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Appendix M 

 
Cosine Curves of Simulated Circular Random Fields (CRF) 

 
M.1 Review 

This appendix characterizes the circular-spatial correlation produced by the 

method of simulating CRFs of Chapter 5.  This form of circular-spatial correlation is 

expressed as the mean cosine of the angle between random components of directions 

vs. distance between observation locations, which is required to solve the kriging of 

circular RV of Chapter 4.  Since the method involves transformations of the nonclosed 

form of the normal CDF and a circular inverse CDFs, some of which do not have closed 

form expression, exact expressions for the cosine curves were not derived.  Instead, the 

cosine curves produced by the method were characterized by fitted models adapted 

from the covariance models used for kriging of linear RV.  The covariance models with 

variance 1 were adapted by Equation (5.2) in Chapter 5, Subsection 5.4.2.2 to the 

behavior of the mean cosine of a CRF. 

 
M.2 Generation of Cosine vs. Distance Curves 

For characterization of the mean cosine vs. distance of the simulated CRF, 

cosine vs. distance curves were generated using the R code in Appendices K.14 and 

L.10.  The commands in L.10 specify 126 different sets of simulation inputs based on: 

• The cardioid, triangular, uniform, von Mises, and wrapped Cauchy circular probability 

distributions as described in Table 5-1 in Chapter 5, Section 5.3, 

• 5 values of the parameter ρ  of a circular probability distribution (See Table M-1), 

• Range r, the scale parameter of the covariance model of the Gaussian random field 

(GRF), at 5 and 10, and 
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Table M-1.  Mean Resultant Vector Length ρ of Circular Distributions for Figures    
M-2, M-3, and M-4. 
 

Index % of 
ρ  max 

Cardioid Triangular Uniform von Mises Wrapped 
Cauchy 

1 5% 0.025 0.020 0.000 0.050 0.050 
2 25% 0.125 0.101  0.250 0.250 
3 50% 0.25 0.203  0.500 0.500 
4 75% 0.375 0.304  0.750 0.750 
5 95% 0.475 0.385  0.950 0.950 

 
Range 

of ρ 
5.00 ≤< ρ  2/40 πρ ≤<  0=ρ * 10 << ρ  10 << ρ  

 
* All directions of the uniform circular distribution have equal probability density resulting 
in a mean resultant length ρ  of zero. 

 
 

• Exponential, Gaussian, spherical covariance models ( )dc  of the GRF as listed in 

Chapter 5, Subsection 5.2.2, step 4). 

For each of the 126 sets of inputs, 400 simulations of the CRF were computed 

without standardization of the GRF (Chapter 5, Section 5.3, step 1).  For each 

simulation, 400 observations of direction at random sample locations were computed, 

and a cosineogram (Chapter 3) was evaluated. 

For each of the 126 sets of inputs, the cosineograms points were collected into a 

datasets.  Each dataset was reduced to a curve of cosine vs. distance by local 

polynomial regression of degree 1 (Wand and Jones 1995).  These curves will be shown 

in the next section. 

Do these curves represent the underlying spatial dependence produced by the 

method of simulation?  Figure M-1 was constructed using the R code in Appendix L, 

Section L.11.  400 variograms of simulations of a GRF with spherical covariance, 

range=10, and variance=1, were reduced by local polynomial regression of degree 1 to a 

curve of variance vs. distance.  The variance vs. distance curve was transformed to 

covariance vs. distance (Bailey and Gatrell 1995, p. 163). 
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Figure M-1, Fitted Covariogram an Unbiased Estimator of Spherical Covariance 
 
 
 
 
 
 
 
 
In the top plot, the theoretical covariance is over plotted in white on the 

covariance curve from the simulations (black).  Visually, the curves coincide indicating 

that the fitted curve is unbiased.  The bottom plot shows the difference of the covariance 

curve minus the theoretical covariance.  The average vertical distance between curves is 

0.001.  Thus, the proximity of the curves provides verification by simulation that the 

curves in the next section are unbiased estimates of the spatial dependence produced 

by the method of simulation, and justifies the approach of the next section. 
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M.3 Families of Cosine Curves 

Figures M-2 to M-4, which were constructed using the R code in Appendix L, 

Section L.12, show 126 curves of the mean cosine vs. distance derived from the data 

sets.  The combinations of ρ and range provide a full spectrum of cosine curves for each 

input covariance model of the Gaussian random field (GRF).  The black curves have 

range=5 and the tan curves have range=10.  ρ  increases from (1) to (5) as specified by 

the values in Table M-1 because the maximum value of ρ  depends on the circular 

probability distribution.  Examination of these figures indicates that each GRF covariance 

model (exponential, Gaussian, spherical) produces a distinct family of CRF cosine 

curves of similar shape.  The exponential covariance model in Figure M-2 produces a 

cosine curve that approaches a horizontal asymptote as distance increases similar to the 

exponential covariance model.  The Gaussian covariance model in Figure M-3 produces 

a cosine curve that has an “S” shape similar to the Gaussian covariance model.  The 

spherical covariance model in Figure M-4 produces a cosine curve that has a horizontal 

tangent at distance=range similar to the spherical covariance model.
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Figure M-2.  Family of Cosine vs. Distance Curves from the GRF with Exponential 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table M-
1).  The exponential covariance produces a curve that approaches a horizontal 
asymptote as distance increases similar to the exponential covariance model. 
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Figure M-3.  Family of Cosine vs. Distance Curves from the GRF with Gaussian 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table    
M-1).  The Gaussian covariance produces a curve that has an “S” shape similar to the 
Gaussian covariance model. 
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Figure M-4.  Family of Cosine vs. Distance Curves from the GRF with Spherical 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table    
M-1).  The spherical covariance produces a curve that has a horizontal tangent at 
distance = range similar to the spherical covariance model. 
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M.4 Characterization of the Cosine Curves 

To characterize the cosine curves, covariance models for linear kriging were 

shifted and scaled to conform to the spatial correlation properties of the CRF.  With ( )dς  

the mean cosine of the angle between random components of direction as a function of 

distance d, ρ  the mean resultant length of the circular probability distribution, 10 <≤ ρ , 

ng the nugget, 210 ρ−≤≤ gn , and ( )dc  the covariance model with a maximum value of 

one, the cosine model was defined as 

         ( ) ( ) ( )





>−−+

=
=

.0,1

0,1

22 ddcn

d
d

g ρρ
ς       (M.1) 

A cosine model with shape similar to the cosine curve was chosen.  The cosine 

curve was fit using a plot such as Figure M-5, which was produced using the R code in 

Appendix K, Section K.15.  The lower plot shows the mean absolute difference (MAD) 

between the cosine curve and cosine model as computed over distances from 0 to the 

range.  The three parameter cosine model was fit as follows:  The value of a parameter 

was changed to determine how to decrease the MAD.  Adjustment of the parameter 

continued until the MAD began to increase.  Then, the parameter was changed in the 

opposite direction at a finer resolution.  When a local minimum was achieved, another 

parameter was adjusted to a local minimum.  Next, the third parameter was adjusted to a 

local minimum.  The entire process was repeated with the modification that when a 

parameter could not be adjusted, adjustment of the next parameter was attempted.  

When any parameter was adjusted, adjustment of the remaining parameters was 

attempted.  When no further adjustment could be made, the parameters and the MAD 

were recorded. 
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Figure M-5.  Whittlematern Cosine Model (a=.493) Approximates the Cosine Curve of 
the von Mises CRF, 95.0=ρ , Transformed from an Exponential GRF, Range r = 5. 

 
 

The characterizing models of reasonably close fit are tabulated in Table M-2.  

The input GRF covariance models are listed in the top rows of the sub tables.  The 

dataset names in the left margin code the other simulation inputs of the distribution 

{Uniform (U), Cardioid (card), Triangular (tri), von Mises (vM), Wrapped Cauchy (WrC)}, 

the parameter ρ  {.05, .95}, and the range r  {5, 10}.  The second row of the sub tables 

lists the characterizing models, which are expressed in Section M.5.  In the main part of 

the table, the cosine model parameter values are listed in order a, b, c.  Where fit was 

not reasonably close, additional models were evaluated.  Where more than one model 

fits a cosine curve, the model with the minimum MAD may be chosen. 

red and black curves are 
visually indistinguishable 
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Table M-2.  Cosine Models Approximating CRF Cosine Curves. 

 
 

 
 



 

 

348 
M.5 Expressions for the Cosine Models of Table M-2 
 

The models in Table M-2, which approximate the cosine curves, and hence 

characterize them, were adapted from R package RandomFields (Schlather 2001) 

function CovarianceFct by scaling and shifting (Chapter 5, Subsection 5.4.2.2, (5.2)).  In 

this section, these cosine models ( )xς  will be simplified by assuming the nugget 0=gn , 

and expressed in terms of distance d, range r, rdx = , ρ  the resultant mean length 

parameter of the circular probability distribution, 10 <≤ ρ , and covariance parameters a, 

b, and c.  Figures M-6 to M-10 were computed using the R code in Appendix L, Section 

L.13. 

 
M.5.1 Whittlematern: 
 

        ( )
( )

0a(x),K  x
(a)

2
-1)( a

a
a-1

22
>

Γ
+= ρρς x       (M.2)  

( )xKa  denotes the modified Bessel function of the third kind of order a. 
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Figure M-6.  Whittlematern Cosine Models for 0=ρ . 
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M.5.2 Cauchytbm: 

       ( ) ( ) [ ] ( ] 1,0,0,2a, )(1)
c

b-1(1-1
1)-

a
b(-aa22 ≥>∈+++= cbxxx ρρς     (M.3) 

Cauchytbm models are illustrated in Figure M-7 for 0=ρ  with parameter c=2 as black 

solid, c=4 as tan, and c=6 as thick dashed black curves.  
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Figure M-7.  Cauchytbm Cosine Models for 0=ρ . 
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M.5.3 Generalized Cauchy: 

             ( ) ( ) ( ] 0,2,0,)x(11 b/a-a22 >∈+−+= bax ρρς       (M.4) 

Generalized Cauchy cosine models are illustrated in Figure M-8. 
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Figure M-8.  Generalized Cauchy Cosine Models for 0=ρ . 
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M.5.4 Hyperbolic: 

     ( ) ( ) )  x c(aK * 
c)*(aK

)x (c
c*-1 22

b

b

b 0.522
b-22

+
+

+= ρρς x      (M.5) 

The parameter constraints are {c>=0, a>0 and b>0}, or {c>0 , a>0 and b=0}, or {c>0 , 

a>=0, and b<0}.  ( )xKb  denotes the modified Bessel function of the third kind of order b. 

Hyperbolic models are illustrated in Figure M-9 for 0=ρ  with parameter c=1 as black 

solid, c=2 as tan, and c=3 as thick dashed black curves. 
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Figure M-9.  Hyperbolic Cosine Models for 0=ρ . 
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M.5.5 Stable: 

        ( ) ( ) ( ]0,2 a ),exp(-x*-1 a22 ∈+= ρρς x       (M.6) 

Stable  models are illustrated in Figure M-10 for 0=ρ  with parameter c=1 as black 

solid, c=2 as tan, and c=3 as thick dashed black curves. 
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Figure M-10.  Stable Cosine Models for 0=ρ . 
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M.6 Generalization of the Generation and Characterization of the Cosine 
 Curves 
 

The reader may choose from more than 30 GRF covariance models as provided 

by the R package Random Fields (Schlather 2001) function CovarianceFct. This function 

is embedded in the R code in Appendix K, Section K.14, MakeCosineData.  

MakeCosineData provides 5 circular distributions (cardioid, triangular, uniform, von 

Mises, wrapped Cauchy) with any valid value of parameter ρ  or κ , depending on the 

distribution, and any range r.  Additional circular distributions can be implemented either 

as a CDF table as described in Chapter 5, Section 5.3, 3), point 3, a) “Compute a table 

of the desired circular CDF ...”, or as a closed form inverse CDF such as in 3), point 2 

“For the triangular CRV ...“, as appropriate. 

The reader may use the code in Appendix L, Section L.10 as a template for 

generating a large series of cosine datasets.  The dataset name references the circular 

distribution, the GRF covariance model, and the range r.  For a more complicated 

example, U.GenCauchy_a_1.8_b_5.15_r_5 indicates that a uniform CRF was generated 

from a generalized Cauchy distribution with parameters a = 1.8, b = 5.15, and range r = 

5.  Note that these computations may take significant time, depending on the number of 

datasets, simulations, and observations per simulation. 

The reader may use the code in Appendix L, Section L.12 as a template for 

plotting families of cosine curves produced. 

Any of the covariance models of CovarianceFct may be used to fit a cosine curve 

because the code in Appendix K, Section K.15, FitCosineData, also uses the 

CovarianceFct function.  The algorithm for achieving a sequence of decreasing local 

minima, as described in Section M.4, is tedious.  The FitCosineData may be revised to 

implement other methods of fitting.  To facilitate fitting, the inputs to MakeCosineData 

should be saved in the output object to be read by FitCosineData. 



 

 

354 
Appendix N 

 
Additional Graphics for Circular Data 

 
 

N.1 Summary Plots for Circular Data 

Continuing from Chapter 1, Section 1.2, Figure N-1 (a) is a vector plot of the wind 

data.  It shows magnitude (m/s) and direction.  Quartiles of vector magnitude were 

colored, in order, blue, green, red, and violet, and the arrow heads of vectors were 

replaced with dots to eliminate coverage by the arrow heads.  Figure N-1 (b) 

summarizes the circular data of Figure N-1 (a).  The circular data plot is constructed 

similar to a histogram.  The arc bin origin is 0°, bin width is 30°, and number of bins is 

12.  One dot for each observation is stacked on the outside of a circle at the center of its 

arc bin.  The circular plot shows that the modal wind direction (arc bin with greatest 

number of observations) is toward about 105° (bin mid point) counterclockwise (CCW) 

from 0° E, or winds are blowing mostly from south-southeast to north-northwest. 

 
 
 

     

    (a)            (b) 

Figure N-1.  Summary Plots of the Ocean Wind Data.  (a) Magnitude (length) and 
direction wind blows toward, (b) frequency (length) and direction. 
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N.2 Histograms for Circular Data 

The histogram is a common method of summarizing numerical data.  The data 

are grouped into intervals and the number of observations in each interval is counted.  A 

rectangular bar of area proportional to the count in an interval is centered above the 

midpoint of the interval.  The vertical axis of the histogram provides a scale for bar 

height.  With the histogram, we can see the frequency with which data occur relative to 

the horizontal scale value, whether frequency is uniform over the range, or has some 

structure such as being concentrated at some value on the horizontal scale.  The 

histogram for circular data is constructed similarly.  An arc bin origin (e.g., 0°) and arc 

bin width (e.g., 5°, 10°, 20°, or 30°) are selected, and the data are binned and counted.  

The next step is to wrap the horizontal axis of the histogram around a unit circle.  The 

bars are aligned with the circle center and arc interval midpoint, plotted on the outside of 

the circle, and have length or area proportional to count or relative frequency.  Vector 

magnitude is ignored. 

The circular histograms in Figure N-2 summarize the same data as shown in 

Figure N-1 with the same bin origin of 0° and bin width of 30°.  Figure N-2 (a) shows a 

rose plot (Florence Nightingale) of wind direction.  The angle of the wedge is the bin 

width and the area of a wedge is proportional to the bin count.  Figure N-2 (b) shows a 

circular histogram with a bar area corresponding to bin count.  Figure N-2 (c) unwraps 

the circular histogram of Figure N-2 (b) onto a linear scale and repeats one period.  The 

additional period facilitates visual extraction of period, counting of modes, and prevents 

breakup of features occurring near the cross over point of 360° (0°).  Additionally, 

Figures N-2 (a) to (c) show the estimated mean (vector resultant direction) of 106.3° and 

the 95% confidence interval (104.8°,107.8°) for the mean.  This confidence interval is 

based on the von Mises distribution (Fisher 1993, pp. 88-89).  In Figures N-2 (a) and (b), 
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the mean direction is indicated by a thick black radial line from the circle center with 

the confidence interval indicated by a black arc slightly outside the large circle.  In Figure 

N-2 (c), the mean is indicated by a black solid vertical line enclosed in confidence limits 

displayed as vertical dashed lines. 

 
 
 
 
 

  

           (a)               (b) 

 
      (c) 

Figure N-2.  Circular Histograms of the Ocean Wind Data.  (a) Rose plot, (b) circular 
histogram, and (c) linearized circular histogram summarize circular data.  (c) repeats the 
histogram to facilitate visual extraction of period, counting of modes, and prevent 
breakup of features occurring near the cross over point of 360°. 
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N.3 Nonparametric Density Plots for Circular Data 

The kernel density estimates in Figure N-3 are based on the same data as was 

used in Figures N-1 and N-2.  Circular histograms of Figure N-2, like histograms for 

linear variables, can distort the structural information in the sample about the number, 

locations, and sizes of modes through an arbitrary choice of bin origin and bin width.  

The nonparametric smoothed density estimate replaces the bin edge and origin 

decisions with an easier smoothing band width decision.  In nonparametric smoothing, a 

symmetric unimodal function is centered on each observation.  It effectively spreads out 

the mass of an observation with maximum value at the location of the observation, 

mimicking the stochastic process where the observation is an instance of a random 

direction and could have occurred at other locations in the neighborhood of the observed 

direction.  Increasing the bandwidth increases smoothness and decreases noise.  

Decreasing bandwidth exposes more structural detail and noise.  The smoothed 

histograms of Figure N-3 implement the kernel density method for a CRV given in Fisher 

(1993, pp. 26-27). 

Figure N-3 (a) plots the estimated data density on the outside of a unit circle.  

The density at a given angle (direction) is the radial distance between the red and the 

grey curves at the given angle.  Figure N-3 (b) shows the density of Figure N-3 (a) 

unwrapped onto a linear scale with an extra period.  Like the linearized circular 

histogram in Figure N-2 (c), the extra period eliminates the breakup of features at the 

cross over point of 360° and makes it easier to assess structure.  This density estimation 

method indicates that there is one mode at about 105° CCW from 0° E. 
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        (a)                (b) 

Figure N-3.  Kernel Density Plots of the Ocean Wind Data.  (a) Circular, (b) linear with 
extra period.  There is one mode at about 105° CCW from 0° E. 
 
 
N.4 New Cylindrical Plot of the Circular Probability Density 

Figure N-3 (a) is an example of the traditional method of plotting the probability 

density function (PDF) of a CRV with radius equal to 1.0 + density with density 

depending on direction.  Figure N-4 shows a new method for displaying the circular PDF.  

The PDF is drawn as a cylinder of unit radius with height of the cylinder at an angle 

equal to the probability density at the angle.  Note that, as stated in Chapter 1, Section 

1.1, the unit of angular measurement is radians because PDFs generally contain 

trigonometric functions that require angles in radian units.  This method maintains the 

requirement that the area between the PDF and circular scale must equal 1.0 over the 

support.  In general, the traditional circular display of the PDF does not integrate to one 

as does the linear display.  For a circular uniform distribution with density ( )π2/1  on      

[ )π2,0  or [ )ππ +− ,  radians, we would draw circles of unit radius and radius ( )π2/11+ .  

The area between the outer circle and the unit circle representing the total probability 
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should equal 1.0, but it is actually ( )π4/11+ .  However, the traditional display is easy 

to draw, intuitive, and is widely used. 

 
 

Figure N-4.  New Cylindrical Plot of PDFs of von Mises Probability Densities.  Direction 
is expressed in radian units.  The distribution with 25=κ  is more concentrated and less 

variable than the distribution with 1=κ . 
 
 
Figure N-4 shows two von Mises probability densities with concentration parameters 

25,1=κ  (see Chapter 3, Table 3-1).  The concentration parameter κ is a measure of 

variability for the von Mises distribution equal to ½ the log of the ratio of maximum 

density to the density at the opposite direction.  Hence, large values correspond to 

distributions of low variability and concentrated about the mean. 


