
Complements to

S Programming

by

W. N. Venables and B. D. Ripley
Springer (2000). ISBN 0-387-98966-8

26 August 2003

These complements have been produced to supplementS Programming. They
will be updated from time to time. The definitive source ishttp://www.stats.
ox.ac.uk/pub/MASS3/Sprog.

c© W. N. Venables and B. D. Ripley 2000–3. A licence is granted for personal
study and classroom use. Redistribution in any other form is prohibited.

Selectable links arein this colour.
Selectable URLs arein this colour.

http://www.stats.ox.ac.uk/pub/MASS3/Sprog
http://www.stats.ox.ac.uk/pub/MASS3/Sprog

Introduction

These complements are made available on-line to supplement the book. In partic-
ular they describe changes for later versions ofR and forS-PLUS 6.x onUnix and
on Windows. Detailed changes are given in the on-line errata files: in particular
many of the aspects in which R was different in late 1999 have been removed.

The general convention is that material here should be thought of as following
the material in the chapter in the book, so that new sections are numbered follow-
ing the last section of the chapter, and figures and equations here are numbered
following on from those in the book.

i

Contents

Introduction i

3 The S Language:Advanced Aspects 1

3.3 Calling the operating system1

4 Classes 2

4.1 Introduction to classes .2

5 New-style Classes 3

5.1 Creating a class .3

5.3 Generic and method functions3

5.5 An extended statistical example revisited3

5.6 Group methods and another polynomial class4

6 Using Compiled Code 5

6.2 Writing compiled code to work withS 5

7 General Strategies and Extended Examples 6

7.8 John Conway’s Game of Life6

8 S Software Development 10

8.3 Creating on-line help .10

8.4 S-PLUS libraries .10

8.5 R packages .14

A Compiling and Loading Code 15

A.1 Procedures withS-PLUS . 15

A.4 Writing Dynamic Link Libraries forWindows 16

A.5 Writing Dynamic Link Libraries for S-PLUS 6 forWindows . . 17

Index 21

ii

Chapter 3

The S Language:

Advanced Aspects

3.3 Calling the operating system

S-PLUS 6.x under Windows

The system and dos commands are essentially the same as previous versions
of S-PLUS underWindows.

Functionproc.time now return a 5-element vector as onUnix versions, but
the last two components1 are always zero, and the CPU-time components areNA
on Windows 95/98/ME machines.

There is a functionsys.time which returns the elapsed time, and onWin-
dows NT/2000/XP also the CPU time. This is inadequately documented, but
inspection of the code shows that the return value is a two-element vector, the
first element being the sum of the user and system CPU times (NA on Windows
95/98/ME machines) and the second showing the elapsed time.

sys.time is also available onUnix versions ofS-PLUS 6.x.

1 which onUnix refer to child processes

1

Chapter 4

Classes

4.1 Introduction to classes

The trap mentioned on page 77 for theS engines:

There is an apparently undocumented trap in writing method functions.1 The
principal argument of the method function must have the same name as the
principal argument of the generic function; thus the first argument of all
print methods should bex , and of all summary , predict , coef , . . .
methods should beobject .

has more serious implications forS-PLUS 6 for Windows and6.1 for Unix. The
arguments not agreeing will generate errors.

As fromR 1.7.0,UseMethod uses the class as reported byclass() , not just
the class attribute. This means it dispatches to classes such as"matrix" and
"numeric" , and the reported class is neverNULL . The example on page 79 can
be amended to

Ttest <- function(z, ...) UseMethod("Ttest")

for use inR. This is different from the behaviour in the newS engine, which still
needs

Ttest <- function(z, ...) {
if(is.null(oldClass(z))) oldClass(z) <- data.class(z)
UseMethod("Ttest")

}

as UseMethod dispatches only on theclass attribute.

1 at least in theS engines.

2

Chapter 5

New-style Classes

An implementation of the new-style (or ‘formal’ or ‘S4’) classes has been avail-
able as packagemethods for R since version 1.4.0, and as from version 1.7.0 this
is loaded by default. The implementation is similar but differs in detail: notably
the confusing class"named" is not used.

5.1 Creating a class

All the code in this section works except that using the unimplemented functions
dumpClass and hasSlot .

5.3 Generic and method functions

Both old-style and formal classes coexist, and it is best to avoid confusion, so
naming a functionprint.fungi would be a very bad idea, and would cause
old-style dispatch fromprint rather than usingshow at all.

5.5 An extended statistical example revisited

This example works almost unchanged inR. There is no class called"named" ,
so we use"numeric" instead:

setClass("lda", representation(prior = "numeric",
counts = "numeric", means = "matrix",
scaling = "matrix", lev = "character",
svd = "numeric", N = "integer",
call = "call"))

and the third from last line oflda.formula needs to be

Call$x <- as.call(Terms)

3

5.6 Group methods and another polynomial class 4

5.6 Group methods and another polynomial class

Group "Logic" (Table 5.1) does not exist.

R does not usexyCall (page 119).

Functions inR are manipulated rather differently (page 120), and"{" is not
a separate mode which can be coerced to. The following version works inR:

setIs("polynomial", "function", coerce = function (from)
{
p <- as.name("p")
x <- as.name("x")
from <- as(from, "numeric")
if ((an <- length(from)) == 1) {

from <- c(from, 0)
an <- 2

}
statement <- call("{")
statement[[i <- 2]] <-

call("<-", p, call("+", from[an-1], call("*", x, from[an])))
for (ai in rev(from)[-(1:2)])

statement[[i <- i + 1]] <-
call("<-", p, call("+", ai, call("*", x, p)))

statement[[i + 1]] <- p
res <- function(x) {}
body(res) <- statement
res

})

but automatic coercion does not take place, as in the example at the top of
page 121.

Chapter 6

Using Compiled Code

6.2 Writing compiled code to work with S

UnderS-PLUS 6.x the header fileS.h should be included. OnWindows it is
essential that all the necessary header files are included, asstdcall linkage is
used and that depends on accurate header files. When writing your own header
files, do include full prototypes: usingint foo(); will not work.1

Using C input/output

[pp. 132–3, see also p. 148.]

The header filenewredef.h is automatically included byS.h on Windows
versions ofS-PLUS 6.x. If you need to suppress this, defineNO_NEWIO before
including S.h .

1 unlessfoo has no arguments, whenint foo(void); is better style.

5

Chapter 7

General Strategies and

Extended Examples

7.8 John Conway’s Game of Life

The Game of Life was invented by the mathematician John Horton Conway and
reported in Martin Gardiner’sMathematical Gamescolumn of the October, 1970
issue ofScientific American. See, for example,

http://www.sciam.com/1999/0499issue/0499profile.html.

It is an autonomous pattern generator with the results displayed on an ex-
tended checkerboard. From any initial pattern of occupied cells on the board the
next one is generated according to the following rules:

Death Each cell is considered to have eight neighbours. Any occupied cell with
0, 1, 4, 5, 6, 7 or 8 occupied neighbours is unoccupied in the next genera-
tion.

Survival If an occupied cell has 2 or 3 neighbours it is occupied again in the next
generation.

Birth If an unoccupied cell has precisely 3 occupied neighbours it is occupied in
the next generation.

We will use this well-known game to illustrate some useful programming
techniques.

A natural way to represent the occupied cells would be as a list with com-
ponents namedx and y . This is one way to make them them easy to plot, for
example, and enacting the rules is not very difficult. An even simpler way with
some additional advantages is, paradoxically, to use complex numbers with inte-
ger real and imaginary parts. This allows the two numbers defining a cell to be
handled as a single atomic quantity in arithmetic and utilities such asmatch and
unique to be used with them directly without needing to combine the coordinates
in some other way such as by pasting.

6

http://www.sciam.com/1999/0499issue/0499profile.html

7.8 John Conway’s Game of Life 7

gen <- function(adults)
{

adults <- as.complex(adults)
nhbrs <- c(adults + 1, adults + 1 + (1i),

adults + (1i), adults - 1 + (1i),
adults - 1, adults - 1 - (1i),
adults - (1i), adults + 1 - (1i))

taken <- !is.na(match(nhbrs, adults))
count <- matrix(taken, length(adults), 8) %*% rep(1, 8)
alive <- !is.na(match(count, c(2, 3)))

young <- unique(nhbrs[!taken])
nhbrs <- c(young + 1, young + 1 + (1i),

young + (1i), young - 1 + (1i),
young - 1, young - 1 - (1i),
young - (1i), young + 1 - (1i))

taken <- !is.na(match(nhbrs, adults))
born <- (matrix(taken, length(young), 8) %*% rep(1, 8)) == 3
c(adults[alive], young[born])

}

Figure 7.1: Constructing a new generation in the Game of Life

Consider first a function to enact the rules above and produce the next genera-
tion from the current one. The only argument will be a vector of complex numbers
representing the presently occupied cells. Such a function is shown in Figure7.1.

The strategy is as follows:

• If the present population hasn members, construct a vector of length8n
representing all the neighbours (possibly with repetitions). Using complex
numbers this can be done in one step.

• Using match find which of these neighbouring cells are themselves occu-
pied.

• For each member of the present population calculate the number of occu-
pied neighbouring cells it has. This is a single matrix multiplication.

• Again usingmatch select for survival into the next generation only those
which have 2 or 3 occupied neighbours only.

• The potential births are the unoccupied neighbouring cells. Select these
from the vector of neighbours and discard any duplicates.

• Using exactly the same technique as before, locate the potential birth cells
which have exactly 3 occupied neighbours. These are the new births.

• The value of the function is a vector consisting of the surviving adults and
the new births.

7.8 John Conway’s Game of Life 8

Note that we implicitly advocate here what Chambers calls a ‘whole object’ view
of the problem: the alternative is to work at the individual cell level using slow
explicit loops.

One of the many mildly amusing patterns to be discovered soon after the game
was described is the so-called “Cheshire cat” game, the first eight generations of
which are shown in Figure7.2. Various cat-like patterns are displayed ending in
a grin and a paw print.

Figure 7.2: The “Cheshire cat” game of life pattern.

The game is best displayed dynamically, but unfortunately this is not very easy
in S-PLUS or R since there is no graphics erase facility. It is possible to simulate
erasing by over-plotting with colour 0, but this is sometimes unsatisfactory to
have running in a loop. Erasing the whole screen and re-plotting may work well
on some systems.

It is convenient to allow the user to select the initial occupied squares graphi-
cally. One way to do this is with a script such as:

plot(c(0,30)+0.5, c(0,30)+0.5, type="n", axes=F,
xlab="", ylab="", xaxs = "i", yaxs = "i")

abline(h = 0:30+0.5, v = 0:30+0.5)
m <- locator(type="p", col=2, pch=15)
pop <- unique(round(m$x + 1i*m$y))
plot(pop, pch=15, col=2, axes=F, xlab="", ylab="",

xlim=c(0,30), ylim=c(0,30))

To run the game itself the following shorter script can be run repeatedly.

for(i in 1:100) {
pop <- gen(pop)
plot(pop, pch=15, col=2, axes=F, xlab="", ylab="",

xlim=c(0,30), ylim=c(0,30))
if(!length(pop)) break

}

7.8 John Conway’s Game of Life 9

If points eventually lie outside the plotting region, though, this will generate large
numbers of out-of-bounds plot warning messages.

We can attempt to improve the animation by over-plotting deleted points and
only plotting new points. For example, we could use

dev.control("inhibit")
plot(pop, pch=15, col=2, axes=F, xlab="", ylab="",

xlim=c(0,30), ylim=c(0,30))
for(i in 1:100) {

pop0 <- pop
pop <- gen(pop)
gone <- is.na(match(pop0, pop))
new <- !is.na(match(pop, pop0))
points(pop0[gone], pch=15, col=0)
points(pop[new], pch=15, col=2)
if(!length(pop)) break

guiLocator(0)
}

(Users ofS-PLUS 2000 and6 for Windows will need guiLocator(0) at the
end of the loop to ensure that the plot is updated dynamically.) The first line stops
the recording of graphics calls and hence reduces the memory used by animations
such as this. This disablesdev.copy and dev.print , and possibly also the
redrawing of the graphics device, so should be used with care.

Chapter 8

S Software Development

8.3 Creating on-line help

S-PLUS 6.x on Unix: The help files are written in the same SGML specification
asS-PLUS 5.1, but converted for use both in HTML-based help and the
Jhelp-basedhelp.start system. For details, see the next section of these
complements.

S-PLUS 6.x on Windows: The currentWindows standard, Compiled HTML, is
used. Theprompt function generates files in the same SGML specification
as onUnix, with rudimentary documentation in theProgrammer’s Guide
pp. 575–7.

The Insightful documentation hints that conversion to Compiled HTML is
possible, but does not explain how. We found the tools supplied for6.0 to
be unsatisfactory (and they needed aS-PLUS 6.x Unix installation), and
wrote our own conversion scripts inPerl, described on page13. Version
6.1 has a port to the Cygwin environment of theUnix-based tools in di-
rectorySHOME\help\BuildHelpFiles, but we continue to use ourPerl
script S2html .

8.4 S-PLUS libraries

Unix, S-PLUS 6.x

We dump and re-boot the chapter to store all theS objects in a few indexed files.
If you don’t want/need to do this, have converted the help files and use all the
standard file extensions then

$ Splus CHAPTER
$ Splus make

will build the library section for you. (However, note steps 7 and 8.)

1. Create and move to a directory in the library with the section name.

10

8.4 S-PLUS libraries 11

2. Convert the help files if necessary, and arrange for them to have extension
.sgml and be in the top-level directory. For example, by

for f in help/*.d
do
Splus doc_to_S $f > ‘basename $f‘.sgml

done

3. Create a chapter bySplus CHAPTER filename filename ... , where
the files specified are those to be compiled (and wildcards can be used).

4. Source the files containingS code, for example by

$ cat *.q | Splus

Alternatively, you can specify the files to theCHAPTER command and use

$ Splus make install.fun

5. Dump the chapter bySplus make dump and remove the.Data direc-
tory.

6. Run

$ Splus CHAPTER filename filename ... *.sgml
$ Splus make boot
$ rm all.S *.Sdata DUMP_FILES
$ Splus make

The last line will both compile the specified files (if any) and install the help
files (if any).

7. Create aREADME file in the main directory describing briefly the purpose
of the library and with one-line descriptions of the public objects, for use
by library(help=) .

8. Tidy up by rm -f .Data/.Audit .Data/.Last.value .

If you want fuller control, the help can be installed by

$ Splus HINSTALL .Data *.sgml
$ Splus BUILD_JHELP

The first command installs the SGML files in directory.Data/__Shelp and con-
verts them to HTML files in.Data/__Hhelp. The second command converts the
help to aJhelp help set in.Data/__Jhelp.

The *.sgml files have to be in the current directory and to have that exten-
sion.

8.4 S-PLUS libraries 12

Distributing the library

We distribute our libraries as source code and use a shell script to install it. For
example, fornnet we use

#! /bin/sh
S=${S-Splus}
rm -rf .Data makefile*
$S CHAPTER
echo --reading in S files
cat s5/nnet.q s5/multinom.q | $S
$S make dump
rm -rf .Data makefile*
$S CHAPTER
$S make boot
rm all.S *.Sdata DUMP_FILES
echo "--compiling"
SHOME=‘$S SHOME‘; export SHOME
$S make
rm nnet.o
echo --Installing help
for f in help/*.d
do

$SHOME/cmd/doc_to_S $f > ‘basename $f .d‘.sgml
done
$S make HELPSGML=*.sgml install.help
rm *.sgml
rm -f .Data/.Audit .Data/.Last.value

Windows, S-PLUS 6.x

The procedure is similar to that underUnix. There are three ways to do this,
(i) within S-PLUS, (ii) from the command line and (iii) using the Microsoft
Visual C++ ‘wizards’ written by Insightful. These are described in the file
help\Chapters.htm, but unfortunately it seems to be rather inaccurate.

We prefer to use the command line. The following assumes that theS-PLUS
cmd directory is in your path, as well as the appropriate compiler systems (Mi-
crosoftVisual C++ and CompaqVisual Fortran).

For a library section with source files with extension.q , .s or .ssc and C,
C++ or Fortran source files (with extensions.c , .cpp or .f) the following will
do all that is needed (except tidy up).

CHAPTER -b

However, we prefer to use a more detailed procedure that re-boots the chapter
to put all the objects into a single large file.Data__Objects.

1. Create and move to a directory in the library with the section name, say
mypkg .

8.4 S-PLUS libraries 13

2. Create a chapter by

CHAPTER

3. Source the files containingS code. The simplest way is

CHAPTER -s

to source all.q , .s and .ssc files, or

CHAPTER -s file1.q file2.q

to source specific files.

You can also use the command-line facilities, such as

sqpe < file.q
type *.q | sqpe
cat *.q | sqpe

the last if you have acat utility and using a Unix-like shell.

Then tidy up by removing the files.Data\.Audit and.Data\.Last.value.

4. Dump and reboot the chapter by

CHAPTER BOOT

(or CHAPTER -o) then remove the files created for this by

del *.Sdata

5. Compile the source files by

CHAPTER -m [optional list of filenames]

and tidy up by

del *.obj vc60.* S.def S.exp S.lib make.mak chapter.mif

6. Make the help files. You will need ourPerl script S2html 1 andPerl itself,2

as well as Microsoft’s HTML Help Compiler.3 If you are starting from
.sgml files use

perl /path/to/S2html mypkg *.sgml

However, if you are using older.d help files you can use

perl /path/to/S2html mypkg *.d

In either case, clean up by

1 Fromhttp://www.stats.ox.ac.uk/pub/MASS3/Sprog/S2html
2 Fromhttp://www.activestate.com/Products/ActivePerl/.
3 This is supplied with mostWindows compiler systems and has also been available for

download, most recently from http://www.microsoft.com/office/ork/xp/appndx/
appa06.htm and http://msdn.microsoft.com/library/en-us/htmlhelp/html/
hwmicrosofthtmlhelpdownloads.asp.

http://www.stats.ox.ac.uk/pub/MASS3/Sprog/S2html
http://www.activestate.com/Products/ActivePerl/
http://www.microsoft.com/office/ork/xp/appndx/appa06.htm
http://www.microsoft.com/office/ork/xp/appndx/appa06.htm
http://msdn.microsoft.com/library/en-us/htmlhelp/html/hwmicrosofthtmlhelpdownloads.asp
http://msdn.microsoft.com/library/en-us/htmlhelp/html/hwmicrosofthtmlhelpdownloads.asp

8.5 R packages 14

del *.html mypkg.hhp mypkg.hhc mypkg.hhk

7. Create a fileREADME.TXT in the main directory describing briefly the pur-
pose of the library and with one-line descriptions of the public objects, for
use bylibrary(help=mypkg) .

Distributing the library

Library sections forWindows can be distributed in binary form. The convention
is to use a.zip file. We do this from the library directory (the parent of the
section) by using

zip -r9X sec.zip sec/.Data sec/S.dll sec/sec.chm sec/README.TXT

8.5 R packages

It is now preferred to add aTitle: line to the description file rather than have a
separateTITLE file.

Distributing the package – Unix

There is now a utilityR CMD build to package up the source files of a package,
with a few checks. This can also be used to package a binary distribution.

Distributing the package – Windows

The commands

Rcmd check pkg
Rcmd build pkg

are available fromR 1.2.0 and are almost identical to theirUnix equivalents.
(Rcmd build does build a binary distribution by default.)

Checking the package

[Revised description as fromR 1.2.0.]
It is important to check a package before distributing it, andR provides some help
in doing so. The commands

R CMD check [-l lib.loc] mypkg

(Unix) and

Rcmd check mypkg

(Windows) will run all the examples from all the help files, and report if they ran
successfully. They will also run any files in a directorytests in the sources, and
perform a number of consistency checks including checking theDESCRIPTION
file, trying to install the package and processing all the help files.

As from R 1.3.0 there are further checks, for undocumented and incorrectly
documented objects, and for the correct use oflibrary.dynam . R 1.4.0 will
have yet further checks.

Chapter A

Compiling and Loading Code

A.1 Procedures with S-PLUS

S-PLUS 6.x on Unix

[This is almost unchanged fromS-PLUS 5.1.]

There is only one method available, shared libraries, and the easiest way to include
compiled code is to include the files in a call toSplus CHAPTER , for example

Splus CHAPTER convolve.c
Splus make S.so

This will create a shared library calledS.so in the chapter. Then the next time
S-PLUS is started in that chapter,S.so will be loaded. Also, whenever a chapter
(including a library) is attached the system looks to see if it contains a fileS.so
and if so will load it.

It is possible to usedyn.open and dyn.close to load or unload a shared
library, but this is not normally necessary. Sometimes it easiest to usedyn.open
to re-load the routines after re-compiling them, although callingsynchronize
on the chapter will unload and re-loadS.so .

If Splus CHAPTER is called with no arguments it will create amakefile
which will compile and link in all theC and FORTRAN (or Ratfor) files in the
directory. If a makefile or Makefile already exists it will be amended as
S-PLUS sees necessary.

The flags for compilation can be changed by settingCFLAGS, FFLAGS or
CXXFLAGS as appropriate: this may well be necessary as the default flags omit
optimization.

S-PLUS 6.x on Windows

This works completely differently from all previous versions underWindows,
and in a much more similar way toS-PLUS 6.x underUnix. When a chapter is
attached,S.dll is loaded if it exists in the chapter, and it is unloaded when the
chapter is detached. Nothing is needed in a.First.lib object.

15

A.4 Writing Dynamic Link Libraries forWindows 16

It is possible to usedyn.open and dyn.close to load or unload a shared
library, but this is not normally necessary. Sometimes it easiest to usedyn.open
to re-load the routines after re-compiling them, although callingsynchronize
on the chapter will unload and re-loadS.dll , and this is the only reliable way to
do this if it was loaded when the chapter was attached.

Information on how to build a suitable DLL will be given in section A.5 of
these complements.

A.4 Writing Dynamic Link Libraries for Windows

See section A.5 forS-PLUS 6.x for Windows.

Generating the DLL

Borland C++

Borland C++ 5.5 is available as a free download fromhttp://www.borland.
com/bcppbuilder/freecompiler/ and as part ofC++ Builder 5. The follow-
ing will make conVC.dll from conVC.c on page 241

bcc32 -u- -6 -O2 -WDE conVC.c

(Flag -6 optimizes code for a Pentium II/III.)

You can build an import library forSqpe.dll directly from the DLL by

implib Sqpe.lib %S_HOME%\cmd\Sqpe.dll

and then addSqpe.lib to the bcc32 command line, for example

bcc32 -u- -O2 -WDE -I%S_HOME%\include -D_MSC_VER VCrnd.c Sqpe.lib

You will need to define_MSC_VER or __STDC__ to parse theS-PLUS headers
correctly. Note that although this example will compile and load it will not work
correctly, presumably because of further differences in calling conventions.

You can build an import library forR.dll by copyingR.exp to R.def and
using

implib R.lib R.def

and use this by, for example,

bcc32 -u- -O2 -WDE -I\R\rw1030\src\include VCrndR.c R.lib

This one does work for us.

http://www.borland.com/bcppbuilder/freecompiler/
http://www.borland.com/bcppbuilder/freecompiler/

A.5 Writing Dynamic Link Libraries for S-PLUS 6 forWindows 17

Other compilers

A key to using other compilers is to find the right flags. One wants a relocatable
DLL, with cdecl linkage (preferable forS-PLUS but essential underR). An-
other key issue is to find out how the symbol names get re-mapped (‘mangled’),
which pedump will be able to show. It is normally best to use.C to called
the compiled code, even if it were generated fromFORTRAN, as that does no re-
mapping of names under current versions ofS-PLUS andR. Thus .C can be
called with the re-mapped symbol name. (For example, you may need to append
or prepend an underscore, and map to upper or lower case.)

A.5 Writing Dynamic Link Libraries for S-PLUS 6 for Windows

S-PLUS 6.x for Windows also uses DLLs, but prefers them to be built by
Microsoft Visual C++ using stdcall conventions. DLLs built for use with
S-PLUS 2000 may well not be usable withS-PLUS 6.x, although simpler ones
not linking against theS-PLUS DLL should be.

Much of the advice in section A.4 remains useful, in particular the advice to
check the exports on page 244. One of the commonest sources of problems is to
build DLLs with no exported symbols.

You will need to install the development tools as part of the installation of
S-PLUS: they are not installed by default.

Microsoft Visual C++

The simplest way to build an suitableS.dll is to use theCHAPTER.exe utility
supplied withS-PLUS. Those who enjoy using VC++ projects can consult the
Programmer’s Guide: the installation ofS-PLUS adds a new project types called
S-PLUS Chapter DLL (.C & .Call) andS-PLUS Chapter DLL (.Fortran)

We will assume both the compiler(s) andcmd directory of theS-PLUS 6.x in-
stallation are in the path. (Running the batch filevcvars32.bat may be the most
convenient way to set up the compiler.) Then to createS.dll from convolve.c
all we need is

del chapter.mif
CHAPTER -m convolve.c

(More than one source file can be supplied on the second line.) The first line is
needed if there are any changes to the list of files in use. These commands will
also compileFORTRAN files if Compaq Digital Fortran has been installed.

For those who want to know more, the second line runs the commands

cl /nologo /MT /W3 /Gz /GX /O2 /FD /YX
/D "WIN32" /D "_WINDOWS" /D"_MBCS" /D "WINDOWS_CONFLICT"
/I "%S_HOME%\include" /I "%S_HOME%\spl" /c
-o convolve.obj -c convolve.c

A.5 Writing Dynamic Link Libraries for S-PLUS 6 forWindows 18

%S_HOME%\cmd\spexport.exe -o S.def convolve.obj

link sqpe.lib spl.lib /DEF:S.def /out:S.dll /implib:S.lib
/NOLOGO /SUBSYSTEM:windows /MACHINE:I386 /DLL /WARN:1
/libpath:"%S_HOME%\lib" convolve.obj

The crucial option is/Gz which selectsstdcall (Pascal-style) calling conven-
tions. Note the use of Insightful’s utilityspexport.exe to create an exports
definition file.

File conVC.c (page 241) can be used in exactly the same way.
It is not necessary to build astdcall DLL. We could build acdecl DLL

in almost the same way as shown on page 241

cl /MT /Ox /D WIN32 /c conVC.c
link /dll /out:S.dll conVC.obj

and theconvolve.dll we built there could be used by re-naming it toS.dll .
If one is usingstdcall conventions it is essential that all theextern func-

tions used are declared in header filesandhave the full argument list supplied in
the prototype. Any mismatches with the prototype must be resolved.

If we want to callS-PLUS entry points the standard procedures in section
A.4 work (although it is not necessary to use the macrosS_DOUBLEVAL and
S_FLOATVAL). Thus we can useVCrndS4.c , modified to use the S4-style en-
try points:

#include <S.h>
LibExport void urand(long *m, double *p)
{
S_EVALUATOR
int i;
seed_in((long*)NULL, S_evaluator);
for (i = 0; i < *m; i++)

p[i] = unif_rand(S_evaluator);
seed_out((long*)NULL, S_evaluator);

}

and can compile and test this by

chapter -m VCrndS4.c

> set.seed(123); runif(4)
[1] 0.8756982 0.5321866 0.6700785 0.9921576
> set.seed(123)
> .C("urand", as.integer(4), x=double(4))$x
[1] 0.8756982 0.5321866 0.6700785 0.9921576

The header files are set up to usestdcall calls where required, so we can
also make acdecl DLL by

cl /MT /Ox /D "WIN32" /I "%S_HOME%\include" /c VCrndS4.c
link /dll /out:S.dll VCrndS4.obj "%S_HOME%\lib\Sqpe.lib"

A.5 Writing Dynamic Link Libraries for S-PLUS 6 forWindows 19

This does rely on the header files having the correct declarations, and it is wise to
check. Most are in the headerS_extern.h which has

LibExtern void S_STDCALL
seed_in(long *seed_data, s_evaluator *S_evaluator);

LibExtern void S_STDCALL
seed_out(long *seed_data, s_evaluator *S_evaluator);

LibExtern RETURN_DOUBLE S_STDCALL
unif_rand(s_evaluator *S_evaluator);

TheS_STDCALL declaration is the critical part.

GNU compilers

The Mingw version ofgcc which is used to buildR can also be used to build
DLLs for S-PLUS 6.x. It is most natural to use thecdecl conventions. File
conVC.c provides a simple example. With recent compiler versions1

gcc -shared -o S.dll conVC.c

compiles the file and generates the DLL. However, to useVCrndS4.c (which
calls entry points inSqpe.dll) we need to use thestdcall conventionsvia

gcc -c -mrtd -Ic:/S/splus6/include VCrndS4.c
gcc -shared -o S.dll VCrndS4.o -Lc:/S/splus6/lib/mingw -lSqpe

using the import library supplied with theS-PLUS development tools. (With
recent versions of the Mingw system this causes conflicts with the header files.
We resolved these by commenting out the definitions oferf , erfc andlgamma
in S_externs.h: if your code uses these do take care to check that the correct
copies are linked in.)

We can also use theFORTRAN exampletestit.f from page 243; the only
change needed is either to renametestit.dll to S.dll or use

> dyn.open("testit.dll")
> .Fortran("testit", as.single(1:5), as.integer(5), as.integer(-2))[[1]]
[1] 1.0000000 0.2500000 0.1111111 0.0625000 0.0400000
> dyn.close("testit.dll")

to load and unload the DLL. The simplest way to make the DLL is

g77 -O2 -c testit.f
g77 -shared -o testit.dll testit.o

What does not work in this simple way is to useFORTRAN code that calls
FORTRAN entry points inS-PLUS, because those entry points arestdcall . You
may be able to use-mrtd which switches all calls tostdcall but this may be
incompatible with other compiled code (for example in system libraries). Fortu-
nately littleFORTRAN source does this, but watch out for calls to LINPACK and
EISPACK and BLAS routines.

1 2.95.2-1 from January 2000 or later.

A.5 Writing Dynamic Link Libraries for S-PLUS 6 forWindows 20

Watcom C++

TheProgrammer’s Guideexplains how to use Watcom C++/Fortran 10.5 to build
S.dll . As those compilers are no longer on sale we will not give details here,
but will note that we expect problems with returning doubles and floats as de-
scribed on page 244, and although theProgrammer’s Guideclaims the macros
S_DOUBLEVAL andS_FLOATVAL in compiler.h covers this, they do nothing for
Watcom compilation (or for any other compiler on this version ofS-PLUS).

Borland C++

The Borland examples given earlier for use withS-PLUS 2000 also work under
S-PLUS 6.x virtually unchanged.

bcc32 -u- -6 -O2 -WDE conVC.c
ren convVC.dll S.dll

Also, the following does work correctly:

implib Sqpe.lib %S_HOME%\cmd\Sqpe.dll
bcc32 -u- -O2 -WDE -I%S_HOME%\include -D_MSC_VER VCrndS4.c Sqpe.lib
ren convVC.dll S.dll

Command-line flag-p will select Pascal calling conventions, if needed.

Index

Entries inthis font are names ofS objects.

animation, 8

Borland C++, 16, 20

complex numbers, 6
Conway, John Horton, 6

DLL, 16–20
dyn.close, 15, 16, 19
dyn.open, 15, 16, 19

game of Life, 6

libraries
creating,10
distributing,12

library
methods, 3
nnet, 12

Life, game of, 6

operating system, calls to,1

packages
checking,14
creating,14
distributing,14

S
calling the OS,1

S2html, 10, 13
synchronize, 15, 16

Unix, i, 1, 2, 10, 12, 14, 15
UseMethod, 2

Windows, i, 1, 2, 5, 9, 10, 12–17

21

	Introduction
	The S Language:Advanced Aspects
	Calling the operating system

	Classes
	Introduction to classes

	New-style Classes
	Creating a class
	Generic and method functions
	An extended statistical example revisited
	Group methods and another polynomial class

	Using Compiled Code
	Writing compiled code to work with S

	General Strategies and Extended Examples
	John Conway's Game of Life

	S Software Development
	Creating on-line help
	S-PLUS libraries
	R packages

	Compiling and Loading Code
	Procedures with S-PLUS
	Writing Dynamic Link Libraries for Windows
	Writing Dynamic Link Libraries for S-PLUS 6 for Windows

