Back to top

Probability Workshop – TT2017

15 May 17

Speaker: Matthias Winkel, Department of Statistics, University of Oxford
Title: Gromov-Hausdorff-Prokhorov convergence of vertex cut-trees of n-leaf Galton-Watson trees
Abstract: In this paper we study the vertex cut-trees of Galton-Watson trees conditioned to have n leaves. This notion is a slight variation of Dieuleveut’s vertex cut-tree of Galton-Watson trees conditioned to have n vertices. Our main result is a joint Gromov-Hausdorff-Prokhorov convergence in the finite variance case of the Galton-Watson tree and its vertex cut-tree to Bertoin and Miermont’s joint distribution of the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the problem to strengthen Dieuleveut’s and Bertoin and Miermont’s Gromov-Prokhorov convergence to Gromov-Hausdorff-Prokhorov remains open for their models conditioned to have n vertices.

This is joint work with Hui He, Beijing Normal University.