightly higher than 2ρ . 
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Figure D-16.  Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , Range r = 10. The lack 

of linearity of the QQ plots is due to typical sampling variation.  The wrapped Cauchy 
circular sample at high ρ  had poor fit similar to Figure D-15.  The cosineogram on the 

right shows agreement with the desired spatial characteristics (range r =10, 

sill=0.9 2ρ= ). 
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The spatial properties of Figures D-1 to D-16 were scored and tabulated in 

Table D-1.  The figures were scored based on the assessments in the figure captions: 

• Good = Figure caption contains “agreement with the desired spatial characteristics”  

• OK = Range and sill quantified 

• Poor = Figure caption contains “sill is not well defined”. 
 
 

Table D-1.  Spatial Property Scores of Figures D-1 to D-16 
 

Overfit Good OK Poor 
Yes 3 4 1 
No  3 3 2 
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Appendix E 

 
Derivations of the CDF Formulae for Support [ )π2,0  

 
 

In Chapter 5, a Gaussian random field (GRF) is mapped to a circular random 

field (CRF) via the CDFs.  The CDFs are derived for four circular distributions with 

( )θΘG  the cumulative probability distribution function of Θ , ρ  the mean resultant length 

parameter and κ the concentration parameter for the von Mises distribution, and 

πθθ 20 21 <<≤ .  To simplify calculation, the mean direction is assumed to be 0.  With 

exception to the circular uniform distribution, the mean direction of the CRF may be set 

to an arbitrary direction by adding the direction minus the sample mean direction to the 

direction of each of the observations.  Probability density functions were obtained from 

Mardia (1972), Fisher (1993), and Jammalamadaka and Sengupta (2001).  The derived 

cumulative distribution function (CDF) formulae of Appendix E will be verified by 

integration over the support [ )π2,0  in Appendix F, and mapped to support [ )ππ +− ,  in 

Appendices G and H. .  The CDFs will be denoted  ( )θUG  for the uniform, ( )ρθ;TG  for 

the triangular, ( )ρθ;CG  for the cardioid, ( )ρθ;vMG  for the von Mises, and ( )ρθ;WCG  for 

the wrapped Cauchy distributions. 
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E.1 Cardioid 

 The probability density function (PDF) is given in Mardia (1972, p. 51, eq. 3.4.11) 

and the CDF is given in Fisher (1993, p. 45, eq. 3.22).  With 
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E.2 Triangular 

The PDF was obtained from Mardia (1972, p. 51, eq. (3.4.13).  The CDF and 

derivation were not found in the cited texts, and may be a new result.  With 
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Case 1, πθθ ≤<≤ 210  
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Case 2, πθθπ 221 ≤<≤  
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Case 3, πθπθ 20 21 ≤≤<≤  
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E.3 Uniform 
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E.4 von Mises 

 The CDF for the von Mises distribution is not derived because CircStats provides 

the function pvm for the von Mises CDF. 
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E.5 Wrapped Cauchy 

 The PDF was obtained from Mardia (1972, p. 56, eq. 3.4.33).  The following form 

of the CDF and its derivation were not found in the referenced texts, and may be a new 

result.  With 10 << ρ , 
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Appendix F 

 
Verification by Evaluation of the CDF Formulae with Support [ )π2,0   

 
 
F.1 Cardioid 
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F.2 Triangular 

Case 1, πθθ ≤<≤ 210  
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Case 2, πθθπ 221 ≤<≤  
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( ) ( ) 5.0;;2 ==−= ρπθρπθ TT GG  

 
Case 3, πθπθ 20 21 <≤<≤  
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F.3 Uniform 
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F.4 Von Mises 

 See E.4. 
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F.5 Wrapped Cauchy 
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     Appendix G 

 
Modification of the PDF and CDF Formulae for Rotated Support [ )ππ +− ,  

 
 

In Appendices G and H, the CDF formulae of Appendix E will be modified to 

rotate the support from [ )π2,0  to [ )ππ +− ,  radians on the unit circle.  In Appendix G, the 

PDF formulae will also be modified to rotate the support from [ )π2,0  to [ )ππ +− , . 

Rotation of the CDF support is required to map a GRV to a CRV with mean 

direction 0 (Chapter 5, Section 5.3).  Unlike the CDF of a linear random variable (RV), 

the circular CDF does not have a single origin.  Let the support be [ )ππ +− , .  Then, by 

means of the CDF –  Inverse CDF transformation (Figure 5-2), the most negative values 

of the standard GRV map to the most negative values of a CRV, the modes coincide, 

and the most positive values of the GRV map to the most positive values of the CRV.  

Thus, the circular CDF has ( ) 0=−=Θ πθG , ( ) 5.00 ==Θ θG , and ( ) 0.1==Θ πθG . 

The uniform PDF is ( ) πθ 21=g  for all angles.  Hence, it is independent of the 

choice of support, and the same for both supports.  The cardioid, von Mises, and 

wrapped Cauchy distributions are functions of ( )θcos .  To transform the part of the 

support πθπ 2<≤  to the corresponding part 0<≤− φπ , let πφθ 2+= .  Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φθφπφπφπφθ gg =⇒=−=+= cos2sinsin2coscos2coscos

01

4342143421
.  Thus, the 

circular PDF for the uniform, cardioid, von Mises, and wrapped Cauchy distributions do 

not change with rotated support.  For πθ <≤0 , the PDF of the triangular distribution is 

( ) ( )( )θππρρπ
π

θ −+−= 24
8

1 2g .  For the part of the rotated support 0<≤− φπ , ( ) =θg  

( )( ) ( )( ) ( )( )πφπρρπ
π

ππφπρρπ
π

πθπρρπ
π

++−=−++−=−+− 24
8

1
224

8

1
24

8

1 222 .  

This is given in Table 5-1 with 0, <≤−+= θπθπδ , and πθθπδ <≤−= 0, . 
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G.1 Cardioid 
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Figure G-1, which verifies the cardioid CDF with support [ )ππ +− , , was plotted 

using the following R code: 

par(mai=c(.8,.75,.1,.1)); r<-0.3 
theta <- seq(-pi, pi, length=201) 
GC <- (theta + pi + 2*r*sin(theta))/(2*pi) 
plot(theta, GC, ty=”l”)  
 
 
 
 
 
 

 

Figure G-1.  Visual Verification of Cardioid CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  

Slope is changing as expected with maximum slope occurring at zero radians. 



 

 

193 
G.2 Triangular 
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Figure G-2, which verifies the triangular CDF with support [ )ππ +− , , was plotted 

using the following R code: 

par(mai=c(.8,.75,.1,.1)); r<-0.3 
theta1 <- seq(-pi,0,length=100); theta1 <- theta1[-100]; theta2 <- seq(0,pi,length=100) 
GT1 <- (4-3*pi^2*r + pi*r*(theta1+ 3*pi))*(theta1+pi)/(8*pi) 
GT2 <- 0.5 + (4 + pi^2*r - pi*r*theta2)*theta2/(8*pi) 
plot(c(theta1,theta2), c(GT1, GT2), ty=”l”) 
 
 
 
 
 
 

 

 
Figure G-2.  Visual Verification of Triangular CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  

Slope is changing as expected with maximum slope occurring at zero radians. 
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G.3 Uniform 

 ( ) ( )
( ) inspectionE

UU GG ⇒
−

=−
π

θθ
θθ

2

12
5.

12  

 

     ( ) πθπ
π

πθ
θ ≤≤−

+
= ,

2
UG        (G.3) 

 
G.4 von Mises 

 The von Mises cumulative probabilities computed via function pvm in R package 

CircStats (Lund and Agostinelli 2006): 

> pvm(theta = -pi, mu=0, kappa=1) 
[1] 0.5 
> pvm(theta = -.0000001, mu=0, kappa=1) 
[1] 1 
> pvm(theta = 0, mu=0, kappa=1) 
[1] 0 
> pvm(theta = pi, mu=0, kappa=1) 
[1] 0.5 
> pvm(theta = 2*pi, mu=0, kappa=1) 
[1] 0 
 
> pvm(theta = 2*pi -.0000001, mu = 0, kappa = 1) 
[1] 1 
inspection

⇒  
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Figure G-3, which verifies the von Mises CDF with support [ )ππ +− , , was plotted 

using the following R code: 

require(CircStats) 
r<-0.3; k<-A1inv(r) 
par(mai=c(.8,.75,.1,.1)) 
theta1 <- seq(-pi,0,length=100); theta1 <- theta1[-100]; theta2 <- seq(0,pi,length=100) 
GvM1 <- pvm(theta1, mu=0, kappa=k ) - 0.5 
GvM2 <- pvm(theta2, mu=0, kappa=k ) + 0.5 
plot(c(theta1,theta2), c(GvM1, GvM2), ty=”l”) 
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Figure G-3.  Visual Verification of von Mises CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  

Slope is changing as expected with maximum slope occurring at zero radians. 
 

G.5 Wrapped Cauchy 

Additional forms of the wrapped Cauchy CDF were discovered after the 

completion of Chapter 3.  One of these forms is incorrect.  Due to the complexity of the 

issues arising from the multiple forms of the wrapped Cauchy CDF, these forms will be 

treated in Appendix H. 



 

 

196 
Appendix H 

 
Wrapped Cauchy CDF 

 
 

H.1 Additional Forms of the CDF 
 
H.1.1 Incorrect CDF 

This distribution was introduced by Lévy (1939).  (H.1) was taken from Mardia 

(1972, p. 57, eq. 3.4.36), and repeated in Fisher (1993, p. 46, 3.27).  With 0=µ , it is 
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(H.1) is plotted in Figure H-1 with the following code: 

theta <- seq(0, 2*pi, length = 197); r <- 0.75 # rho 
G <- acos(((1+r^2)*cos(theta)-2*r)/(1+r^2-2*r*cos(theta)))/(2*pi) 
plot(theta, G, ty = ”l”, cex.lab=1.6, cex.axis=1.2)  
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Figure H-1.  Incorrect Wrapped Cauchy CDF, 75.0=ρ , Support [ )π2,0  Radians.  A 

correct CDF is monotonic increasing. 



 

 

197 
H.1.2 WCACDF 
 

WCACDF was obtained from National Institute of Standards and Technology 

(NIST), Statistical Engineering Division, Dataplot, at 

http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/wcacdf.pdf, eq. Aux-326.  

With 0=µ , it is 

( ) =ρθ ;WCG  
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They cite Johnson, Kotz, and Balakrishnan (1994), which is a principle reference for 

looking up details on distributions.  (H.2), as shown in Figure H-2,  was plotted with the 

following code: 

theta1 <- seq(pi, 2*pi, length = 100); theta2 <- seq(0, pi, length = 100) 

theta3 <- seq(-pi, 0, length = 100); r <- 0.75 
G <- function(theta) {(atan((-1-r)*sin(.5*theta)/((-1+r)*cos(.5*theta)) ) 
 - atan( (1+r)*sin(.5*theta)/((r-1)*cos(.5*theta))))/(2*pi)} 
plot(c(theta2, theta1), c(G(theta2), 1-G(2*pi-theta1)), ty = ”l”, cex.lab=1.6, cex.axis=1.2) 
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Figure H-2.  Dataplot WCACDF of Wrapped Cauchy CDF, 75.0=ρ , Support [ )π2,0  

Radians.  The slope changes with maximum rate at zero radians as expected. 
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H.2 Alternate Forms with Support [ )π2,0  

 This section will modify the CDF formulae of Section H.1 and Appendix E, 

Section E.5 to facilitate evaluation.  These circular CDFs, going counterclockwise, will 

have ( ) 0; == ρπθWCG , ( ) 5.0;2 == ρπθWCG , ( ) 5.0;0 == ρθWCG , and 

( ) 0.1; == ρπθWCG . 
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H.2.2 Revised (H.1) 
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H.2.3 WCACDF 
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H.3 Evaluation of Alternate Forms 

H.3.1 Forms of  Wrapped Cauchy CDF Visually Indistinguishable 

 In Figure H-3, the circular CDFs are computed over [ ) [ )πππ ,02, U  and plotted 

over the equivalent support [ )ππ +− ,  using the following R code: 

theta1 <- seq(pi, 2*pi, length = 100); theta1 <- theta1[-100] 
theta2 <- seq(0, pi, length = 100);     theta2 <- theta2[-100] 
theta3 <- seq(-pi,0, length = 100);     theta3 <- theta3[-100]; r <- 0.75 
# Iterated CDF with total 15 iterations 
GI1 <- (theta1-pi+2*r*sin(theta1))/(2*pi); GI2 <- 0.5 + (theta2+2*r*sin(theta2))/(2*pi) 
GI <- function(theta) 
{ sum.iter <- 0; for (k in 2:15) { sum.iter <- sum.iter + (1/pi)*(r^k)*(1/k)*sin(k*theta)} 
 return(sum.iter) } 
GI1 <- GI1 + GI(theta1); GI2 <- GI2 + GI(theta2) 
par(mai=c(.65,.6,.1,.1), mgp=c(2,1,0),cex.axis=.7, cex.lab=.8) 
plot(c(theta3, theta2), c(GI1, GI2), ty = ”l”) 
# Corrected wrapped Cauchy CDF 
GM1 <- .5 - acos(((1+r^2)*cos(theta1)-2*r)/(1+r^2-2*r*cos(theta1)))/(2*pi) 
GM2 <- .5 +acos(((1+r^2)*cos(theta2)-2*r)/(1+r^2-2*r*cos(theta2)))/(2*pi) 
plot(c(theta3, theta2), c(GM1, GM2), ty = ”l”) 
F <- function(theta) {(atan((-1-r)*sin(.5*theta)/((-1+r)*cos(.5*theta)) ) 
 - atan( (1+r)*sin(.5*theta)/((r-1)*cos(.5*theta))))/(2*pi)} 
GD1 <- .5 - F(2*pi-theta1); GD2 <- F(theta2) + 0.5 
plot(c(theta3, theta2), c(GD1, GD2), ty = ”l”) 
 

In Figure H-3, the revised wrapped Cauchy CDF, WCACDF, and the iterative 

formula with 15 iterations are visually indistinguishable. 

 

 
              Iterative         Revised Formula    WCACDF Formula 

Figure H-3.  Three Forms of the Wrapped Cauchy CDF, 75.0=ρ , Support [ )ππ ,−  

Radians.  Visually, the three forms are indistinguishable. 
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H.3.2 Proximity of Alternative CDF Formulae 
 
 With 198 points, the revised CDF and WCACDF total absolute difference is about 

e-14.  The iterated CDF achieves the similar accuracy when the number of iterations is 

increased to about 160 iterations. 

# Compare iterative to WCACDF 
sum(abs(c(GI1, GI2) – c(GD1,GD2)))  
[1] 0.02960684 
 
# Compare iterative to revised CDF  
sum(abs(c(GI1, GI2) – c(GM1,GM2))) 
[1] 0.02960684 
 
# Compare WCACDF to revised CDF 
sum(abs(c(GD1, GD2) – c(GM1,GM2))) 
[1] 3.375078e-14 
 

The accuracy of the iterated wrapped Cauchy CDF (H.3) depends on ρ  and the 

number of iterations.   As rho increases, the number of iterations must increase to 

maintain accuracy.  The need for additional iterations at high rho (0.95) is demonstrated 

in Figure H-4, which was plotted with the following R code: 

r <- 0.95; GI1 <- (theta1-pi+2*r*sin(theta1))/(2*pi); GI2 <- 0.5 + (theta2+2*r*sin(theta2))/(2*pi) 
GI1 <- GI1 + GI(theta1); GI2 <- GI2 + GI(theta2); plot(c(theta3, theta2), c(GI1, GI2), ty = ”l”) 

 
 
 

 

Figure H-4.  Iterated Wrapped Cauchy CDF, ,95.0=ρ  Support [ )ππ ,−  Radians, 15 

Iterations.  The iterative form gets rough as 1→ρ  and computation time increases. 
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H.4 Selected Form for Rotated Support [ )ππ +− ,  

 
The revised CDF (H.4) is more simple than the WCACDF (H.5), and does not 

have the inaccuracy of the iterative form (H.3) at high rho.  Hence, the selected wrapped 

Cauchy CDF for support [ )ππ +− ,  is: 
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 (H.6), as shown in Figure H-5,  was plotted with the following code: 

par(mai=c(.8,.75,.1,.1)) 
r <- 0.75 
theta1 <- seq(-pi,0, length = 100); theta1 <- theta1[-100] 
theta2 <- seq(0, pi, length = 100) 
GM1 <- .5 - acos(((1+r^2)*cos(theta1)-2*r)/(1+r^2-2*r*cos(theta1)))/(2*pi) 
GM2 <- .5 +acos(((1+r^2)*cos(theta2)-2*r)/(1+r^2-2*r*cos(theta2)))/(2*pi) 
plot(c(theta1, theta2), c(GM1, GM2), ty = ”l”) 

 
 
 
 
 

 

Figure H-5.  Visual Verification of Wrapped Cauchy CDF, 75.0=ρ , Support [ )ππ ,−  

Radians.    The slope changes with maximum rate at zero radians as expected. 
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      Appendix I 

Triangular Inverse CDF 

 
The inverse CDF is computed in order to map a Gaussian random field to a 

circular random field according to the method of Chapter 5, Section 5.3.  For the 

cumulative probability ( )( )xzFu Z= , and the triangular CDF ( )ρθ ;TG , ( )ρθ ;TGu ≡ . 
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From (I.1), let        ucba −=
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Applying the quadratic solution of Press, Flannery, Teukolsky, and Vetterling (1986) for 

an accurate solution when a, c, or both are small (when 5.0,0 ≈≈ uρ , the familiar 

quadratic solution ( )aacbb 2/42 




 −±−=θ  does not work), 

( )
( ) ⇒





 −+−=





 −+−≡ acbbacbbbq

I

4
2

1
4sgn

2

1 22
2.

 

        




 −+−= acbbq 4

2

1 2          (I.3) 

           
q

c
=θ           (I.4)



 

 

203 
Figure I-1, which was plotted with the following R code, verifies this result. 

 
rho=.95*4/pi^2 
u1 <-seq(0,.5,length=20) 
a <- rho/8 
b <- (4+pi^2*rho)/(8*pi) 
c <- 0.5 - u1 
q <- -.5*(b+sqrt(b^2-4*a*c)) 
x1 <- c/q  
 
u2 <-seq(.5,1,length=20) 
a <- -1*rho/8 
b <- (4+pi^2*rho)/(8*pi) 
c <- 0.5 - u2 
q <- -.5*(b+sqrt(b^2-4*a*c)) 
x2 <- c/q 
 
plot(c(u1,u2), c(x1,x2), ty=”l”) 
 

 

 
 
 

 

Figure I-1.  Visual Verification of Triangular Inverse CDF, 2/4*95.0 πρ = , Support 

[ )ππ ,−  Radians. 


