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Multiple Parallel Networks

Traditionally, network analysis tended to consist of
cases studies of single networks.

However, it is preferable to generalize to
a population of networks.

This can be achieved, in principle, by
multilevel network analysis in the sense of analyzing
multiple similar networks, mutually independent.

This was proposed by Snijders & Baerveldt
(J. Math. Soc. 2003).

Also see Entwisle, Faust, Rindfuss, & Kaneda (AJS, 2007)
who gave on overview of empirical work until then
involving multiple networks.
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Multiple Parallel Networks Sample from a population of networks

Sample from Population of Networks

Suppose we have a sample indexed by j = 1, . . . ,N
from a population of networks on disjoint node sets,
where the networks are ‘replications’ of each other
in the following sense:

they all are regarded as realizations of
processes obeying the same model,
but having different parameters θ1, . . . , θj , . . . , θN .

Each disjoint network is called a group.
We assume we have network panel data for each group,
and wish to analyze these by fitting
Stochastic Actor-Oriented Models (‘SAOMs’, RSiena).
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Multiple Parallel Networks Approaches

Several approaches are possible for combining such data:

1 Multi-group analysis:
assume all parameters are identical.

2 Integrated hierarchical approach:
Assumption: population of networks, normal distribution,
A. mixed effects,
some parameters varying, others constant across groups;
B. random effects, all parameters varying.

3 Meta analysis:
Assumption: population of networks,
no distributional assumptions:

two-stage meta analysis.
4 Meta analysis: no population assumption:

Fisher combination of independent tests.
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Multilevel analysis...

Such data sets have multilevel structure;
all caveats and considerations from usual multilevel analysis apply!

See Snijders & Bosker (textbook 2012);
T.A.B. Snijders, ‘The Multiple Flavours of Multilevel Issues for
Networks’,
in Lazega & Snijders (2016).
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Multilevel analysis...

Of the four approaches, here we treat the
integrated hierarchical approach.
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Integrated hierarchical random effects models

Random effects:
hierarchical multilevel structure

1 On the tie level there is a dynamic process
governed by the SAOM.

2 On the network level there is a Stochastic Actor-Oriented Model
(SAOM) with parameter vector (θ(1)j , η)′ for group j .

Here θ
(1)
j ∼ N (µ,Σ).

3 On the global level there is a population of networks
with either a multivariate normal distribution N (µ,Σ)

for the randomly varying parameters θ
(1)
j ,

and a common parameter η for the rest;
or without distribution assumption.
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Integrated hierarchical random effects models

Hierarchical multilevel analysis
Assumption: population of networks;

θj ∼ multivariate normal distribution,
perhaps conditionally on network-level covariates.

1. mixed effects:
some parameters varying, others constant across groups:

restricted integrated hierarchical approach.

2. random effects:
all parameters varying across groups:

integrated hierarchical approach.

multiSiena: multi-level option, sienaBayes()
available from Siena website.
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Integrated hierarchical random effects models

Integrated procedure:
Estimate the distribution of θj and consider the
‘posterior’ distribution of θj given the data.

Advantage:
The analysis of the separate networks draws strength from
the total sample of networks by regression to the mean.

Useful especially for many rather small networks.

(For large networks, where the model of interest can be estimated
without any problems, a two-stage procedure may be better:
(1) estimation by group, (2) meta-analysis.)
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Integrated hierarchical random effects models

Bayesian approach

The approach taken here is that of Bayesian statistics,
as distinct from the more usual frequentist statistics.

Bayesian statistics postulates a probability distribution
not only for the data, but also for the parameters.

The summary is that the data X have a conditional distribution
given the parameters θ, which is the statistical model;
and the parameters θ have a prior distribution,
reflecting what the researcher knows about them in advance,
i.e., before having looked at the data;
the statistical analysis then leads to the posterior distribution,
which is the conditional distribution of the parameters given the data.
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Integrated hierarchical random effects models

Bayesian approach (2)

In symbols:

Before the data we have the model p(x | θ)
and the prior π(θ),
then given the data we have the posterior p(θ | x)
which is defined, according to Bayes’ rule, as

p(θ | x) =
joint p.d. of (x , θ)

p.d. of x
=

p(x | θ) × π(θ)∫ (
p(x | θ′) × π(θ′)

)
dθ′

.
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Integrated hierarchical random effects models

Bayesian approach (3)

The parameter can then be estimated by its posterior mean

E
{
θ | x

}
and its uncertainty is expressed
by the posterior covariance matrix

cov
{
θ | x

}
;

the posterior standard deviations are the square roots
of its diagonal elements, and have the role of standard errors.

This is all very nice;
the catch is that the researcher has to define a prior.
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Integrated hierarchical random effects models

Hierarchical model: restricted variation

Terminology here:
fixed parameters have the same value across groups;
random parameters have different values across groups,
with a priori a normal distribution.

From regular hierarchical linear models (HLMs) we know
that ‘random slopes’ require a lot from the data.

In practice, HLMs have only a few random slopes.
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Integrated hierarchical random effects models

For sienaBayes, however, a large number of random parameters
seems to be less of a problem.

But note the important distinction:

For fixed parameters (η),
there is much more information than
for the means and variances of random parameters (µ,Σ).

Therefore, the posterior distribution will be more concentrated
(smaller variance) for the η parameters than for µ.

© Tom A.B. Snijders sienaBayes April 2024 13 / 62



Integrated hierarchical random effects models

Fixed effect k :

Testing ηk = 0 means testing the null hypothesis
that the effect θjk = 0 in every group j ,
under the auxiliary assumption that
θjk is the same for all j , i.e., θjk = ηk .

random effect k :

Testing µk = 0 means testing the null hypothesis
that the population average of the effects θjk is 0.

The auxiliary assumption leads to a smaller
posterior standard deviation for ηk than for µk ,
unless the prior for µk has a very small variance.
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Integrated hierarchical random effects models

Group-level variables

It is possible to use group-level variables.
These should be defined as constant actor covariates (coCovar),
with the same value for all actors.

It is helpful for convergence to center the group-level variables.
I’m not sure that the centering in the definition of coCovar
survives the operation of sienaGroupCreate in a good way.

Therefore the recommendation is to center such variables “by hand”,
by subtracting their mean (or approximate mean)
before executing coCovar.
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Integrated hierarchical random effects models

Varying group sizes

Parameters of the ERGM and SAOM are not well comparable
across group sizes (number of actors in the networks),
because if the number of actors is larger
while further the network evolution is similar,
there are more ties that should not be created.

For ERGMs this was shown in research by Krivitsky, Kolaczyk, and Butts.

The main culprit for the SAOM is the density parameter.

To take account of the different group sizes, it is advisable
to use the group-level covariate with the value log(n),
where log(·) is the natural logarithm and n group size;
or check with sienaGOF that log(n) does not matter.
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Integrated hierarchical random effects models

Varying group sizes (2)

If group size is available as a group-level variable n,
with mean across groups given by avlogn,
this can be done with a script line such as

logn <- coCovar(rep(log(n) - avlogn, n),

centered=FALSE, warn=FALSE)

This can be used as a main effect (egoX), and in interaction
with reciprocity and the effect representing transitivity;
perhaps also with other effects?

Since the incomparability is for creation of new ties,
the type of these effects can be creation.

If these interactions are ‘not significant’, they may be dropped.
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Integrated hierarchical random effects models

The Bayesian MCMC procedure produces,
when/if there is convergence (i.e., hopefully, after a burn-in period),
a sample from the posterior distribution of all the parameters,
both the θj referring to the individual sampled networks,
and η, µ and Σ referring to the population of networks.

The inference is based on these sampled posteriors.

Three kinds of plot are important:

1 multidimensional scaling plots of the group-wise posterior means,
indicating possible outliers;

2 trace plots, representing successive draws from the posterior
distribution (after thinning);

3 density plots, representing the plausible values of the parameters,
given the observed data.
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Prior distributions

Prior distributions

For a smallish number of groups, the prior is consequential.
It is given to sienaBayes as priorMu, priorSigma, priorDf,
priorKappa, priorMeanEta, priorSigEta.

For rate parameters, sienaBayes uses a data-dependent prior
(depending on the option chosen).

The six prior parameters are explained in the following pages.
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Prior distributions

Model: for all groups j independently, θ(1)j ∼ N (µ,Σ).

Prior: the prior distribution for (µ,Σ) is the
inverse Wishart distribution for Σ;
and, conditional on Σ, for µ a multivariate normal distribution with
mean µ0 and covariance matrix Σ/κ0. In formula:

Σ ∼ InvWishartp1(Λ
−1
0 , df) , and conditionally on Σ

µ | Σ ∼ Np1(µ0,Σ/κ0) .

Here µ0 = priorMu, Λ0 = priorDf× priorSigma,
df = priorDf, κ0= priorKappa.

The ‘central tendency’ of this inverse Wishart distribution is
approximately priorSigma.
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Prior distributions

priorMu

1 priorMu is your prior guess for the mean of θ(1)j ,
priorSigma is your prior guess
for their between-groups variance.

2 For priorMu you normally do not want to specify much;
perhaps priorMu(outdegree) a value like –1 or –2,
priorMu(reciprocity) a value like +1 or +2,
and its other coordinates 0.

© Tom A.B. Snijders sienaBayes April 2024 21 / 62



Prior distributions

priorSigma
3 priorSigma is the prior guess for the between-groups

covariance matrix of the θ
(1)
j .

At the same time, priorKappa−1× priorSigma is
the uncertainty of your guess priorMu.
(That both are proportional is a mathematical issue.)

4 By priorSigma you want to express the prior idea
that the groups have rather similar parameters.
For most parameters this corresponds to differences of the
order of magnitude of about 0.3, so prior variances of about 0.1.
For some parameters the likely values of similar groups may have a
larger range; this could be the case e.g., for the outdegree effect;
reciprocity; avSim; and egoX, altX, egoXaltX effects of covariates
with a small variance; this would lead to larger prior variances.
(And covariates with a large variance would get smaller prior variances.)

5 Prior correlations ... why choose the value 0 – or why not.
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Prior distributions

priorKappa
Your ignorance about the mean µ of θ(1)j

is expressed by priorKappa−1× priorSigma.

Note that this entails a double use of priorSigma:
it is the prior between-groups covariance matrix,
and also the ignorance about the prior mean times
a constant (viz., 1/priorKappa).
This is perhaps unfortunate but a mathematical convenience.

The consequence is that you should choose priorKappa

in view of the diagonal elements of priorSigma,
so that priorSigma/priorKappa represents
a reasonable degree of uncertainty.

E.g., diag(priorSigma) between 0.05 and 0.6 and priorKappa=0.1.
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Prior distributions

However, it is also possible to set priorKappa equal to 0.

This means that you do not assume anything about the mean µ of θ(1)j .

This simplifies a lot of things.

The value of priorMu now has consequences
only for the initialisation of the estimation.

This may be preferable.
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Prior distributions

priorDf
priorDf represents your certainty about Σ.

The smallest mathematically possible value
is the dimension of θ(1) plus 2.

That is the default, and will be mostly be a reasonable choice.
But you could use a higher value if you wish.

The determination of these prior parameters is so full of uncertainties,
that it is advisable to do a sensitivity analysis:
try out several plausible values and
investigate the importance of the differences in results.

Unfortunately, this takes a lot of time...
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Prior distributions

priorMeanEta and priorSigEta
Model: η (‘eta’) is the vector of non-varying parameters.

Mostly, there will be a lot of information about them,
and it is not necessary to specify a prior distribution;
technically, they can get a constant improper prior.

However, some effects could be group-level effects,
e.g., effects of group variables such as the proportion of males
or log group size (represented by its egoX effect).

For such variables, sienaBayes has the option
to specify a normal distribution with mean given by priorMeanEta;
the variance is given by priorSigEta.

The elements of priorMeanEta and priorSigEta which are NA

will specify the constant prior.
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Prior distributions

Practical advice for prior specification
In most cases: use defaults for
priorRatesFromData, priorDf, priorSigEta;

for priorMu, e.g.
use –2 for the density and +2 for the reciprocity parameter;

priorKappa = 0;

if p is the number of randomly varying effects
(including rate parameters), as reported from
print(myeff, includeRandoms=TRUE, dropRates=TRUE)

if there are two waves and one dependent variable:

Sig <- matrix(0,p,p)

diag(Sig) <- 0.1

Sig[2,2] <- 0.6 # density parameter

Sig[3,3] <- 0.6 # reciprocity parameter

..........

ans <- sienaBayes(..., priorMu=Mu, priorSigma=Sig, priorKappa=0, ... )
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Prior distributions

The determination of these prior parameters is so full of uncertainties,
that it is advisable to do a sensitivity analysis:
try out several plausible values and
investigate the importance of the differences in results.

Unfortunately, this takes a lot of time...

Perhaps it is more important to try out several specifications of what
are the randomly varying parameters.
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The function sienaBayes
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The function sienaBayes

Data for sienaBayes

For sienaBayes, a sienaGroup data set is needed.
This means you first create the N separate data sets,
which need to have the same variables, with the same names,
and the same number of waves;
then you apply sienaGroupCreate to combine them.

It is still useful to read the descriptions given by
print01Report, even though this is rather repetitive.

If there any groups with ‘forbidden changes’, e.g.,
structural zero turning into observed 1, which would run
into logical errors, the data set needs to be changed;
e.g., by splitting waves, or changing some values into NA.
http://www.stats.ox.ac.uk/~snijders/siena/changeForbiddenChanges.R
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The function sienaBayes

The function sienaBayes: parts

Data input and checks.

Initialization: MoM estimation for the whole data set (all
parameters equal across groups except for basic rates)
to give initial values; and then also for each group.

improveMH: tuning of MH steps for the SAOM parameters.

warming phase of nwarm iterations.

second improveMH: tuning of MH steps again.

main phase of nmain iterations.
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The function sienaBayes Initialization

The function sienaBayes: initialization

The initialization consists, first, of a brief MoM estimation
for the whole data set as a multi-group model by siena07.
Assumption:
all parameters equal across groups except for basic rates.

After this, a brief MoM estimation for each group,
taking the earlier estimation as the starting point.

These estimations do not need to converge (they use nsub=2),
they are allowed to be quite rough.
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The function sienaBayes Initialization

The function sienaBayes: initialization (2)

You can circumvent the multi-group MoM estimation by doing it
outside of sienaBayes, and then giving the result to sienaBayes

as the prevAns parameter.
This is advisable. It can be illuminating to take a look at the results.
It is not necessary to have this estimation converged well.

How much of the multi-group MoM estimation then is skipped
depends on the prevOnly parameter; see the help page.
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The function sienaBayes Estimation process

Outline of the estimation process

Consider a data set with just two observation waves.

The estimation uses a sequence of ministeps
that brings the data of the first wave to the data of the second wave;
let us call this the bridge.

At every moment of the estimation process,
the process has a state consisting of
B = the bridge (sequence of ministeps) and
Φ = the parameters Φ =

(
θ
(1)
j , µ, η,Σ

)
.

The purpose of the estimation is that the process converges :
for Φ to a sample from the posterior distribution of the parameters,
for B to a sample from the post. distr. of the bridge of ministeps.
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The function sienaBayes Estimation process

The estimation process consists of alternations between
updates of bridge B and of parameters Φ.
(Many changes in B for each change in Φ.)
These are guided by the estimation statistics1 s(B).

The statistics s(B) are strongly auto-correlated;
for the changes in Φ, these auto-correlations should not be too high.

To obtain convergence, a high number of iterations of Φ is required;
it is not necessary to record them all,
therefore thinning is applied when recording the results.

1For likelihood estimation, used in sienaBayes, these are the score functions.
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The function sienaBayes Estimation process

The numbers of iteration steps in the MCMC process are as follows:

(1) nwarm + nmain iterations recorded at the highest level.

(2) Each of these is composed of nrunMHBatches steps,
of which only the last one is recorded (‘thinning’) in (1).

(3) Each of the steps in (2) contains nrunMH Metropolis-Hastings steps
to simulate the next B, using the method of Snijders, Koskinen &
Schweinberger (2010) used also for ML estimation by siena07.

So the total number of lowest-level iterations, per group, is
nrunMH × nrunMHBatches × (nwarm + nmain).

Values of nrunMH depend on data and multiplication factor mult;
nwarm, nmain, and nrunMHBatches are given in the call of sienaBayes.

For an estimation object ans constructed by sienaBayes or by
siena07-ML, the value of nrunMH can be obtained as ans$nrunMH.
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The function sienaBayes Multiplication factor

The multiplication factor
The multiplication factor is called mult.
It is set in the algorithm in sienaAlgorithmCreate.

Computation time is roughly proportional to mult;
autocorrelations are lower when mult is higher.

So the point is to set mult high enough, but not too high.

The default value mult=5 is reasonable,
and it is not really necessary to change it;
however, efficiency may be improved by giving it a better value.

The multiplication factor can be given as one number,
or specific for each group × period combination.
Then it should be a vector with length nGroups × nPeriods

(the number of basic rate parameters for one dependent variable).
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The function sienaBayes Multiplication factor

Adequate values of the multiplication factor mult
do not depend strongly on the model specification;
the method to update the ‘bridge’ B is used also in siena07-ML;
therefore, good values of mult can be determined from
results for ML estimation by siena07, using an empty model.

The procedure on the following pages can be used
for determining a good value for the multiplication factor.
This is just one approach;
when you understand it, you can use whatever way to get good values.
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The function sienaBayes Multiplication factor

Setting the multiplication factor (1)

1 Define the sienaGroup data set that will be used for sienaBayes
and use getEffects to specify the empty model
(with or without the reciprocity effect).

2 Specify algorithm settings by sienaAlgorithmCreate
for a short estimation by maximum likelihood;
e.g., with mult=5, nsub=2, n3=500, maxlike=TRUE,
and a value for seed to make things replicable.

3 Estimate this multi-group model using siena07;
the result will be denoted by mlans.
It does not matter that it has not yet converged.
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The function sienaBayes Multiplication factor

Setting the multiplication factor (2)

4 Inspect the autocorrelations mlans$ac.
Especially important are the autocorrelations for the rate parameters.
The rate parameters in the effects object are given by
mlans$effects$basicRate.
You could look at
hist(mlans$ac[mlans$effects$basicRate])

If the maximum is less than 0.4, mult is OK, and you are done
(or you might even try to reduce mult, if the maximum is much lower).
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The function sienaBayes Multiplication factor

Setting the multiplication factor (3)

5 If the maximum is greater than 0.4, make mult into a vector of length
nGroups × nPeriods and increase the coordinate of mult
for those group/wave combinations for which ac is greater than 0.4.
Given that you started with mult=5, an example for doing this,
in the case of one dependent variable, is
mult.r <− round(20*mlans$ac[mlans$effects$basicRate], 1)

This will set the multiplication factor to 5 for group/wave combinations
for which ac was exactly 0.4,
and the others to a proportionally lower or higher value,
with rounding to get nice values.
Inspect the values:
hist(mult.r)

just to have an idea of their sizes.
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The function sienaBayes Multiplication factor

Setting the multiplication factor (4)

6 Create an algorithm object by sienaAlgorithmCreate,
still using nsub=2, n3=500, maxlike=TRUE,
but now with mult=mult.r,
where mult.r is the new vector multiplication factor.

7 Now estimate the model again, using this algorithm object,
and with prevAns=mlans. Again, convergence is not necessary.
Give the result a new name, e.g., mlans2.

8 Again inspect the autocorrelations for mlans2,
focusing on those for the rate parameters.
The autocorrelations are random variables (like anything),
so they will not necessarily have become smaller....
If all are less than 0.4, you are done, and
you can use this mult=mult.r for the estimations using sienaBayes.
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The function sienaBayes Multiplication factor

Setting the multiplication factor (5)

9 If some of the autocorrelations are higher than 0.4,
make further modifications to the multiplication factor
in accordance with the approach above.

10 The multiplication factor found in this way can be used also
for estimating more complicated models
for the same data set using sienaBayes.

11 Since autocorrelations are random variables,
and the threshold of 0.4 is no more than a rule of thumb,
do not mind small variations.
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Prolonging sienaBayes
If you decide that your sienaBayes run was too short,
you can prolong it giving it as the prevBayes parameter
to a new run of sienaBayes.

This should have the same prior distribution.
The initialization then is skipped, and the new runs
start at the end of the earlier runs.

If newProposalFromPrev=TRUE, the proposal distribution will be
determined from the results of the prevBayes object;
if newProposalFromPrev=FALSE, the proposal distribution will be
identical to the one of the prevBayes object.

Advice: use newProposalFromPrev=TRUE if the trace plots of the
prevBayes object are not very stable.
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The main parameters of the function (1)
data: a sienaGroup object,
created by sienaGroupCreate; at least two groups!
the same data structure as for a multi-group analysis.

effects: a regular sienaEffects object;
but now its random column also is important;
this is set using the parameter random in functions setEffect
and includeInteraction.
printed by
print(myeff, includeRandoms=TRUE)

perhaps use also (..., dropRates=TRUE).
This also gives the dimensions for priorMu, priorSigma.
Rate effects depending on actor covariates or degrees are not
implemented.
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The main parameters of the function (2)

algo: a sienaAlgorithm object created by
sienaAlgorithmCreate; currently, mainly the mult

and seed parameters are relevant;
note that mult can be a number or a vector; see below.

saveFreq: frequency for saving intermediate results. Important
to protect against losing everything
in case of a failure of some kind.
Provisional results are save as object z in a file
PartialBayesResult.RData (overwriting!).
This can be used as prevBayes, see below.
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The main parameters of the function (3)

initGainGlobal, step size in the initialization MoM estimation
for the total data set.
Can be chosen smaller to improve stability.

initGainGroupwise, step size in the initialization MoM
estimation for the separate groups. Can be chosen smaller, or
even 0, to obtain stability for small groups.
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The main parameters of the function (4): priors

priorMu, priorSigma, priorDf, priorKappa,
priorMeanEta, priorSigEta: see above.

priorRatesFromData: if 1 or 2 (default),
priors for the basic rate parameters are calculated from the data;
admissible for these ‘nuisance parameters’.
Then priorMu and priorSigma still need to include values for
the rates for the priors (the basic rates are always counted among
the randomly varying parameters), but these values are not taken
into account.
reductionFactor: multiplier for the observed covariance matrix of rate
parameters to get the prior covariance matrix for the basic rate parameters.
Can be between 0 and 1 in case of too strong variation between
these estimated rates. Usually no need to use it.
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Main parameters (5): less important
incidentalBasicRates: the value TRUE can be tried out if
convergence is difficult mainly because of the basic rate
parameters. The basic rate parameters then are taken out of the
Bayesian estimation and estimated by Maximum Likelihood.
Experimental. (Target density of the MCMC process then is profile likelihood,

maximized over rate parameters.)

nImproveMH: Number of iterations per improveMH step.
Can be chosen smaller if faster computations are required. Small
values will lead to less precise tuning.

targetMHProb: the desired proportion of acceptances in MCMC
steps of updating θ

(1)
j , µ, η,Σ.

Theoretical optimal value 0.25, tried to be reached by
improveMH. Experimental.
© Tom A.B. Snijders sienaBayes April 2024 49 / 62



The function sienaBayes Multiplication factor

Main parameters (6): numbers of iterations

nwarm: number of warming iterations.
Advice: start with 100 or 200; if you get experience with a data set and
see that convergence sets in later or earlier, change accordingly.

nmain: number of main iterations.
Advice: start with 200 for explorations (computing times, etc.); try 1000
for real work; always later stretches can be added using prevBayes

(see below).

nrunMHBatches: proportion of steps for thinning.
Each of the nwarm and the nmain iterations is composed of
nrunMHBatches steps. What counts are effectively the products
(nrunMHBatches × nwarm) and (nrunMHBatches × nmain).
Sometimes higher, sometimes lower values can be used.
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Main parameters (7): initialization object

prevAns: A sienaFit object, estimated by siena07 (usually MoM,
conditional=FALSE, ML also possible) for the same effects object
(but random column does not matter). It does not need to have
converged well! This then is used for the initialization, of which the first
part will be skipped.
It is advisable to carry out such a MoM estimation as a first exploration
anyway.
When you estimated earlier with sienaBayes for this effects object,
perhaps different choice of randomly varying parameters, and obtained
object ans.b, then you can use
prevAns=ans.b$initialResults.

usePrevOnly: if FALSE, then even with a prevAns object the
initialization still will be performed entirely, but starting with the prevAns

object. See help page for details.
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Main parameters (8): continuing earlier estimation

prevBayes: A sienaBayes object, estimated by sienaBayes
for the same data, effects, algo objects.
Initialization then is skipped, and the MCMC process continues
from the last point reached by the prevBayes object. nwarm
does not matter; nmain is the number of new (additional)
iterations; use the same values for the prior parameters unless
you want to experiment with changing them.

proposalFromPrev: whether improveMH again is performed,
now using the covariance matrix of the simulated parameters,
when using a prevBayes object.
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Main parameters (9): parallel processing

nbrNodes: number of parallel processes.
See help page for siena07 for determining the number of
processes you can use on your machine.
For sienaBayes as well as siena07-ML, parallellization is by
period (groups multiply the periods). So for 4 groups with 2 waves
you cannot use more than 4 processes.

clusterType: type of cluster for your machine.

The parallel processing implemented in sienaBayes
does not work on all hardware.
If you want to look behind the screens:
all parallellization happens within the function sienaBayes.
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Combining several sienaBayes objects

When you have several sienaBayes objects for the same data and
model specification (including choice of random effects), e.g. through
use of prevBayes, they can be combined by

glueBayes: produces one new sienaBayes object by
concatenating two sienaBayes objects;

extractSienaBayes: extracts simulated parameters from a list
of sienaBayes objects;
this can be used with a list of one such object, then think of using
drop(extractSienaBayes(....

to get rid of the superfluous dimension.
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Maximum degree differences, and estimated rate parameters
and autocorrelations for rate parameters from the ML estimation
can be used as diagnostics.

They may point to groups that can be considered outliers,
which then should be scrutinized, perhaps dropped,
or modified (replacing unlikely values by NA).
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Plotting the posterior means

Posterior means can be plotted by the function plotPostMeansMDS.

I use this mainly as a diagnostic
for whether there are too many random effects.

If there are too many random effects
(in view of what is reasonable given the number of groups)
the ‘estimation’ of the random effects
will be trapped randomly by a few groups,
and this will show in a pattern with a dense core and a few outliers,
where the outlying groups will be different in different runs
of sienaBayes (with different random number seeds).

In this case, there probably also will be poor convergence.
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Examples of MDS plots of posterior means
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For a reasonable number of random effects,
the MDS plot of the posterior means can be used
as a diagnostic for outlying groups.
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The Siena scripts page contains some examples of the use of sienaBayes;
see http://www.stats.ox.ac.uk/~snijders/siena/

An example of the meta-analysis approach (not the integrated random
parameter approach) using Chris Baerveldt’s data is in the script

RscriptMultipleGroups_meta.R

on the scripts page of the Siena website.

RSiena manual: Chapter 11.
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