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Exercises

Chapter 2

2.1 How would you find the index(es) of specified values within a vector? For
example, where is the hill race (inhills ) with a climb of 2100 feet? Answer

2.2 The columnftv in data framebirthwt counts the number of visits.
Reduce this to a factor with levels 0, 1 and ‘2 or more’. [Hint: manipulate the
levels , or investigate functionscut and merge.levels .] Answer

2.3 Write a simple function to compute the median absolute deviation (used
in robust statistics) median|x − µ| with default µ the sample median. Compare
your answer with the system functionmad . Answer

2.4 Supposex is an object with named components andout is a character
string vector. How would you make a new object obtained fromx by excluding
any components whose names are inout? Answer

2.5 Given a matrixX of distinct rows and a vectorw of the number of times
that each row should occur, reconstruct the original matrix. Answer

2.6 “I calculated a cross-correlation matrix. I want to print only members
of this matrix that are larger than 0.90 and I want to include dimnames in the
answer.” Answer

2.7 “I have a large data frame (5 000 observations) and I would like the cases
where a variable indicating ethnic group is in (1,3,4,6,7).” Answer

Chapter 4

4.1 The data framesurvey contains the results of a survey of 237 first-year
statistics students at Adelaide University. For a graphical summary of all the vari-
ables, useplot(survey). Note that this produces a dotchart for factor variables,
and a normal scores plot for the numeric variables.

One component of this data frame,Exer, is a factor object containing the re-
sponses to a question asking how often the students exercised. Produce a barchart
of these responses. Usetable andpie or piechart to create a pie chart of the
responses. Do you like this better than the bar plot? Which is more informative?
Which gives a better picture of exercise habits of students? Thepie function
takes an argumentnames which can be used to put labels on each pie slice. Re-
draw the pie chart with labels. Alternatively, you could add a legend to identify
the slices.
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You might like to try the same things with theSmoke variable, which records
responses to the question ,“How often do you smoke?” Note thattable and
levels ignore missing values; if you wish to include non-respondents in your
chart usesummary to generate the values, andnames on the summary object to
generate the labels. Answer

4.2 Make a plot of petal width versus petal length of theiris data for a
partially sighted audience, identifying the three species. You will need to double
the annotation size, thicken the lines and change the layout to allow larger margins
for the larger annotation. Answer

4.3 Plot sin(x) againstx, using 200 values ofx between−π and π, but do
not plot any axes yet (use parameteraxes=F in the call toplot ). Add a y-axis
passing through the origin using the ‘extended’ style and horizontal labels. Add
an x-axis with tick-marks from−π to π in increments ofπ/4, twice the usual
length. Answer

4.4 The Trellis functionsplom produces a complete matrix of scatterplots,
as does the basic plotting functionspairs, but in earlier versions ofS-PLUS
pairs only plotted the lower triangle of the matrix. Write a function to emulate
the earlier behaviour. [Hint: look atpairs.default. The graphics parameter
mfg may be useful.] Answer

4.5 Ternary plots are used for compositional data (Aitchison, 1986) where
there are three components whose proportions add to one. These are represented
by a point in an equilateral triangle, where the distances to the sides add to a
constant.

Write anS function to plot a matrix of compositions on a ternary diagram.
Apply this to the datasetSkye on the composition of rocks on the Isle of Skye
in Scotland. (Our solution can be found on the help page for this dataset, and
S-PLUS for Windows has a GUI-graphics example in itssamples directory.)
Answer

Chapter 5

5.1 Rice(1995, p. 390) gives the following data (Natrella, 1963) on the latent
heat of the fusion of ice (cal/gm):

Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02

Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

(a) Assuming normality, test the hypothesis of equal means, both with and with-
out making the assumption of equal variances.

Compare the result with a Wilcoxon/Mann–Whitney nonparametric two-
sample test.

(b) Inspect the data graphically in various ways, for example, boxplots, Q-Q plots
and histograms.
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(c) Fit a one-way analysis of variance and compare it with yourt-test. (Look
ahead to the next chapter, or inS-PLUS investigate functiononeway , not
R.)

5.2 Write functions to produce Q-Q plots for a gamma and a Weibull distribu-
tion. Note that unlike the normal Q-Q plot, the shape parameters may need to be
estimated. Answer

5.3 Experiment with datasetgalaxies . How many modes do you think there
are in the underlying density?

Chapter 6

6.1 Apply regression diagnostics to the fits to thewhiteside energy con-
sumption data. Note (Figure 6.1) that the evidence for a quadratic fit to the ‘after’
data stems from points with high leverage, so also try resistant fits.

6.2 Datasetcabbages gives the results of a field trial on the growth of cab-
bages (Rawlings, 1988, p. 219). Analyse this trial.

6.3 The data framerubber in the libraryMASS gives 30 measurements of rub-
ber loss under accelerated testing together with the hardness and tensile strength
of the rubber itself. Explore the data inbrush, then fit linear and quadratic regres-
sions of loss on hard and tens. Select a suitable submodel of the quadratic
model, and inspect the fitted surface by a perspective plot.

6.4 Criminologists are interested in the effect of punishment regimes on crime
rates. This has been studied using aggregate data on 47 states of the USA for
1960, available in data frameUScrime (Ehrlich, 1973; Vandaele, 1978; Raftery,
1995). The response variable is the rate of crimes in a particular category per head
of population. There are 15 explanatory variables; most of these and the response
variable have been rescaled to convenient numbers.

(a) Analyse these data. In your report pay particular attention to how your model
was selected.

(b) Comment on the effect of the last two explanatory variables in relation to the
criminologists’ interest in the effect of punishment.

(c) Comment critically on the assumptions needed to draw conclusions from ag-
gregate studies such as this.

6.5 Susan Prosser collected data on the concentration of a chemical GAG in
the urine of 314 children aged from 0 to 17 years. The data are in data frame
GAGurine. Analyse these data, and produce a chart to help a paediatrican to
assess if a child’s GAG concentration is ‘normal’.

6.6 The Janka hardness data in data framejanka gives the density (Dens ) and
hardness (Hard ) of a sample of Australian Eucalypt hardwoods. The problem is
to build a prediction equation for hardness in terms of density.
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6.7 The Cars93 data frame (Lock, 1993) gives data on 93 new car models on
sale in the USA in 1993. Use this dataset to predict fuel consumption from the
remaining variables. [Hint: The fuel consumption is in miles per US gallon. In
metric units fuel consumption is expressed in litres/100km, a reciprocal scale.]

6.8 The data in Table6.4 (from Scheff́e, 1959, and in data framegenotype )

Table 6.4: The ratgenotype data.

Foster mother
Litter A B I J

A 61.5 55.0 52.5 42.0
68.2 42.0 61.8 54.0
64.0 60.2 49.5 61.0
65.0 52.7 48.2
59.7 39.6

B 60.3 50.8 56.5 51.3
51.7 64.7 59.0 40.5
49.3 61.7 47.2
48.0 64.0 53.0

62.0
I 37.0 56.3 39.7 50.0

36.3 69.8 46.0 43.8
68.0 67.0 61.3 54.5

55.3
55.7

J 59.0 59.5 45.2 44.8
57.4 52.8 57.0 51.5
54.0 56.0 61.4 53.0
47.0 42.0

54.0

refer to rat litters that were separated from their natural mothers at birth and given
to foster mothers to rear. The rats were classified into one of four genotypes,A,
B, I andJ. The response is the litter average weight gain, in grams, over the time
of the study. The aim is to test whether the litters’ and mothers’ genotypes act
additively and if this may be retained to test for differences in litter and mother
genotype effects.

Programming exercises

6.9 How do you obtain the standard prediction and confidence intervals for a
linear model fitted bylm? Answer

6.10 How can we we add a confidence or prediction region to an existing plot
of a simple linear regression?

As an example, add a prediction region to Figure 6.1. Answer
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6.11 Write a function to fit a linear model by generalized least squares, that is
to minimize

(y −Xβ)T W (y −Xβ)

for a given symmetric positive definite matrixW , or givenΣ = W−1 . Answer

6.12 Implement a ridge regression (Brown, 1993, Sen & Srivastava, 1990)
function inS. Answer

Chapter 7

7.1 Explore theanorexia data example introduced in the discussion of offsets
on page 191 and report your final linear model.

Begin with a Trellis display of the data showing post-treatment weight against
pre-treatment weight for the three treatment groups. In each panel include the
individual regression line, the parallel regression line and the parallel regression
line with slope 1 as well as the points.

7.2 Analyse themenarche dataset on the proportions of female children in
Warsaw at various ages during adolescence who have reached menarche (Milicer
& Szczotka, 1966) using both logit and probit links.

7.3 Knight & Skagen(1988) collected the data shown in the table (and in
data frameeagles )during a field study on the foraging behaviour of wintering
Bald Eagles in Washington State, USA. The data concern 160 attempts by one
(pirating) Bald Eagle to steal a chum salmon from another (feeding) Bald Eagle.
The abbreviations used are

L = large S = small; A = adult I = immature

Number of Total Size of Age of Size of
successful number of pirating pirating feeding
attempts attempts eagle eagle eagle

17 24 L A L
29 29 L A S
17 27 L I L
20 20 L I S
1 12 S A L

15 16 S A S
0 28 S I L
1 4 S I S

Report on factors that explain the success of the pirating attempt, and give a pre-
diction formula for the probability of success.

7.4 The following data are part of a survey by Dr Mutch of low-weight births
in Scotland between 1981 and 1988. The table refers to 661 children with birth
weights between 650g and 1749g all of whom survived for at least one year. The
variables of interest are:

Cardiac: mild heart problems of the mother during pregnancy;
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Comps: gynaecological problems during pregnancy;

Smoking:mother smoked at least one cigarette per day during the first 6 months
of pregnancy;

BW: was the birth weight less than 1250g?

Cardiac Yes No

Comps Yes No Yes No

Smoking Yes No Yes No Yes No Yes No

BW Yes 10 25 12 15 18 12 42 45
No 7 5 22 19 10 12 202 205

Analyse this table.

7.5 A survey was made of bicycle and other traffic in the neighbourhood of
the Berkeley campus of the University of California in 1993 (Gelmanet al., 1995,
p. 91). Sixty city streets were selected at random, with a stratification into three
levels of activity and whether the street had a marked bicycle lane. The counts
observed in one hour are shown in the table: for two of the streets the data were
lost.

Type of Bike
street lane? Counts

Residential yes bikes 16 9 10 13 19 20 18 17 35 55
other 58 90 48 57 103 57 86 112 273 64

Residential no bikes 12 1 2 4 9 7 9 8
other 113 18 14 44 208 67 29 154

Side yes bikes 8 35 31 19 38 47 44 44 29 18
other 29 415 425 42 180 675 620 437 47 462

Side no bikes 10 43 5 14 58 15 0 47 51 32
other 557 1258 499 601 1163 700 90 1093 1459 1086

Main yes bikes 60 51 58 59 53 68 68 60 71 63
other 1545 1499 1598 503 407 1494 1558 1706 476 752

Main no bikes 8 9 6 9 19 61 31 75 14 25
other 1248 1246 1596 1765 1290 2498 2346 3101 1918 2318

Report on these data, paying particular attention to the effects of bicycle lanes.

7.6 To study the relative survival capacities of two species of native and ex-
otic snails, here labelled A and B, groups of 20 animals were held in controlled
laboratory conditions for periods of 1, 2, 3 or 4 weeks. At the end of the pe-
riod the animals were checked for whether they had survived, but as the check
itself is a destructive process a longitudinal study with the same animals was not
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Table 7.5: The snail mortality data.

Species A Species B
Exposure Exposure

Rel. Hum. Temp. (◦ C) 1 2 3 4 1 2 3 4
60.0% 10 0 0 1 7 0 0 7 12

15 0 1 4 7 0 3 11 14
20 0 1 5 7 0 2 11 16

65.8% 10 0 0 0 4 0 0 4 10
15 0 1 2 4 0 2 5 12
20 0 0 4 7 0 1 9 12

70.5% 10 0 0 0 3 0 0 2 5
15 0 0 2 3 0 0 4 7
20 0 0 3 5 0 1 6 9

75.8% 10 0 0 0 2 0 1 2 4
15 0 0 1 3 0 0 3 5
20 0 0 2 3 0 1 5 7

possible. The groups were held in chambers where the temperature and relative
humidity were held fixed at three and four levels ,respectively. There were thus
2× 4× 3× 4 = 96 groups laid out in a complete factorial design.

The data are shown in Table7.5, where each entry is the number who did not
survive out of the 20 test animals. The data set is also available as the data frame
snails in library MASS. Variable Species is a two-level factor but treat the
other stimulus variables as quantitative.

(a) Fit separate logistic regression models on exposure, relative humidity and
temperature for each species, that is ,a logistic regression of the form
Species/(Exposure + Rel.Hum + Temp).

(b) Fit parallel logistic regressions for the two species on the three stimulus vari-
ables and show that it may be retained when tested within the separate regres-
sions model.

(c) There are no deaths for either species for the 1 week exposure time. This sug-
gests a quadratic term inExposure might be warranted. Repeat the analysis
including such a quadratic term.

(d) Because deaths are so sparse a residual analysis is fairly meaningless. Nev-
ertheless look at the residuals to see how they appear for this kind of data
set.

(e) Is there a significant difference between the survival rates of the two species?
Describe qualitatively how the probability of death depends upon the stimulus
variables. Summarize your conclusions.

7.7 An experiment was performed in Sweden in 1961–2 to assess the effect of
speed limits on the motorway accident rate (Svensson, 1981). The experiment was
conducted on 92 days in each year, matched so that dayj in 1962 was comparable
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to day j in 1961. On some days the speed limit was in effect and enforced,
whereas on other days there was no speed limit and cars tended to be driven
faster. The speed limit days tended to be in contiguous blocks.

The data set is given in the data frameTraffic with factorsyear, day and
limit and the response is the daily traffic accident county.

Fit Poisson log-linear models and summarize what you discover.
You might assumeday occurs as a main effect only (fitting models with in-

teraction terms involving factors of 92 levels may take some time and memory!),
but assess if an interaction betweenlimit and year is needed.

Check if the deviance residuals provide any hint of irregular behaviour.

7.8 The data given in data frameInsurance consist of the numbers of policy-
holdersn of an insurance company who were exposed to risk, and the numbers
of car insurance claims made by those policyholders in the third quarter of 1973
(Baxter, Coutts & Ross, 1980, Aitkin et al., 1989. The data are cross-classified by
District (four levels),Group of car (four levels), andAge of driver (four or-
dered levels). The other variables in the data frame are the numbers ofHolders
and Claims.

The relevant model is taken to be a Poisson log-linear model withoffset
log n.

(a) Fit an initial model with all terms present up to the three-way interaction; that
is,

Claims ~ District*Group*Age - District:Group:Age
+ offset(log(Holders))

(b) Using stepAIC, or otherwise, prune the model of unjustified terms and report
your findings.

Present your results as a table of estimated claim rates per policy holder for
each category of holder.

(c) It is not strictly valid to regard such data as having the obvious binomial dis-
tribution, since some policyholders may make multiple claims. Nevertheless
it should be a reasonable approximation. Repeat the analysis with a binomial
model and compare the outcomes on estimated claim rates (or in this case,
estimated probabilities of making a claim).

Chapter 8

8.1 For the weight loss example compare the negative exponential model with
quadratic and cubic polynomial regression alternative models, in particular check
the behaviour of each model under extrapolation into the future. Answer

8.2 Fit the negative exponential weight loss model in the ‘goal weight’ form,
equation ((8.6), for the three goal weights,w0 = 110, 100 and 90 kg. Plot the
profiles. Answer
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8.3 The model used in connection with the Stormer data may also be expressed
as a generalized linear model. To do this we write

β1v

w − β2
=

1
γ1z1 + γ2z2

whereγ1 = 1/β1, γ2 = β2/β1, z1 = w/v and z2 = −1/v. This has the form
of a generalized linear model with inverse link. Fit the model in this form using a
quasi family with inverse link and constant variance function.

Back transform the estimated coefficients and show that they agree with the
values obtained using the non-linear regression approach.

Also compute the estimated standard errors and verify that they also agree
with the values obtained directly by the non-linear regression approach.

Finding the standard errors is more challenging. We need first to find the
variance matrix from the generalized linear model. The large sample variance

matrix for β̂ is related to that for̂γ by var
(

β̂
)

= Jvar
(
γ̂

)
JT where J is

the Jacobian matrix of the inverse of the parameter transformation:

J =
[

∂β1/∂γ1 ∂β1/∂γ2

∂β2/∂γ1 ∂β2/∂γ2

]
=

[
−1/γ2

1 0
−γ2/γ2

1 1/γ1

]
(To achieve close agreement you may need to tighten the convergence criteria for
the glm fit, for example, by settingeps=1.0e-10.) Answer

8.4 Stable parameters
Ross(1970) has suggested usingstable parametersfor non-linear regression,

mainly to achieve estimates that are as near to uncorrelated as possible. It turns
out that in many cases stable parameters also define a coordinate system within
the solution locus with a small curvature.

The idea is to use the means atp well-separated points in sample space as
the parameters. Writing the regression function in terms of the stable parameters
is often intractable, but in the case of a negative exponential decay model of the
type we considered for the weight loss data it is possible if the points are chosen
equally spaced.

If the three mean parametersµi are chosen atx-pointsx0 + iδx, i = 0, 1, 2,
show that the model may be written explicitly as:

η =
µ0µ2 − µ2

1

µ0 − 2µ1 + µ2
+

(µ0 − µ1)2

µ0 − 2µ1 + µ2

(
µ1 − µ2

µ0 − µ1

)(x−x0)/δx

Fit the negative exponential decay model to the weight loss data using this
parametrization and choosing, say,x0 = 40 days andδx = 80 days. Look
at the characteristics of the fit, including the correlations between the parameter
estimates. Explain in heuristic terms why they are relatively low.

Examine the profiles of the fit and check for straightness. Can you give a
possible statistical explanation for why they appear as straight as they do?Answer
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8.5 Heteroscedastic regression models
A common heteroscedastic regression model specifies that the observations

have constant coefficient of variation; that is ,Y ∼ N(µ, θµ2) where θ > 0 and
µ depends on regressor variables according to some linear model perhaps with a
link function such asµ = exp η. Write a function to fit such models and try it
out using the Quine data. Compare with the negative binomial models fitted in
Section 7.4, page 206ff.

8.6 A deterministic relationship between pressure and temperature in saturated
steam can be written as

Pressure= α exp
(

βT

γ + T

)
whereT is the temperature, considered the determining variable. Data collected
to estimate the unknown parametersα, β and γ are contained in the data frame
steam.

(a) Fit this model as a non-linear regression assuming additive errors in the pres-
sure scale. Devise a suitable method for arriving at initial values.

(b) Fit the model again, this time taking logarithms of the relationship and as-
suming that the errors are additive in the log(pressure) scale, (and hence mul-
tiplicative on the original scale).

(c) Which model do you consider is better supported on the basis of model
checks?

8.7 The data framePuromycin supplied withS-PLUS (and forR in package
nls with different variable names) contains data from a Michaelis–Menten exper-
iment conducted at two levels of a factorstate. The usual non-linear regression
model proposed for such cases is

Vij =
Kjcij

cij + θj
+ εij , j = 1, 2

whereV is the (initial) velocity of the reaction,c is the substrate concentration
and j refers to the level of the factor.

Fit the model with separate asymptotesVj and separateθjs. Test the hypoth-
esis thatθ1 = θ2 and report. [ Hint: use theanova method fornls objects.]

For the final model you adopt show the data and fitted curves in a two-panel
Trellis display.

8.8 A deterministic relationship between pressure and temperature in saturated
steam can be written as

Pressure= α exp
(

βT

γ + T

)
whereT is the temperature, considered the determining variable. Data collected
to estimate the unknown parametersα , β and γ is contained in the data frame
steam .
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(a) Fit this model as a non-linear regression assuming additive errors in the pres-
sure scale. Devise a suitable method for arriving at initial values.

(b) Fit the model again, this time taking logarithms of the relationship above and
assuming that the errors are additive in the log(pressure) scale, (and hence
multiplicative on the original scale).

(c) Which model do you consider is better supported on the basis of model
checks?

8.9 This data framegilgais was collected on a line transect survey in gilgai
territory in New South Wales, Australia. Gilgais are natural gentle depressions
in otherwise flat land, and sometimes seem to be regularly distributed. The data
collection was stimulated by the question: are these patterns reflected in soil prop-
erties? At each of 365 sampling locations on a linear grid of 4 metres spacing,
samples were taken at depths 0–10 cm, 30–40 cm and 80–90 cm below the sur-
face. pH, electrical conductivity and chloride content were measured on a 1:5
soil:water extract from each sample.

Produce smoothed maps of the measurements.

8.10 Exercise6.5 considered linear regression for the GAG in urine data in
data frameGAGurine. Consider using a non-linear or smooth regression for the
same task.

8.11 Use neural networks to fit a smooth curve to theGAGurine data used in
Figure 8.5. Investigate ways of choosing the degree of smoothness automatically.

Chapter 10

10.1 Extend the analysis of thecoop dataset to all the specimens.

10.2 Add the fitted lines for the final model for thepetrol data to Figure 10.1.

10.3 Find a way to plot theSitka data that facilitates comparison of the
growth curves for the two treatment groups.

Add to your plot the fitted mean growth curve and some 95% confidence in-
tervals.

10.4 Consider how to explore the assumptions made for thelme model for the
Sitka data. Are theplot methods forlme objects helpful in this?

10.5 The objectSitka89 contains the 1989 data on the same 79 Sitka trees
measured on eight days in 1989. Analyse the 1989 data separately, and then in
conjunction with the 1988 data.

10.6 Fit the non-linear model (8.4) on page 218 to themuscle data with
(αj) as a random effect; that is, a mean asymptote plus one variance component.
Compare the predictions (both mean and BLUP curves) of this model with the
fixed-effects model fitted in the text.
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10.7 Sarah Hogan collected data on the ‘binaural hearing’ ability of children
with a history of otitis media with effusion (OME). Some of the data (and a de-
scription of the problem) are in data frameOME. Fit a suitable non-linear model,
and assess if there is a change in ability with age and OME status.

(a) The suggested model is a logistic curve that ranges from 0.5 at low noise
levels (when the response is effectively a guess) to 1.0 at high noise levels.
Then the most important parameter will be the noise levelL75 at which the
child has a 75% success rate. The amount of data on each child is small,
so fit a model with a common slope but a separateL75 for each child, and
analyse the fitted parameters by age and group. [You may want to look up the
function nlsList.]

(b) Consider a linear model forL75 on age, and differences between the OME
groups, for each type of noise stimulus. Assess the significance of your results
via standard errors and/orF -tests.

(c) The analysis thus far does not take into account the differences between indi-
vidual subjects. Repeat the analysis using non-linear mixed-effects models.

Answer

Chapter 11

11.1 Data frameUScereals describes 65 commonly available breakfast cere-
als in the USA, based on the information available on the mandatory food label on
the packet. The measurements are normalized to a serving size of one American
cup.

(i) Is there any way to discriminate among the major manufacturers by cereal
characteristics, or do they each have a balanced portfolio of cereals?

(ii) Are there interpretable clusters of cereals?

(iii) Can you describe why cereals are displayed on high, low or middle shelves?

Chapter 12

12.1 Data framebiopsy contains data on 699 biopsies of breast tumours,
which have been classified as benign or malignant (Mangasarian & Wolberg,
1990). The nine variables on each biopsy are a rating (1 to 10) by the coordi-
nating physician; ratings on one variable are missing for some biopsies.

Analyse these data. In particular, investigate the differences in the two types
of tumour, find a rule to classify tumours based solely on the biopsy variables and
assess the accuracy of your rule.
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Chapter 14

14.1 Our datasetaccdeaths gives monthly accidental deaths in the USA
1973–8, fromBrockwell & Davis (1991). Find a suitable ARIMA model, and
predict the deaths for the first six months of 1979. Answer

14.2 Datasetaustres is a quarterly series of the number of Australian resi-
dents from March 1971 to March 1994. It comes fromBrockwell & Davis(1996)
who analyse the percentage quarterly changes. Explore suitable models.Answer

14.3 Repeat Exercise 9.1 as a time series problem.

14.4 Use the information gained in the analysis ofbeav1 in Section 13.5 to
refine the analysis forbeav2.

14.5 Consider the problem of estimating the effect of seat belt legislation on
road accident casualties in the UK considered byHarvey & Durbin(1986). The
data (fromHarvey, 1989) are in the seriesdrivers.

Chapter 15

15.1 Repeat exercise 9.1 as a spatial statistics problem.

Chapter 16

16.1 Write a function to fit a gamma distribution ton observations by maxi-
mum likelihood. Answer

16.2 McLachlan & Jones(1988) (see alsoMcLachlan & Krishnan, 1997,
pp. 73ff) give the following grouped data on red blood cell volume, in 18 equally
spaced bins of width 7.2 fl, starting at 21.6 fl.

Set 1: 10 21 51 77 70 50 44 40 46 54 53 54 44 36 29 21 16 13
Set 2: 9 32 64 69 56 68 88 93 87 67 44 36 30 24 21 14 8 7

McLachlan and Jones fit a mixture of two normal densities on log scale by an
involved method using the EM algorithm. Fit this model directly to each set of
data by a small modification of the approach in the main text.



Answers to Selected Exercises

Chapter 2

2.1. One way is to use

find.val <- function(x, val) seq(along=x)[x == val]
row.names(hills)[find.val(hills$climb, 2100)]

although in most cases it is easier to subscript directly by a logical vector, for
examplerow.names(hills)[hills$climb==2100] .

2.2. Three solutions are:

res <- factor(ftv); levels(res)[-(1:2)] <- "2 or more"
res <- cut(ftv, c(-1, 0, 1, 10))

levels(res) <- c("0", "1", "2 or more")
merge.levels(factor(ftv), c(1, 2, 3, 3, 3, 3))

where the first is explained in the help page formerge.levels .

2.3. We used

mad <- function(y, mu = median(y))
median(abs(as.vector(y) - mu))

where as.vector strips off the name attribute whichmedian retains in some
versions ofS-PLUS. (Note that the system function by default calculates
1.4826 × median|x − µ| which is a consistent estimator of the standard devia-
tion for a Gaussian model.)

2.4. The idea is to find any indices where the strings inout match the names
of x and to use their negatives as an index vector. Matching is such a common
problem there is a general function,match , to do it.

x.in <- x[-match(out, names(x), nomatch = 0)]

Note the use ofnomatch = 0 to generate a zero index (and hence no action) if
some string inout is not the name of any component inx .

This solution relies on the uniqueness of the names of the object (which is
not guaranteed in all instances), sincematch will find only the first match. An
alternative approach is to match the names inout and use logical indexing, by

x.in <- x[match(names(x), out, nomatch=0) == 0]

14
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2.5. All that is needed is

X[rep(1:nrow(X), w), ]

2.6. Try this:

r <- cor(X)
rc <- format(r)
rc[r < 0.9] <- ""
print(rc, quote=F)

Note the use offormat to get consistent formating of the entries;format could
also be used to prune the number of significant digits, if required.

2.7. The following solution extends exercise 2.4.
Usematch and the indexing capabilities. If the data frame isdf and the variable
is ethnic the subset you want is

df[match(df$ethnic, c(1,3,4,6,7), nomatch = 0) > 0, ]

The functionis.element implements this idea as a function.

is.element <-
function(el, set) !is.na(match(el, set, nomatch = NA))

df[is.element(df$ethnic, c(1, 3, 4, 6, 7)), ]

This is an alternative way to usematch which has the advantage here of working
even when the first argument is empty.

Chapter 4

4.1. To create a barchart ofExer we just useplot(Exer) , or

barplot(table(Exer), names=names(table(Exer)))

(Try them to see the differences.) For a pie chart, we need to tabulate the frequen-
cies first:

exer.freq <- table(Exer)
exer.freq
Freq Some None
115 98 24

The commandpie(exer.freq) will now create a pie chart, but to add labels to
the slices we use thenames argument

pie(exer.freq, names=levels(Exer))

Adding a legend is accomplished by usinglegend with the fill argument:

legend(locator(1), names(exer.freq), fill = 1:3)
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For theSmoke variable a slightly different approach is needed if we wish to
include the missing value in the plot.

smoke.freq <- summary(Smoke)
smoke.freq
Heavy Regul Occas Never NA’s

11 17 19 189 1

Since the missing value represents such a small proportion of the data, we high-
light it with explode=5 (becauseNA’s is the fifth category) so it is not lost in
the pie:

pie(smoke.freq, names = names(smoke.freq), explode = 5)
legend(locator(1), names(smoke.freq), fill = 1:5)

Alternatives using Trellis graphics are

barchart(~ exer.freq, main = "Exercise frequency")
piechart(~ exer.freq, main = "Exercise frequency")
piechart(~ smoke.freq, explode = 5)

Adding legends and other annotations is left as a further exercise for the reader.

4.2. This is straightforward once the layout is adjusted. We just increased the
sizes of the margins which are to hold text.

ir <- rbind(iris[,,1], iris[,,2], iris[,,3])[, 3:4]
irs <- c(rep("S", 50), rep("C", 50), rep("V", 50))
par(mar=c(7,7,7,5)) # more space on label sides
plot(ir, type = "n", cex = 2, lwd = 2, tck = -0.02)
title("The Iris Data", cex = 2)
text(ir, labels = irs, col = c(rep(2, 50), rep(3, 50), rep(4, 50)))

On-screen the title size is limited by the displayable fonts under themotif driver
(and probably others).

4.3. Our solution was

x <- seq(-pi, pi, length = 200)
plot(x, sin(x), type = "l", axes = F, ylab = "", main = "sin(x)")
axis(2, pos = 0, yaxs = "e", las = 1)
axis(1, pos = -1.1, at = pi*seq(-1, 1, 1/4), tck = -0.02,

labels = c("-Pi", "-3Pi/4", "-Pi/2", "-Pi/4", "0",
"Pi/4", "Pi/2", "3Pi/4", "Pi"))
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4.4. The following function is based closely onpairs.default . We usemfg
to choose which panel to fill in an×n grid. As we only ever write to the panels,
we need to clear the plot first with a call toframe .

mypairs <- function(x, labels = dimnames(x)[[2]],
panel = points, ...)

{
doaxis <- function(which, dolabel = T)

axis(which, outer = T, line = -0.5, labels = dolabel)
setup <- function(x, y, ...)

.Internal(plot("zplot", range(x[!is.na(x)]), range(y[!is.na(y)]),
type = "n", axes = F, ...), "call_S_Version2")

x <- as.matrix(x)
if(is.character(panel)) panel <- getFunction(panel)
n <- ncol(x)
oldpar <- par("oma", "mar", "cex", "tck", "mfg", "mgp",

"mex", "mfrow")
oldcex <- par("cex")
CEX <- oldcex * max(7.7/(2 * n + 3), 0.6)
par(mfrow = c(n, n), mgp = c(2, 0.80, 0), oma = rep(3, 4),

mar = rep(0.5, 4), tck = -0.03/n)
on.exit(par(oldpar))
par(cex = CEX)
frame()
if(length(labels) < n)

labels <- paste(deparse(substitute(x)),
"[,", 1:n, "]", sep = "")

if(par("pty") == "s") {
dif <- diff(par("fin"))/2
if(dif > 0) par(omi = c(dif*n, 0, dif*n, 0) + par("omi"))
else par(omi = c(0, -dif*n, 0, -dif*n) + par("omi"))

}
for(i in 1:n)

for(j in 1:i) {
par(mfg = c(i,j,n,n))
setup(as.vector(x[, j]), as.vector(x[, i]), ...)
box()
if(i == n && j < n) doaxis(1)
if(j == 1 && i > 1) doaxis(2)
if(i > j) {

panel(as.vector(x[, j]), as.vector(x[, i]), ...)
} else {

par(usr = c(0, 1, 0, 1))
text(0.5, 0.5, labels[i], cex = 1.5 * CEX)

}
}

invisible()
}
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4.5. As a precaution, we rescale the entries inX to sum to one.

ternary <- function(X, pch = par("pch"), lcex = 1,

add = F, ord = 1:3, ...)

{

if(any(X) < 0) stop("X must be non-negative")

s <- drop(X %*% rep(1, ncol(X)))

if(any(s<=0)) stop("each row of X must have a positive sum")

if(max(abs(s-1)) > 1e-6) {

warning("row(s) of X will be rescaled")

X <- X / s

}

X <- X[, ord]

s3 <- sqrt(1/3)

if(!add)

{

oldpty <- par("pty")

on.exit(par(pty = oldpty))

par(pty="s")

plot(c(-s3, s3), c(0.5-s3, 0.5+s3), type = "n", axes = F,

xlab = "", ylab = "")

polygon(c(0, -s3, s3), c(1, 0, 0), density = 0)

lab <- NULL

if(!is.null(dn <- dimnames(X))) lab <- dn[[2]]

if(length(lab) < 3) lab <- as.character(1:3)

eps <- 0.05 * lcex

text(c(0, s3+eps*0.7, -s3-eps*0.7),

c(1+eps, -0.1*eps, -0.1*eps), lab, cex = lcex)

}

points((X[,2] - X[,3])*s3, X[,1], ...)

}

This labels the vertices clockwise from the top, but other conventions are possi-
ble by altering the argumentord . For example, we can reproduce Fig. 1.9 of
Aitchison(1986) by

ternary(Skye/100, ord = c(1, 3, 2))

as
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Chapter 5

5.2. The answers if the shape parameters are known are easy usingppoints .

qqgamma <- function(x, shape, ...)
plot(qgamma(ppoints(x), shape), sort(x), ...)

qqweibull <- function(x, shape, ...)
plot(qweibull(ppoints(x), shape), sort(x), ...)

To fit a gamma we can use the functiongamma.mle1 of the answer to exer-
cise16.1, by

qqgamma <- function(x, shape = gam.mle(x),
xlab = paste("Quantiles of gamma(",

format(shape, digits = 3), ")", sep=""),
ylab = deparse(substitute(x)), ...)

{
gam.mle <- function(x) gamma.mle1(x)$alpha
plot(qgamma(ppoints(x), shape), sort(x),

xlab=xlab, ylab = ylab, ...)
}

For a Weibull we can fit usingsurvReg , converting from its parametrization to a
more standard one.

qqweibull <- function(x, shape = wei.shape(x),
xlab = paste("Quantiles of Weibull(",

format(shape, digits = 3), ")", sep=""),
ylab = deparse(substitute(x)), ...)

{
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wei.shape <- function(x) 1/survReg(Surv(x) ~ 1)$scale
plot(qweibull(ppoints(x), shape), sort(x),

xlab = xlab, ylab = ylab, ...)
}

It is possible to avoid estimating the shape parameter in this case, as a QQ-
plot of any Weibull against a Weibull(1,1) is a straight lineon a log-log
scale. Thus it is possible to assess the fit of a Weibull (of any shape) by
qqweibull(x, 1, log = "xy") . In any case, a log-log plot is desirable for
small values (less than 0.5) of the shape parameter as those distributions have a
very long right tail.

It is easy to produce Trellis versions of these plots usingqqmath , with a
common shape parameter across panels.

Chapter 6

6.9. Here is an example for thehills dataset of how to find the confidence
interval for the fit at each data point.

hills.lm <- lm(time ~ dist + climb, data = hills)
hills.pred <- predict(hills.lm, se.fit = T)
hills.ci <- pointwise(hills.pred, coverage = 0.95)

The prediction interval is a little trickier. The simplest idea is to adds2 to the
squared standard errors returned bypredict , noting thats2 has in fact been
stored already.

hills.s <- summary(hills.lm)$sigma
hills.pred$se.fit <- sqrt(hills.pred$se.fit^2 +

hills.pred$residual.scale^2)
hills.ci <- pointwise(hills.pred, coverage = 0.95)

6.10.Most of the work was done in the previous exercise. We will try this out on
the data prior to insulation.

before <- whiteside[whiteside$Insul == "Before",]
before.lm <- lm(Gas ~ Temp, data = before)
attach(before)
plot(Temp, Gas)
abline(before.lm, lty = 3)

conflines.lm <- function(obj, coverage = 0.95, pred = F, ...)
{
# Check for simple linear regression
xnames <- attr(obj$terms,"term.labels")
if(length(xnames) != 1)

stop("First argument is not a simple linear fit")
# Work out the range of the existing plot.
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ux <- par("usr")[1:2]
xp <- seq(ux[1], ux[2], length = 100)
newdf <- data.frame(xp)
names(newdf) <- xnames
pr <- predict(obj, newdf, se.fit = T)
if(pred) {

pr$se.fit <- sqrt(pr$se.fit + pr$res^2)
}
ci <- pointwise(pr, coverage = coverage)
lines(xp, ci$lower, ...)
lines(xp, ci$upper, ...)

}
conflines.lm(before.lm)
conflines.lm(before.lm, pred=T, lty=2)
detach()

Figure 6.1 is a Trellis plot, so we cannot add information to it; rather we have
to create a new Trellis plot by adding to the panel function. We could do this by
operating on the data for each panel, but we will illustrate a more general solution,
which allows the pooling of standard errors between the sexes.

gas.lm <- lm(Gas ~ Insul/Temp - 1, data = whiteside)
pr <- predict(gas.lm, se = T)
gas.ci <- pointwise(pr)
pr$se.fit <- sqrt(pr$se.fit + pr$res^2)
gas.ti <- pointwise(pr)

prepanel.gas <- function(x, y, subscripts, ...)
{
xlim <- range(x)
ylim <- range(y, gas.ti$fit[subscripts],

gas.ti$upper[subscripts],
gas.ti$lower[subscripts])

list(xlim = xlim, ylim = ylim,
dx = diff(xlim), dy = diff(ylim))

}
panel.gas <- function(x, y, subscripts, ...)
{
panel.xyplot(x, y, cex = 0.5)
ord <- order(x)
lines(x[ord], gas.ci$fit[subscripts][ord])
lines(x[ord], gas.ci$upper[subscripts][ord], lty = 3)
lines(x[ord], gas.ci$lower[subscripts][ord], lty = 3)
lines(x[ord], gas.ti$upper[subscripts][ord], lty = 2)
lines(x[ord], gas.ti$lower[subscripts][ord], lty = 2)

}
xyplot(Gas ~ Temp | Insul, whiteside,
prepanel = prepanel.gas, panel = panel.gas,
xlab = "Average external temperature (deg. C)",
ylab = "Gas consumption (1000 cubic feet)")
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The prepanel function is needed both to ensure that the tolerance bands fall
inside the display and to allow the slopes of the fitted lines to be used in setting
the aspect ratio.

6.11. We choose to use an eigendecomposition ofW , as it is more stable than a
Choleski factorization, and also makes it easier to use the same code forW or
Σ . Let W = UDUT . Then

(y−Xβ)T W (y−Xβ) = (y−Xβ)T UDUT (y−Xβ) = ‖D1/2UT (y−Xβ)‖2

so we can regressAy on AX where A = D1/2UT . If W = Σ−1 we can
take the eigendecomposition ofΣ and replaceD by D−1 . We modify lm as
necessary. The following function1 is in library MASS .

lm.gls <- function(formula, data, W, subset, na.action,
inverse = F, method = "qr",
model = F, x = F, y = F, contrasts = NULL, ...)

{
call <- match.call()
m <- match.call(expand = F)
m$W <- m$inverse <- m$method <- m$model <- m$x <-

m$y <- m$contrasts <- m$... <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
if(method == "model.frame") return(m)
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
n <- nrow(X)
if(any(dim(W) != c(n, n))) stop("dim(W) is not correct")
eW <- eigen(W, T)
d <- eW$values
if(any(d <= 0)) stop("W is not positive definite")
A <- diag(d^ifelse(inverse, -0.5, 0.5)) %*% t(eW$vector)
fit <- lm.fit(A %*% X, A %*% Y, method = method, ...)
fit$terms <- Terms
fit$call <- call
if(model) fit$model <- m
if(x) fit$x <- X
if(y) fit$y <- Y
attr(fit, "na.message") <- attr(m, "na.message")
if(!is.null(attr(m, "na.action")))

fit$na.action <- attr(m, "na.action")
oldClass(fit) <- c("lm.gls", oldClass(fit))
fit

}

Our task is not over, since we need to be able to do something useful with the
output. However, much of theprint and summary methods for class"lm" are

1 The distributed version has extra code to handle safer prediction andna.action for prediction.
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based on the stored results for the transformed problem and so are approximately
correct. The fitted values and residuals are not simply related to the original prob-
lem.

We can test this with an example from Section 13 4.5. There we fitted a
regression with autoregressive errors, and the covariance matrix for AR(1) errors
is proportional to(α|i−j|) .

alpha <- 0.8255; n <- 100
arow <- c(1, alpha^(1:n))
B <- matrix(c(rep(arow, n-1),1), n,n, byrow = T)
B[lower.tri(B)] <- 0
B <- B + t(B) - diag(n)
beav.gls <- lm.gls(temp ~ activ, W = B , inverse = T)
> summary(beav.gls)

Call: lm.gls(formula = temp ~ activ, W = B, inverse = T)

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 37.166 0.091 408.776 0.000
activ 0.669 0.098 6.809 0.000

This is reasonably consistent with the results of Section 14.5.
An important special case is forW a diagonal matrix. As a extension of the

exercise modifylm.gls to allow the user to specify this case by supplying a
vector of weights inW rather than a matrix. Note thatlm can handle this by the
use of (case) weights.

6.12. Recall what ridge regression does (Brown, 1993, Sen & Srivastava, 1990).
Instead of fittingXβ to Y by least squares, it solves[XT X + λI]β = XT Y .
(The caseλ = 0 is the least-squares solution, but the ridge constantλ is positive
in ridge regression.) SupposeX is an n × p matrix. Then the ridge regression
problem is equivalent to the regression ofY ′ on X ′ where

X ′ =
[

X√
λI

]
, Y ′ =

[
Y
0

]
Thus we can implement ridge regression by addingp imaginary observations of
0, with

√
λ as the value of theith regressor and the others zero, fori = 1, . . . , p .

Conventionally ridge regression is applied to the data with the mean removed and
scaled so that the columns ofX have constant length. (Any intercept term must
then be removed.)

There is another approach that is more efficient if we need multiple values
of λ , for example to plot a ridge trace or to chooseλ by cross-validation. Let
X = UΛV T be the singular-value decomposition ofX . Then [XT X + λI]β =
XT Y may be rewritten asV [Λ2 + λ]V T β = V ΛUT Y and henceV T β̂λ =
Λ/(Λ2 + λ)UT Y = Λ2/(Λ2 + λ)V T βLS . We implement this for a vector of
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values ofλ , and compute some statistics to help chooseλ , from Brown (1993,
pp. 63–64). The following functions2 are in libraryMASS .

lm.ridge <- function(formula, data, subset, na.action,
lambda = 0, model = F, x = F, y = F, contrasts = NULL, ...)

{
call <- match.call()
m <- match.call(expand = F)
m$model <- m$x <- m$y <- m$contrasts <-

m$... <- m$lambda <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
n <- nrow(X); p <- ncol(X)
if(Inter <- attr(Terms, "intercept"))
{

Xm <- colMeans(X[, -Inter])
Ym <- mean(Y)
p <- p - 1
X <- X[, -Inter] - rep(Xm, rep(n, p))
Y <- Y - Ym

} else Ym <- Xm <- NA
Xscale <- drop(rep(1/n, n) %*% X^2)^0.5
X <- X/rep(Xscale, rep.int(n, p))
Xs <- svd(X)
rhs <- t(Xs$u) %*% Y
d <- Xs$d
lscoef <- Xs$v %*% (rhs/d)
lsfit <- X %*% lscoef
resid <- Y - lsfit
s2 <- sum(resid^2)/(n - p - Inter)
HKB <- (p-2)*s2/sum(lscoef^2)
LW <- (p-2)*s2*n/sum(lsfit^2)
k <- length(lambda)
div <- d^2 + rep(lambda, rep.int(p,k))
a <- (d*rhs)/div
dim(a) <- c(p, k)
coef <- Xs$v %*% a
dimnames(coef) <- list(names(Xscale), format(lambda))
GCV <- colSums((Y - X %*% coef)^2)/(n-colSums(matrix(d^2/div,p)))^2
structure(list(coef = drop(coef), scales = Xscale,

Inter = Inter, lambda = lambda, ym = Ym, xm = Xm,
GCV = GCV, kHKB = HKB, kLW = LW), class="ridgelm")

}

print.ridgelm <- function(x, ...)
{

2 The distributed version has extra code to handle safer prediction andna.action for prediction.
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scaledcoef <- t(as.matrix(x$coef / x$scales))
if(x$Inter) {

inter <- x$ym - scaledcoef %*% x$xm
scaledcoef<- cbind(Intercept=inter, scaledcoef)

}
print(drop(scaledcoef), ...)

}

select <- function(obj) UseMethod("select")

select.ridgelm <- function(obj)
{
cat("modified HKB estimator is", format(obj$kHKB), "\n")
cat("modified L-W estimator is", format(obj$kLW), "\n")
GCV <- obj$GCV
if(length(GCV) > 0) {

k <- seq(along=GCV)[GCV==min(GCV)]
cat("smallest value of GCV at",

format(obj$lambda[k]), "\n")
}

}

plot.ridgelm <- function(x, ...)
matplot(x$lambda, t(x$coef), type = "l")

We can apply this to the celebrated Longley data, get a ridge trace and some
estimates ofλ .

longley <- data.frame(y = longley.y, longley.x)
lm.ridge(y ~ ., longley)
plot(lm.ridge(y ~ ., longley,

lambda = seq(0, 0.1, 0.001)))
select(lm.ridge(y ~ ., longley,

lambda = seq(0, 0.1, 0.0001)))
modified HKB estimator is 0.0042754
modified L-W estimator is 0.032295
smallest value of GCV at 0.0028

There is only a little evidence for the necessity to use ridge regression here, but it
can be seen as an alternative to variable selection.

Chapter 8

8.1. The code from the First Edition follows.

attach(wtloss)
plot(Days, Weight, xlab = "days", ylab = "weight (kg)",

xlim = c(0,730), ylim = c(70, 200))
xx <- seq(0, 730, 10)
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lines(xx, 81.37+ 102.68 * 2^(-xx/141.91))
wtloss.quad <- lm(Weight ~ poly(Days, 2))
lines(xx, predict.gam(wtloss.quad, data.frame(Days=xx)), lty = 2)
wtloss.cub <- lm(Weight ~ poly(Days, 3))
lines(xx, predict.gam(wtloss.cub, data.frame(Days=xx)), lty = 3)
legend(locator(1), c("exponential", "quadratic", "cubic"),

lty = 1:3)

Note the use ofpredict.gam to get valid predictions.

8.2.

expn2 <- deriv(~ b0 + b1*((w0 - b0)/b1)^(x/d0),
c("b0","b1","d0"), function(b0, b1, d0, x, w0) {})

wtloss.init <- function(obj, w0) {
p <- coef(obj)
d0 <- - log((w0 - p["b0"])/p["b1"], 2) * p["th"]
c(p[c("b0", "b1")], d0 = as.vector(d0))

}
for(w0 in c(110, 100, 90)) {

fm <- nls(Weight ~ expn2(b0, b1, d0, Days, w0),
wtloss, start = wtloss.init(wtloss.gr, w0))

print(plot(profile(fm)))
}

8.3. [ From the fourth printing of the First Edition. ]

> attach(stormer)
> stormer$z1 <- Wt/Viscosity
> stormer$z2 <- -1/Viscosity
> detach()
> attach(stormer)
> storm.gm <- glm(Time ~ z1 + z2 - 1,

family = quasi(link = inverse, variance = constant),
data = stormer, trace = T, eps = 1.0e-10)

GLM linear loop 1: deviance = 860.92
GLM linear loop 2: deviance = 825.06
GLM linear loop 3: deviance = 825.05
GLM linear loop 4: deviance = 825.05
> g <- coef(storm.gm)
> b <- coef(storm.fm)
> b0 <- c(1/g[1], g[2]/g[1])
> cbind(b, b0)

b b0
z1 29.4013 29.4013
z2 2.2182 2.2183

To find the standard errors we used

> J <- matrix(c(-1/g[1]^2, -g[2]/g[1]^2, 0, 1/g[1]), 2, 2)
> J %*% vcov(storm.gm) %*% t(J)
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[,1] [,2]
[1,] 0.83820 -0.56055
[2,] -0.56055 0.44292

Note that to achieve agreement to this accuracy we had to tighten the convergence
criteria for theglm fit by setting eps=1.0e-10 . With the default convergence
criteria there is agreement to about 3 significant digits.

8.4. [ From the First Edition. ]
We fit the model using the stable parametrization. Good initial values are always
easy to find by estimating the mean at the required points by an approximating
linear model.

> stab <- deriv3(~ ((u0*u2-u1^2) +
(u0-u1)^2 *((u1-u2)/(u0-u1))^((x-40)/80))/(u0-2*u1+u2),
c("u0","u1","u2"), function(x, u0, u1, u2) NULL)

> mu <- predict(lm(Weight ~ Days + I(Days^2), data = wtloss),
newdata = data.frame(Days=c(40,120,200)))

> names(mu) <- paste("u", 0:2, sep="")
> wtloss.st <- nls(Weight ~ stab(Days, u0, u1, u2),

start = mu, data = wtloss, trace= T)
43.3655 : 166.18 138.526 119.742
39.2447 : 165.834 138.515 120.033
> rms.curv(wtloss.st)
Parameter effects: c^theta x sqrt(F) = 0.0101

Intrinsic: c^iota x sqrt(F) = 0.0101

> summary(wtloss.st)$correlation
u0 u1 u2

u0 1.00000 0.43675 -0.11960
u1 0.43675 1.00000 0.25806
u2 -0.11960 0.25806 1.00000
> plot(profile(wtloss.st))

Chapter 10

10.7.Some of the children were tested at more than one age, so first we generate
unique IDs for each experiment.

aa <- factor(OME$Age)
ab <- 10*OME$ID + unclass(aa)
ac <- unclass(factor(ab))
OME <- OME
OME$UID <- as.vector(ac)
OME$UIDn <- OME$UID + 0.1*(OME$Noise == "incoherent")
rm(aa, ab, ac)

Our first model is least-squares fitting to the success probabilities.
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fp1 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/scal)),
c("L75", "scal"),
function(x, L75, scal) NULL)

The effective range of a logistic is about±3 times scal , so by inspecting the
data we can choose initial values ofL75 as 45 andscal as 3. It seems appropri-
ate to analyse the two types of noise stimulus separately, at least initially.

> nls(Correct/Trials ~ fp1(Loud, L75, scal),
data = OME[OME$Noise == "coherent",],
start = c(L75 = 45, scal = 3))

L75 scal
47.993 1.2594

> nls(Correct/Trials ~ fp1(Loud, L75, scal),
data = OME[OME$Noise == "incoherent",],
start = c(L75 = 45, scal = 3))

L75 scal
38.866 2.1702

This suggests fixing onscal = 2 , and fitting a separateL75 for each experi-
ment3. We usednlsList , and allow that a small proportion of fits will fail.

OMEi <- OME
fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/2)),

"L75", function(x,L75) NULL)
OMEi.nls <- nlsList(Correct/Trials ~ fp2(Loud, L75) | UIDn,

data = OMEi, start = list(L75=45), control = list(maxiter=100))
tmp <- sapply(OMEi.nls, function(X)

{if(is.null(X)) NA else as.vector(coef(X))})
OMEif <- data.frame(UID = round(as.numeric((names(tmp)))),

Noise = rep(c("coherent", "incoherent"), 110),
L75 = as.vector(tmp))

OMEif$Age <- OME$Age[match(OMEif$UID, OME$UID)]
OMEif$OME <- OME$OME[match(OMEif$UID, OME$UID)]
OMEif <- OMEif[OMEif$L75 > 30,]

This provides a data frame of the result of each experiment to which we can
apply standard linear models. (The precise results will vary by platform, and it
may be necessary to exclude ‘silly’ values such as−39dB.) For example, we can
consider ifL75 varies linearly withAge by

options(contrasts = c("contr.treatment", "contr.poly"))
summary(lm(L75 ~ Noise/Age, data = OMEif, na.action = na.omit))

and if theOME groups (only defined at ages 30 and 60 months) differ by

summary(lm(L75 ~ Noise/(Age + OME), data = OMEif,
subset = Age >=30 & Age <= 60,
na.action = na.omit, singular.ok = T), cor = F)

3 In principle it would be better to fit a combinednls model with a separateL75
for each level of UIDn and a common value ofscal . This can be specified by
Correct/Trials ~0.5 +0.5/(1 + exp(-(Loud - L75[UIDn])/scal)) but failed to converge.
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The analysis so far does not take the varying number of trials into account.
We can do a weighted least-squares analysis by, for example

fpl75 <-
deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/(1 + exp(-(x-L75)/scal))),

c("L75", "scal"), function(r,n,x,L75,scal) NULL)
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),

data = OME[OME$Noise == "coherent",],
start = c(L75=45, scal=3))
L75 scal

47.798 1.2962
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),

data=OME[OME$Noise == "incoherent",],
start = c(L75=45, scal=3))
L75 scal

38.553 2.0781

fpl75age <- deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/
(1 + exp(-(x-L75-slope*age)/scal))),

c("L75", "slope", "scal"),
function(r,n,x,age,L75,slope,scal) NULL)

OME.nls1 <- nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),

data = OME[OME$Noise == "coherent",],
start = c(L75=45, slope=0, scal=2))
L75 slope scal

48.682 -0.028716 1.2596
OME.nls1
sqrt(diag(vcov(OME.nls1)))
[1] 0.61093 0.01666 0.17565

OME.nls2 <-nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),

data = OME[OME$Noise=="incoherent",],
start = c(L75=45, slope=0, scal=2))

OME.nls2
L75 slop scal

41.73 -0.10006 1.9796
sqrt(diag(vcov(OME.nls2)))
[1] 0.495592 0.013484 0.244558

and similarly for the individual fits. It would also be possible to extract standard
errors for the individualL75 estimates from the results ofnlsList .

Non-linear mixed effects models

We have to use the expanded data frameOMEf , as it is not sensible to weight
mixed models. We can generate most of the data frame using answer2.5, by

OMEf <- OME[rep(1:nrow(OME), OME$Trials),]

To generate theResp column is slightly trickier: we used
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attach(OME)
OMEf$Resp <- unlist(lapply(1:length(Trials), function(i)

c(rep(1, Correct[i]), rep(0, Trials[i] - Correct[i]))))
OMEf <- OMEf[, -match(c("Correct", "Trials"), names(OMEf))]
detach()

It is possible to fully vectorize this, for example by

OMEf$Resp <- rep(rep(c(1,0), length(Trials)),
t(cbind(Correct, Trials-Correct)))

where the matrix transpose is a ‘trick’ to interleave the two vectors. This ap-
proach is significantly faster (0.03 secsversus2 secs on a Sun Ultra 1/170), but
the thinking time was much longer.

We change the parametrization ofscal to ensure it remains positive: we
allow a random effect on log scale for this parameter. The following fits take a
long time, and the precise answers vary by version of NLME and platform, and
they may not converge at all.

fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/exp(lsc))),
c("L75", "lsc"),
function(x, L75, lsc) NULL)

G1.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data = OMEf[OMEf$Noise == "coherent",], method = "ML",
start = list(fixed=c(L75=c(48, -0.03), lsc=0)), verbose = T)

summary(G1.nlme)
....

Random effects:
Formula: list(L75 ~ 1, lsc ~ 1)
Level: UID
Structure: General positive-definite

StdDev Corr
L75.(Intercept) 1.64019 L75.(I

lsc 0.55130 -1
Residual 0.40576

Fixed effects: list(L75 ~ Age, lsc ~ 1)
Value Std.Error DF t-value p-value

L75.(Intercept) 48.121 0.66170 2141 72.723 <.0001
L75.Age -0.025 0.01945 2141 -1.303 0.1927

lsc 0.267 0.15068 2141 1.773 0.0764

G2.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data = OMEf[OMEf$Noise == "incoherent",], method = "ML",
start = list(fixed=c(L75=c(41, -0.1), lsc=0)), verbose=T)

summary(G2.nlme)
....
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Random effects:
Formula: list(L75 ~ 1, lsc ~ 1)
Level: UID
Structure: General positive-definite

StdDev Corr
L75.(Intercept) 2.168615106 L75.(I

lsc 0.002344956 0.065
Residual 0.317758632

Fixed effects: list(L75 ~ Age, lsc ~ 1)
Value Std.Error DF t-value p-value

L75.(Intercept) 41.748 1.436 1831 29.068 0.000
L75.Age -0.111 0.064 1831 -1.736 0.083

lsc -9.377 1382.389 1831 -0.007 0.995

The results are remarkably similar to those by weighted least squares. In the case
of G2.nlme this is not surprising as the estimates of the variances of the random
effects are effectively zero. ForG1.nlme the variances are reasonable but the
estimate of the correlation is−1 . For G2.nlme it seems clear that the scale is
effectively not estimable.

Chapter 14

14.1.From the First and Second Editions:

> dacc <- diff(accdeaths, 12)
> ts.plot(dacc)
> acf(dacc, 30)
> acf(dacc, 30, "partial")
> ddacc <- diff(dacc)
> ts.plot(ddacc)
> acf(ddacc, 30)
> acf(ddacc, 30, "partial")
> ddacc.1 <- arima.mle(ddacc - mean(ddacc),

model = list(list(order=c(0,0,1)),
list(order=c(0,0,1), period=12)))

$model[[1]]$ma:
[1] 0.48834
$model[[2]]$ma:
[1] 0.58534
$aic:
[1] 852.72
$loglik:
[1] 848.72
$sigma2:
[1] 94629
> sqrt(diag(ddacc.1$var.coef))
[1] 0.11361 0.10556
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Figure 14.1: Seasonally differenced (top row) and then differenced (bottom row) versions
of the accidental deaths seriesaccdeath with ACF and PACF plots.

> ddacc.2 <- arima.mle(ddacc-mean(ddacc),
model=list(order=c(0,0,13),
ma.opt=c(T,F,F,F,F,T,F,F,F,F,F,T,T)),
max.iter=50, max.fcal=100)

$model$ma:
[1] 0.60784 0.00000 0.00000 0.00000 0.00000 0.41119
[7] 0.00000 0.00000 0.00000 0.00000 0.00000 0.67693

[13] -0.47260
$aic:
[1] 869.85
$loglik:
[1] 843.85
$sigma2:
[1] 70540
> sqrt(diag(ddacc.2$var.coef))
[1] 0.11473 0.10798 0.10798 0.10798 0.10798 0.10798 0.12052
[8] 0.10798 0.10798 0.10798 0.10798 0.10798 0.11473

The plots (Figure14.1) suggest the use of∇∇12X , and this has a non-zero mean.
The first model fitted is

∇∇12X = 28.83 + (1− 0.488B)(1− 0.585B12)ε
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and the second model comes from selecting promising non-zero terms in a general
MA(13) process, as

∇∇12X = 28.83 + (1− 0.608B − 0.411B6 − 0.677B12 + 0.473B13)ε

Note that the AIC is wrong; it should be 851.85 as there are parameters set to
zero (although this does not allow for selection). This fit illustrates the ability
to constrain coefficients in an ARIMA fit. That standard errors are returned for
zero parameters suggests that the standard errors are wrong. Standard likelihood
theory suggests deleting rows from the inverse of the information matrix:

> dd.VI <- solve(ddacc.2$var.coef)
> sqrt(diag(

solve(dd.VI[ddacc.2$model$ma.opt,ddacc.2$model$ma.opt])
))

[1] 0.096691 0.085779 0.094782 0.095964

which shows the power of theS language.

14.2. We start by creating the quarterly percentage differences. Fitting byar
suggests that AR(4) and AR(6) models are almost equally good. Thus we try frac-
tional differencing without an AR component and with AR(4) and AR(6) compo-
nents. Unfortunately the likelihoods are not comparable betweenarima.mle
and arima.fracdiff , and it seems the latter cannot be used with a specified
degreed of (fractional) differencing. Since with the fractional ARIMA(6,d ,0)
model the estimatêd ≈ 0 we can guess that AR(6) has AIC approximately
−2× 122.7 + 2× 6 = −233.4 and the I(d ) has an AIC of−2× 116.47 + 2 =
−231.1 . Thus we would choose the ARIMA(6,0,0) model. This differs from the
conclusions ofBrockwell & Davis(1996), but with such a short series end-effects
may be important.

> y <- diff(austres)/austres * 100
> ar(y)
$order:
[1] 6

$ar:
[,1]

[1,] 0.422690
[2,] 0.081845
[3,] 0.124695
[4,] 0.232673
[5,] -0.016759
[6,] -0.199008

$var.pred:
[,1]

[1,] 0.0040826

$aic:
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[1] 30.89342 1.77094 2.48377 1.45398 0.53235 1.55605
[7] 0.00000 1.94228 3.26542 5.07989 5.44845 6.32720

[13] 8.13424 6.68541 5.62113 7.61780 9.52565 11.23940
[19] 13.23219 14.39861

> arima.mle(y-mean(y), model=list(ar=rep(0,6)), n.cond=6)$aic
[1] -218.41
> arima.mle(y-mean(y), model=list(ar=rep(0,4)), n.cond=6)$aic
[1] -218.31
> arima.mle(y-mean(y), model=list(ar=0), n.cond=6)$aic
[1] -215.28

> arima.fracdiff(y-mean(y), model=list(d=0, ar=rep(0,6)))
$model:
$model$d:
[1] 4.583e-05

$model$ar:
[1] 0.3964324 0.1059762 0.1618604 0.2528531 -0.0094455
[6] -0.2029133

....
$loglik:
[1] 122.7

> arima.fracdiff(y-mean(y), model=list(d=0))
$model:
$model$d:
[1] 0.43245

....
$loglik:
[1] 116.47

Chapter 16

16.1.Let us write the gamma density as

f(x;λ, α) = λαxα−1e−λx/Γ(α) on [0,∞)

Then the log-likelihood is

L(λ, α) =
∑

i

[
α log λ + (α− 1) log xi − λxi − log Γ(α)

]
Reasonable initial estimates are given by the moment estimatorsµ = α/λ, σ2 =
α/λ2 so λ̂ = x/s2, α̂ = x2/s2 . Thus a first approach might be
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gamma.mle0 <- function(x)
{
nloglik <- function(theta, x)

- (theta[2] - 1)*sum(log(x)) + theta[1]*sum(x) -
length(x) * (theta[2]*log(theta[1]) - lgamma(theta[2]))

xbar <- mean(x)
lambda0 <- xbar/var(x); alpha0 <- xbar*lambda0
res <- nlminb(c(lambda0, alpha0), nloglik,

lower = c(0, 0), x = x)
list(lambda = res$par[1], alpha = res$par[2],

loglik = -res$objective)
}

Such a function has been posted toS-news, but it can be improved in a number
of ways. The sufficient statistic(

∑
xi,

∑
log xi) is computed many times. The

range for the parameters is not really[0,∞) but (0,∞) , and we would do better
to take θ = (eλ, eα) ; at the very least we should give a lower limit at which
nloglik can be evaluated. We could use gradient information in the calculation,
but if we compute derivatives we find̂λ = α/x for given α , so we can reduce
the problem to maximizing

L(λ̂(α), α) = nα log α/x + (α− 1)
∑

log xi − nα2/x− n log Γ(α)

We can easily find the derivative, but for one-dimensional optimization problems
it is not particularly helpful, andoptimize cannot make use of it.

gamma.mle1 <- function(x)
{
nloglik <- function(alpha, n, xbar, st)

-(n*alpha*log(alpha/xbar) + (alpha - 1)*st
- n*alpha - n*lgamma(alpha))

xbar <- mean(x); n <- length(x); st <- sum(log(x))
alpha0 <- xbar^2/var(x)
res <- optimize(nloglik, lower = alpha0/3, upper = alpha0*3,

n = n, xbar = xbar, st = st)
alpha <- res$min
list(lambda = alpha/xbar, alpha = alpha, loglik = -res$objective)

}

(We minimize minus the log likelihood becauseoptimize did not work correctly
when maximizing inS-PLUS 3.x.)

> set.seed(123)
> xg <- rgamma(500, 1.4)
> unix.time(gamma.mle0(xg))
[1] 5.34 0.20 6.00 0.00 0.00
> unix.time(gamma.mle1(xg))
[1] 0.75 0.09 1.00 0.00 0.00
> gamma.mle1(xg)
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$lambda:
[1] 0.93358
$alpha:
[1] 1.3737
$loglik:
[1] -678.95

An alternative approach using a Newton algorithm is given in the function
gamma.shape.glm in MASS .
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