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Abstract
Actor-oriented models are proposed for the statistical analysis of longitudinal social
network data. These models are implemented as simulation models, and the statis-
tical evaluation is based on the method of moments and the Robbins-Monro process
applied to computer simulation outcomes. In this approach, the calculations that
are required for statistical inference are too complex to be carried out analytically,
and therefore they are replaced by computer simulation.

The statistical models are continuous-time Markov chains. It is shown how the
reciprocity model of Wasserman and Leenders can be formulated as a special case
of the actor-oriented model.

1 Introduction

Social networks are structures consisting of dyadic relations, or ties, between
individuals or other units (organisations, countries, etc.); a commonly used
term for these units is actors, stressing their active role in the constitution
of the networks. The relations between two individuals are not necessarily
symmetric. Examples of such dyadic relations are friendship, esteem, cooper-
ation, etc. An introduction to social network analysis is given by (Wasserman
& Faust 1994).

This paper is concerned with entire networks, where all relationships within
a given set of n actors are considered. Such a network can be represented by
an n× n matrix X = (Xij), where Xij is a number or a vector representing
the relation directed from actor i to actor j (i, j = 1, ..., n) . Self-relations
are not considered, so that the diagonal values Xii are meaningless. In this
paper we only consider dichotomous relations: the relation (e.g., friendship)
can be present from i to j, denoted Xij = 1, or it can be absent, denoted
Xij = 0. The diagonal values are formally defined as Xii = 0. The network
can be represented by a directed graph, with X as its adjacency matrix.

The statistical analysis of social networks is difficult because each data
point, Xij , refers to two individuals rather than to just one. This leads to a
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complicated dependence structure of the elements of X. Some examples of
interesting kinds of dependence are the following.

? Reciprocity : the dependence between Xij and Xji. This type of de-
pendence is so important that often these two reciprocal relations are
considered jointly. The pair (Xij , Xji) is called a dyad.

? The dependence between the elements of each row, corresponding to
out-going relations of the same actor i. This actor is called the sender
of these relations. The out-degree of an actor,

∑
j Xij , is an indicator

for the ‘activity’ of sender i.
? The dependence between the elements of each column, corresponding to

in-coming relations of the same actor i. This actor is called the receiver
of these relations. The in-degree of an actor,

∑
j Xji, is an indicator for

the ‘popularity’ of receiver i.
? Transitivity : ”a friend of my friend is also my friend”, which implies a

dependence between triples of actors.
? Group formation, which implies a dependence between sets of three or

more actors.

Longitudinal data is much more informative about the studied phenomena
in social networks than cross-sectional data, but creates additional problems
for statistical analysis. An interesting collection of papers about longitudinal
social networks is (Doreian & Stokman 1997).

Example. As an example, we use the Electronic Information Exchange Sys-
tem (EIES) data collected by (Freeman & Freeman 1979) and reproduced in
(Wasserman & Faust 1994). More information can be found in these refe-
rences. We use complete data on 32 researchers who participated in a study
on the effects of electronic information exchange. Two measures of acquain-
tanceship are used, collected before and after the study (8 months apart).
The data as reproduced by Wasserman & Faust were dichotomized: 1 (”po-
sitive relation”) for having met or being a friend (or close friend) of the other,
0 (”null relation”) for not knowing or at least not having met the other. In
addition, a dichotomous individual-bound covariate wi is used: the number
of citations of the researcher’s work in the SSCI in the year before the re-
search started. This variable was dichotomized: wi = 0 for 12 or less citations,
wi = 1 for more than 12 citations.

At the first measurement, 513 of the n(n − 1) = 992 directed relations
were positive, which leads to a density of 513/992 = 0.52. Of these positive
relations, 7 had changed to a null relation at the second measurement (this
change from ”knowing” to ”not knowing” is rather unlikely, and happened
very infrequently), while of the 479 null relations at the first time point, 147
had changed to a positive relation at the second time point. Thus the density
at the second time point had increased to 653/992 = 0.66. Below we shall
study the structure of change that took place.
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The present paper is about statistical procedures for time-series X(t), t ∈ T
of social networks for a constant set {1, ..., n} of actors, where the set of
observation times is finite, T = {t1, ..., tM}. The examples are longitudinal
data with M = 2 observation times, but the methods treated can also be
used for larger numbers of observation times.

Existing methods for longitudinal social networks can be roughly divided
into two types, each with their own shortcomings: simulation models that are
not a suitable basis for data analysis because either they are deterministic,
or they are are not accompanied by methods for relating the model to obser-
vational data; and statistical models with unrealistic assumptions or a lack
of flexibility.

If we wish to compare, on the basis of empirical evidence, several simulation
models based on different assumptions or theories, then we need some kind of
statistical framework. In our view it is preferable to use stochastic simulation
models because they explicitly take into account the uncertain nature of
observational data. The stochastic element has to be included in such a way
that it can be interpreted as a source of unexplained variability, similar to
the error term in linear regression analysis. If stochastic simulation models
also include a number of unknown parameters that can be “fitted to data”,
then in principle it is possible to use them for statistical inference: parameter
estimation, tests of parameters and of goodness of fit. Such an approach will
eventually lead to more realistic simulation models and more theoretically
relevant data analysis.

Realistic models for longitudinal social network data are necessarily quite
complex. The lack of practical statistical methods for dealing with such mod-
els has been a severe restriction for the development of a methodology for
longitudinal social networks analysis. Overviews of some statistical models for
longitudinal social networks are given by (Frank 1991) and (Snijders 1995).
Earlier statistical methods for change in networks succeeded in taking ac-
count of reciprocity, sender, and receiver effects, but not of more involved
effects such as transitivity or group formation. The most promising earlier
models are the continuous-time Markov chain models proposed by (Wasser-
man 1977, 1979, 1980) and (Leenders 1995a, 1995b). However, these models
still assume conditional dyad independence, i.e., when t1 and t2 are consec-
utive observation times, they assume that, conditional on X(t1), the dyad
(Xij(t2), Xji(t2)) is stochastically independent of all other dyads. This as-
sumption effectively allows to change the analysis from the level of the net-
work to the level of the dyad. This is computationally attractive, but does not
leave much room for realistic statistical modeling. Effects such as transitivity,
that lead to dependence in the relations between sets of three or more actors,
cannot be represented by models with conditional dyad independence.

A solution to this problem was proposed by (Snijders 1996) in the form of
so-called stochastic actor-oriented models. In these models non-deterministic
rules are formulated that govern the behavior of actors in the network. Ac-
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tors’ behavior is defined as changing their own relations by choosing from
several alternatives and is aimed at maximization of an objective function
under constraints. The objective function may be regarded as a utility, or
expected utility, function. The objective function and the constraints are
actor-dependent. The position of the actor in the network is an important
part of the constraints.

In contrast to many usual simulation models, the objective functions in-
clude a random element. This disturbance makes the model stochastic, and
thereby allows deviations between predicted and observed outcomes.

The statistical character of the model enables the estimation of its param-
eters. The estimation uses the method of moments, implemented with the
Robbins-Monro algorithm and computer simulation. Thus, since the param-
eters of the statistical model can be tested, the underlying theory as expressed
in the objective function can be tested as well. The statistical model is pre-
sented in more detail in the next section.

This approach uses simulation models not as theoretical metaphors, but as
statistical models for data. This means that the simulation models must be
taken more seriously than is sometimes done, and that empirical data must
be used to develop the statistical model in order to obtain an adequate fit
between model and data.

This paper focuses, first, on the formulation of actor-oriented models for
dichotomous relations, i.e., for social networks represented as directed graphs.
In the model of (Snijders 1996), the actors’ actions are propelled by utility
functions, or objective functions, reflecting their evaluation of given network
configurations. In the present paper, not only an objective function but also a
“gratification function” is included. This function reflects the instantaneous
evaluation of a change of the actor’s relations. This creates a greater flexibility
in modeling. The second focus of this paper is on the relation between the
actor-oriented models and the dyadic independence models of Wasserman
and Leenders. It will be shown that the gratification function is necessary to
formulate the dyadic independence models as a special case of actor-oriented
models.

The authors are working on the empirical application of these models, cf.
(Van de Bunt, Van Duijn & Snijders 1995).

2 Stochastic actor-oriented models
for change in networks

In this section we develop the principle of actor-oriented models for the stan-
dard social network data structure of directed graphs, i.e., a dichotomous
relational variable Xij . (In (Snijders 1996), these models were proposed for a
more special data structure in view of an example application to the data set
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of (Newcomb 1961).) It is assumed here that the set of actors is fixed. The
number of actors is denoted n.

2.1 Basic model ingredients

A directed graph X can be represented by its “sociomatrix”, or adjacency ma-
trix, i.e., an n×n matrix Xij with elements that can be 0 or 1, depending on
whether the given relationship is absent (Xij = 0) or present (Xij = 1) from
i to j. The class of all sociomatrices, i.e., of all n×n matrices of 0-1 elements
with a zero diagonal, is denoted by X . We consider data consisting of a time
series X(tm), m = 1, ...,M of directed graphs, and statistical models where
such a time series is embedded in an (unobserved) continuous-time process
X(t) with t1 ≤ t ≤ tM . The reasons for assuming an underlying continuous-
time process are, first, the fact that in reality change also takes place between
the observation times and, second, that this assumption permits a simpler
and more straightforward approach than discrete time modeling.

It is assumed that each actor “controls” his outgoing relations, which are
collected in the row vector (Xi1(t), ..., Xin(t)). At stochastic times, with a dis-
tribution determined by the functions λi introduced below, the actors have
the opportunity to change these outgoing relations. When an actor changes
his outgoing relations, he is assumed to pursue two “goals”: attaining a re-
warding configuration for himself in the network; and instaneous gratification
inherent in the action of a specific change. (The word “gratification” must be
understood in a generalized sense; this component can stand for, e.g., minus
the costs associated with making a given change.) These two goals are mod-
eled in the functions f and g below. In addition, the actions of each actor are
propelled by a random component, representing the actor’s drives that are
not explicitly modeled. This actor-oriented model represents the idea that ac-
tors pursue their own goals under the constraints of their environment, while
they themselves constitute each others’ changing environment (cf. Zeggelink,
1994).

The actors act independently, given the current network structure. At any
single time point, at most one actor may change his outgoing relations. Fur-
thermore, he may change only one relation at the time. Of course, many small
changes between two observation times can result in a big difference between
the two observed networks. The fact that the model specification focuses on
changes of single relations is the major reason why continuous time modeling
is relatively straightforward. (An example of a continuous-time model where
more than one relation can change at one time point is given by (Mayer,
1984).)

The model specification is given by the following three families of functions,
all depending on a K-dimensional statistical parameter θ that assumes values
in an open set Θ ⊂ IRK . This θ plays the usual role of a statistical parameter,
and methods will be proposed for estimating this parameter from the data.
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1. A family of rate functions

λi(θ, x) , i = 1, ..., n, x ∈ X , (1)

which indicate the rate at which actor i is allowed to change something
in his outgoing relations.

2. A family of objective functions with respect to the network configura-
tion,

fi(θ, x) , i = 1, ..., n, x ∈ X , (2)

which indicate the preference of actor i for the relational situation rep-
resented by x.

3. A family of gratification functions

gi(θ, x, j) , i, j = 1, ..., n, i 6= j, x ∈ X , (3)

which indicate the instantaneous gratification experienced by actor i
when, from the given network configuration x, element xij is changed
into its opposite, 1− xij .

Whenever actor i has the opportunity to change his outgoing relations, he
changes one relation, say xij . He can withdraw an outgoing tie to one of the
actors to whom he has such a tie, or initiate an outgoing tie to one of the
actors to whom he does not have a tie. The network that results when the
single element xij is changed into 1− xij , is denoted by x(i ; j). When the
current network is x, actor i has the choice between changes to x(i ; j) for
all different j. The momentary total objective function maximized by i is the
sum of the actor’s preference for the new state, the gratification experienced
as a result of the change, and a random element:

fi(θ, x(i ; j)) + gi(θ, x, j) + Ui(t, x, j) . (4)

The term Ui(t, x, j) is a random variable, indicating the part of the actor’s
preference that is not represented by the systematic components fi and gi .
In this paper, it is assumed that these random variables are independent and
identically distributed for all i, t, x, j.

Markov chain with random utility component

These functions are used in the following way to define a continuous-time
Markov chain X(t) with the finite outcome space X . (For an introduction to
continuous time Markov chains, see (Norris, 1997)). Events, i.e., changes of
the network structure, take place at discrete time points; in between these
points, the network structure remains constant. The process is modeled as
being right-continuous: if a change takes place from state x0 to state x1 at
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time t0, then X(t) = x0 for t sufficiently close to, but smaller than t0, while
X(t) = x1 for t = t0 and also for t sufficiently close to, but larger than t0.

The n actors are acting independently, given the current state of the net-
work. Each of them has the individual change rate λi(x, θ). At each time point
t, the time until the next change by any actor has the negative exponential
distribution with parameter

λ+(θ, x) =
n∑
i=1

λi(θ, x) , where x = x(t) . (5)

The parameter of the negative exponential distribution is taken here as the
reciprocal of the expectation, so the expected waiting time until the next
change after time t is 1/λ+(θ, x(t)). Given that an event occurs, the actor
who may change his out-relations is actor i with probability

λi(θ, x)
λ+(θ, x)

. (6)

Given that actor i may change his outgoing relations, he chooses to change
his relation to that actor j (j 6= i) for whom the value of the momentary total
utility function (4) is highest.

It is convenient to let the Ui(t, x, j) have the type 1 extreme value dis-
tribution with mean 0 and scale parameter 1. This assumption is commonly
made in random utility modeling in econometrics, cf. (Maddala, 1983). When
this distribuition is used, and denoting the systematic part of the momentary
objective function by

r(θ, i, j, x) = fi(θ, x(i ; j)) + gi(θ, x, j) ,

the probability of change j is given by the multinomial logit expression, cf.
(Maddala 1983, 60),

pij(θ, x) =
exp(r(θ, i, j, x))∑n

h=1,h 6=i exp(r(θ, i, h, x))
(j 6= i). (7)

This expression will be used further in this paper.
From expression (4) or (7) it follows that this probability does not change

when to r(θ, i, j, x) a term is added that does not depend on j. It is often
more convenient to work with

r(θ, i, j, x) = fi(θ, x(i ; j))− fi(θ, x) + gi(θ, x, j) . (8)

The instantaneous effect gi is a more general model component than the ob-
jective function fi , since (8) itself could be used as the gratification function,
without the need also to have an objective function. The reverse, however, is
not true: a non-trivial gratification function cannot always be expressed as
a difference between objective function values. The reason for not working
with just the gratification function is that the objective function, attaching
a value to each network configuration, is conceptually more attractive and
better interpretable than the instantaneous gratification effect.
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Intensity matrix

Transition distributions of continuous-time Markov chains are characterized
by their intensity matrix, infinitesimal generator, or generator matrix, cf.
(Norris, 1997). In our case, where relations are allowed to change only one
at a time, this generator matrix can be represented1 by the functions qij(x),
indicating the change rates of x to x(i ; j). These functions are defined as

qij(x) = lim
dt ↓ 0

P{X(t+ dt) = x(i ; j) | X(t) = x}
dt

i, j = 1, ..., n, i 6= j .

(9)
It can be proven that this is given by

qij(x) = λi(θ, x) pij(θ, x) . (10)

Computer simulation

With the specifications given here, a computer simulation of this stochas-
tic process can be set up. It is convenient to construct the continuous-time
Markov chain as the combination of its holding times and its jump process, cf.
(Norris 1997, Section 2.6). The holding times are the times between consecu-
tive changes, and have the negative exponential distribution with parameter
(5). The jump process is the process of consecutive distinct states visited by
the Markov chain. The simulation algorithm is as follows; S is the holding
time and x the outcome of the jump process.

1. Set t = 0 and x = X(0).

2. Generate S according to the negative exponential distribution with
mean 1/λ+(θ, x) .

3. Select randomly i ∈ {1, ..., n} using probabilities (6).

4. Select randomly j ∈ {1, ..., n}, j 6= i using probabilities (7).

5. Set t = t+ S and x = x(i ; j).

6. Go to step 2 (unless the stopping criterion is satisfied).

2.2 Specification of the model

The model is specified by the choice of the functions λi , fi , and gi and the way
in which they depend on the K-dimensional parameter θ. In the mathemat-
ically simplest case, the change rates λi(x) are constant, e.g., λi(θ, x) ≡ θ1.

1For those who know the theory of continuous-time Markov chains, it will be
clear that the generator matrix of this chain is a matrix with 2n(n−1) rows and
columns, filled at appropriate places with the elements qij as defined here, and
with zeros elsewhere.
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The change rates can also depend on the position in the group (e.g., actors
who are dissatisfied with their relation might change faster than those who
are more satisfied) or on actor-dependent characteristics (e.g., newcomers in
the group may change faster than those who have been in the group longer).
Some specifications of the change rate are mentioned in the section on the
reciprocity model.

The functions fi and gi must contain the substantive ingredients of the
model, including, e.g., actor attributes and structural properties of the di-
rected graph. Since the actor has direct control only of his outgoing relations,
it is irrelevant in this model to have components in fi or gi that are a function
only of other parts of the directed graph.

A possible choice for fi is to define it as a sum of some of the following
terms, where the weights θ2, θ3, etc., are statistical parameters indicating the
strength of the corresponding effect, controlling for all other effects in the
model. For effects (3) and (4), it is assumed that an actor-bound covariate
W , with values wi, is available. All formulae indicate a contribution to the
objective function of actor i, while the other actors to whom i could be related
are indicated by j.

1. θ2

∑
j xij : out-degree; θ2 reflects the value of activity for actor i;

2. θ3

∑
j xijxji : number of reciprocated relations; θ3 reflects the value of

reciprocated relations;

3. θ4

∑
j xijwj : the sum of the covariate over all actors to whom i has a

relation; θ4 reflects the aspiration of the actor to have relations with
others who score high on W ;

4. θ5

∑
j xij |wi − wj | : the sum of absolute covariate differences between

i and the others to whom he is related; θ5 reflects the preference for
similar others;

5. θ6

∑
j xij

∑
h xhj : the sum of the popularity (as measured by the in-

degree
∑
h xhj) of all actors to whom i is related; θ6 reflects the pref-

erence for popular others;

6. θ7 #{j | xij = 0,
∑
h xihxhj > 0} : the number of actors i is indirectly

related to (through one intermediary, i.e., at sociometric distance 2);
θ7 reflects the value of indirect relations;

7. θ8

∑
j,h xijxihxjh : the number of transitive patterns in i’s relations

(ordered pairs of actors (j, h) to whom i is related, while also j is
related to h); θ8 reflects the value of having relations to others who are
related among themselves.

Examples of terms that can be included in the instantaneous effects
gi(θ, x, j) are the following. Note that the presence of a factor xij in a term
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in gi indicates that this term refers to breaking off an existing relationship,
while a factor (1− xij) refers to establishing a new relation.

1. θ9 xijxji : indicator of a reciprocated relation; a negative value of θ9

reflects the costs associated with breaking off a reciprocated relation.

2. θ10 (1 − xij)
∑
h xihxhj : the number of actors through whom i is in-

directly related to j; a positive value of θ10 reflects that it is easier
to establish a new relation to another actor j if i has many indirect
relations to j via others who can serve as an introduction.

These lists can be extended with other components. Theoretical insights in
the relational process and experience with modeling the type of data have to
determine the effects that are included.

3 Statistical estimation

The functions λi , fi , and gi depend on a parameter θ that must be esti-
mated from the data. The available data are the observed digraphs x(t), t =
t1, ..., tM (M ≥ 2); and covariates if these are included in the functions λi , fi ,
or gi . The estimation methods considered here condition on the observed
value x(t1) at the first time point, and do not make the assumption of a
stationary distribution for X(t). The approach to estimation followed is the
same as proposed in (Snijders 1996), where further elaboration can be found.

3.1 Method of moments

Assume first that λi(x) = θ1 and that

fi(θ, x) =
K−1∑
k=1

θk+1 sik(x) , gi ≡ 0 ,

where the sik(x) are suitable digraph statistics such as those mentioned in
the list of examples above.

The method of moments, cf. (Bowman & Shenton, 1985), is used to estimate
θ. For this estimation method we need K statistics that carry information
about the K parameters θk. For θ1, a relevant statistic is the amount of
change, measured by the sum of distances between successive observations,

C =
M∑
m=2

n∑
i,j=1
i 6=j

|Xij(tm)−Xij(tm−1)| . (11)

For θk+1 with k = 1, ...,K − 1, a relevant statistic is the sum over all actors
i of the digraph statistics sik, as observed at the final observation moment:
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Sk =
n∑
i=1

sik(X(tM )) . (12)

These statistics are collected in the vector Z = (C,S1, ..., SK−1). Stochastic
variables and observations will be distinguished in the notation by indicating
the former by capitals and the latter by lower case letters. Accordingly, z
denotes the observed value for Z.

The moment estimate θ̂ is defined as the parameter value for which the
expected value of the statistic is equal to the observed value:

E θ̂Z = z . (13)

The statistical efficiency of this estimator depends, of course, on the choice
of the statistics Z, cf. (Bowman & Shenton 1985) and (Snijders 1996).

For model specifications with more complex functions λi , and with non-
zero gi , the vector of statistics Z has to be chosen in other ways, so that it is
informative about the parameter values. More research is needed about this
choice; some illustrations are given below.

3.1.1 Robbins-Monro process

Equation (13) cannot be solved by analytical or the usual numerical proce-
dures, because (except for some simple cases) the expected value EθZ cannot
be calculated explicitly. However, the solution can be approximated by the
Robbins-Monro method (proposed by (Robbins & Monro 1951); for an intro-
duction see, e.g., (Ruppert, 1991)). The Robbins-Monro method is a stochas-
tic approximation algorithm that yields values θ̂N by an iterative simulation
process. If certain conditions are satisfied, this sequence converges to the so-
lution of the moment equation (13). The iteration step of the Robbins-Monro
algorithm is defined as

θ̂N+1 = θ̂N −
1
N
D−1
N (zN − z) , (14)

where DN is a suitable matrix. The optimal value of DN is the derivative ma-
trix Dθ = (∂EθZ/∂θ). In adaptive Robbins-Monro procedures, this derivative
matrix is estimated during the approximation process. In (Snijders 1996) it
is proposed to compute DN by estimating the derivative matrix using com-
mon random numbers. In practice it cannot be guaranteed in the applications
considered here that the process will converge, and it is advised to check the
approximate validity of (13) for the solution found by carrying out a number
of simulation runs for the found value θ̂.

A loose description of the estimation algorithm using the Robbins-Monro
algorithm is the following.

1. Choose a starting value θ̂1 and a suitable matrix D1. Set N = 1.
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2. For m = 1, ...,M − 1:

(i) Set x = x(tm);
(ii) Simulate the continuous time Markov chain starting at t = tm

and continuing until t = tm+1, with parameter θ = θ̂N .
(The algorithm for this simulation was given above.)

3. Compute from this simulation the vector of statistics Z and denote its
outcome by zN .

4. Define θ̂N+1 by (14), set N = N + 1 and update DN .

5. Go to step 2, unless the convergence criterion (cf. (Snijders, 1996)) is
satisfied.

An alternative estimation method on the basis of simulations of the prob-
abilistic model is the method of simulated moments proposed by (McFadden
1989) and by (Pakes & Pollard 1989), also see (Gouriéroux & Montfort 1996).

4 Dyadic Markov models for network change

Models for change in digraphs were proposed by (Wasserman 1977, 1979,
1980). In these models, the dyads are independent. The models are continuous-
time Markov chains, like the actor-oriented models. Therefore they are com-
pletely specified by the infinitesimal generator matrix. Since these, too, are
models where relations change only one at a time, they are determined com-
pletely by the matrix (qij) defined in (9).

The basic model in this class is the reciprocity model, where the change
rate from xij = 0 to xij = 1 is defined by

qij(x) = λ0 + µ0xji (xij = 0) , (15)

while the change rate from xij = 1 to xij = 0 is defined by

qij(x) = λ1 + µ1xji (xij = 1) . (16)

The parameters λ0, λ1, µ0, µ1 are allowed to depend on dyad-bound covari-
ates, e.g., variables indicating the similarity between actors i and j; see (Leen-
ders 1995a). Since the change rates depend only on functions of the dyad,
the dyads are independent in this model. A method for calculating maximum
likelihood (ML) estimators for these parameters was given by (Wasserman
1977), with a correction by (Leenders 1995a).

The advantage of the reciprocity model is that ML estimators can be calcu-
lated numerically. The disadvantage is the restrictive assumption of dyad in-
dependence. This precludes the modeling of effects that involve three or more
actors, such as transitivity or group formation. In (Leenders 1995b), a method



505

is proposed to estimate a transitivity model on the basis of the reciprocity
model, but the statistical treatment is of an approximate nature because
calculations are still made as if the dyads change independently. (Wasser-
man 1977, 1980) also treats popularity and expansiveness models where the
change rates depend on in- or out-degrees, respectively, and where the reci-
procity effect is absent. This leads to adjacency matrices where columns or
rows, respectively, are independent. Wasserman presents estimators for the
parameters, but these can be derived only under the usually rather unrealistic
assumption of a stationary process.

5 Formulation of dyadic models
as actor-oriented models

What is the relation between the reciprocity model and the actor-oriented
model for network change? Both are continuous-time Markov chain models,
in which at a given time point t at most one element xij of the adjacency
matrix may change. This implies that these models can be compared on the
basis of the change rate functions qij(x) defined in (9).

For the reciprocity model, the change rates are given above in (15), (16).
For the actor-oriented model (option 1), the change rates are given in (10).
This section elaborates the correspondence between these two models. (Note
that λ0 and λ1 occurring in the reciprocity model should be distinguished
from λi(x, θ) occurring in the actor-oriented model.)

5.1 Independent relations model

In the simplest model, all n(n − 1) relations xij change independently. In
other words, the reciprocity effect is absent. This corresponds to µ0 = µ1 = 0
in (15), (16). To find an actor-oriented representation, define

fi(θ, x) = θ2 xi+ , (17)

where replacing an index by + denotes summation over this index, and define
gi ≡ 0. Then it follows from (8) that adding a new outgoing relation adds
θ2 while withdrawing an existing relation subtracts θ2 from the objective
function, i.e.,

r(θ, i, j, x) = fi(θ, x(i ; j))− fi(θ, x) =
{
θ2 (xij = 0) ,
−θ2 (xij = 1) .

With (7), this yields the probabilities

pij(θ, x) =
(1− xij) exp(θ2) + xij exp(−θ2)

(n− xi+ − 1) exp(θ2) + xi+ exp(−θ2)
.

To obtain the reciprocity model (15), (16) with µ0 = µ1 = 0, we can take
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λi(θ, x) = θ1 {(n− xi+ − 1) exp(θ2) + xi+ exp(−θ2)} /(n− 1) , (18)

and the parameters correspond according to

λ0 = (θ1/(n− 1)) exp(θ2) ,
λ1 = (θ1/(n− 1)) exp(−θ2) . (19)

This illustrates that under the independent relations model with, e.g., θ2 >
0, the actors with a smaller out-degree change their relations at a faster rate
than the actors with a larger out-degree.

To obtain a model that includes as special cases the independent relations
model as well as the actor-oriented model with a constant rate function, the
objective function (17) is used while expression (18) for the change rate is
replaced by

λi(θ, x) = θ1 {(n− xi+ − 1) exp(−θ3) + xi+ exp(θ3)} /(n− 1) . (20)

A constant rate function corresponds to θ3 = 0; the independent relations
model is obtained for θ3 = −θ2 .

Analytical properties

For the independent relations model, more properties can be calculated ana-
lytically than for the general reciprocity model. This provides opportunities
for checking the results of simulation-based calculations.

In the independent relations model, we have n(n−1) dichotomous variables
Xij that are independently carrying out “on – off” processes, with a rate λ0

for going from 0 to 1, and a rate λ1 for going from 1 to 0. Consider one such
dichotomous variable X0(t), and denote by ξx(t) = E{X0(t) | X0(0) = x} its
expectation, conditional on X0(0) = x, for x = 0, 1. Then, by conditioning
on X0(t), it can be derived that for small dt we have the difference equation

ξx(t+ dt)− ξx(t) ≈ (1− ξx(t))(λ0 dt) − ξx(t)(λ1 dt) .

This leads to the differential equation

ξ′x(t) = λ0 − (λ0 + λ1)ξx(t)

with the solution

ξx(t) =
λ0

λ+
− 1
λ+

exp(−λ+(t+ c)) ,

where λ+ = λ0 + λ1 , and c depends on the initial condition. With the initial
conditions ξx(0) = x we obtain the solutions

ξ0(t) =
λ0

λ+
{1− exp(−λ+t)} ,

ξ1(t) =
1
λ+
{λ0 + λ1 exp(−λ+t)} .
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Note that this implies 0 < ξ0(t) < ξ1(t) < 1.
Now consider observations on two stochastic networks (Xij(t1)) and (Xij(t2))

where the change between times t1 and t2 is governed by the independent
relations model. Denote T = t2 − t1. Sufficient statistics are the four change
counts

Nhk = ]{(i, j) | Xij(t1) = h, Xij(t2) = k }

for h, k = 0, 1. The totals N0+ = N00 + N01 and N1+ = N10 + N11 are the
numbers of absent and present relations at time t1. These are treated as given
numbers.

It follows from the independence of the relations together with the results
obtained above about the distribution of X0(t), that N01 and N11 are inde-
pendent binomially distributed random variables, N01 ∼ B(N0+, ξ0(T )) and
N11 ∼ B(N1+, ξ1(T )).

Estimation

The estimation of the independent relations model is elaborated here only
for the case M = 2. Define the relative frequencies

p̂01 =
N01

N0+
, p̂11 =

N11

N1+
.

The independent binomial distributions of N01 and N11 imply that the ML
estimators are the values of λ0 and λ1 for which

p̂01 = ξ0(T ) , p̂11 = ξ1(T ) .

Some algebra shows that the estimates are given by

λ̂0 = − p̂01

T (1 + p̂01 − p̂11)
log(p̂11 − p̂01) ,

λ̂1 = − 1− p̂11

T (1 + p̂01 − p̂11)
log(p̂11 − p̂01) .

These equations are valid only if p̂11 > p̂01. If this condition is not satisfied,
the basic consequence of the independent relations model, ξ0(T ) < ξ1(T ), is
not reflected by the data. This may suggest either that the model does not
fit, or (if p̂11 − p̂01 is negative but small) that the duration T of the period
between the observations is too long for drawing reliable conclusions about
the change rates.

For the actor-oriented approach, Section 3 proposes the moment estima-
tor based on the statistics C and the total number of relations at time t2,
S1 = X++(t2) (cf. (12)). The ML estimator is the moment estimator for the
statistics N01 and N11. Since C = N01+N10 and S1 = N01+N1+−N10, while
N1+ is considered a fixed number because it is a function of x(t1), it can be
concluded that N01 and N11 are linear functions of C and S1. Therefore the
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moment estimator obtained on the basis of the statistics C and S1 also is
identical to the maximum likelihood estimator.

If p̂11 ≤ p̂01, the ML estimator does not exist because the supremum of the
likelihood function, although finite, is not assumed for a finite value of the
parameters λ0, λ1. Under this condition, the moment estimators also do not
exist.

For the actor-oriented model with constant rate function, the recipe of
Section 3 can again be used, with the same statistics.

For the estimation of parameter θ3 in the actor-oriented model specified by
(17) and (20), it is necessary to use information about the relation between
out-degrees and number of changes. Moment estimation for this model when
M = 2 can be based on C,S1, and Cout defined by

Cout =
n∑

i,j=1

Xi+(t1) |Xij(t2)−Xij(t1)| . (21)

Example: the independent relations model. For the EIES data in-
troduced above, we have p̂01 = 0.307 and p̂11 = 0.986, which yields
λ̂0 = 0.370, λ̂1 = 0.0165, corresponding to actor-oriented parameters θ̂1 =
2.418, θ̂2 = 1.557. Estimation by the Robbins-Monro algorithm (with 500
simulation steps) yielded estimates θ̂1 = 2.406 (s.e. 0.22), θ̂2 = 1.557
(s.e. 0.24). These estimates are, of course, stochastic. In view of this, the
correspondence may be called excellent.

For the actor-oriented model specified by (17) and (20), the estimates were
θ̂1 = 4.77 (s.e. 0.40), θ̂2 = 1.69 (s.e. 0.24), θ̂3 = −0.56 (s.e. 0.34). It may
be tentatively concluded that θ3 is less strongly negative than −θ2 , so re-
searchers with a higher out-degree are less active in changing their relations,
but this effect is not as strong as is implied by the independent relations
model.

5.2 Reciprocity model

Now consider the model defined by (15), (16) with arbitrary values of µ0

and µ1 (subject only to the restriction that all change rates are positive).
Consider the actor-oriented model with objective function

fi(θ, x) = θ2 xi+ + θ3

∑
j

xijxji , (22)

still with gi ≡ 0. For this model, adding a relation yields an increase of the
objective function equal to

θ2 + θ3xji ,

while withdrawing a relation decreases the objective function by the same
amount. The probability distribution for changes of x to x(i ; j) therefore
is given by
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pij(θ, x) =
1

n(x, θ)
×


exp(θ2) for xij = xji = 0 ,
exp(θ2 + θ3) for xij = 0, xji = 1 ,
exp(−θ2) for xij = 1, xji = 0 ,
exp(−θ2 − θ3) for xij = xji = 1 ,

(23)

where

n(x, θ) =
n∑
j=1
j 6=i

{(1− xij)(1− xji) exp(θ2) + (1− xij)xji exp(θ2 + θ3) +

xij(1− xji) exp(−θ2) + xijxji exp(−θ2 − θ3)} . (24)

When we also define

λi(x, θ) = θ1
n(x, θ)
n− 1

, (25)

it can be verified that the resulting actor-oriented model is identical to the
reciprocity model with

θ1 = (n− 1)
√
λ0λ1 ,

θ2 = 1
2 log

(
λ0

λ1

)
, (26)

θ3 = log
(
λ0 + µ0

λ0

)
,

and with the proportionality condition

λ0 + µ0

λ0
=

λ1

λ1 + µ1
. (27)

If the proportionality condition (27) is not satisfied, it is still possible to
represent the reciprocity model as an actor-oriented model, but then it is
necessary to include in the model an instantaneous gratification function gi.
Define

gi(θ, x, j) = −θ4 xijxji , (28)

with the interpretation that breaking off a reciprocated relation leads to a
cost (negative gratification, loss, or instantaneous pain) of θ4. In this case,
define

θ4 = log
(

λ0

λ0 + µ0

)
− log

(
λ1 + µ1

λ1

)
, (29)

and replace (24) by

n(x, θ) =
n∑
j=1
j 6=i

{(1− xij)(1− xji) exp(θ2) + (1− xij)xji exp(θ2 + θ3) +

xij(1− xji) exp(−θ2) + xijxji exp(−θ2 − θ3 − θ4)} . (30)
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It can be checked that this specification yields an actor-oriented model for-
mulation of the reciprocity model, valid without the condition (27).

Condition (27) can be regarded as a “conservation of utility” condition. If
it is not satisfied, e.g., (λ0+µ0)/λ0 > λ1/(λ1+µ1), then unilaterally breaking
off a reciprocated relation entails a loss greater than the reward associated
with starting a reciprocated relation.

This model also can be embedded in a model that also contains as a special
case the model with constant change rates. This is achieved by replacing (25)
by

λi(x, θ) =
θ1

n− 1

n∑
j=1
j 6=i

{(1− xij)(1− xji) exp(θ5) + (1− xij)xji exp(θ5 + θ6)

+ xij(1− xji) exp(−θ5) + xijxji exp(−θ5 − θ6 − θ7)} . (31)

Estimation

Again we consider only the case M = 2. For the reciprocity model, the ML
estimator is given in (Wasserman 1977, 1979, 1980) with a correction by
(Leenders 1995a). In the actor-oriented framework, the proposed method of
Section 3 leads, for the model with objective function (22) and gi ≡ 0, to the
moment estimator on the basis of C and the two statistics

S1 = X++(t2) , (32)

S2 =
n∑

i,j=1

Xij(t2)Xji(t2) .

When also the gratification function (28) is included in the model, a fourth
statistic is necessary, relevant for the loss associated to breaking off recipro-
cated relations. The proposed statistic is

S3 =
n∑

i,j=1

Xij(t1)Xji(t1)(1−Xij(t2)) . (33)

Unlike in the independent relations model, these moment estimators do not
coincide with the ML estimator. The reason is that the reciprocity model is
a “curved exponential family”, for which a sufficient statistic with as many
dimensions (3 or 4) as the parameter vector does not exist.
Example: the reciprocity model. The ML estimates for the parameters
of the reciprocity model for the EIES data, calculated by the method of
Leenders (1995a), are λ̂0 = 0.272, λ̂1 = 0.0907, µ̂0 = 0.478, µ̂1 = −0.0816.
This corresponds to actor-oriented parameters θ̂1 = 5.02, θ̂2 = 0.549, θ̂3 =
1.01, θ̂4 = 1.29.
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The Robbins-Monro method yielded the estimates θ̂1 = 4.53 (s.e. 1.02),
θ̂2 = 0.550 (s.e. 0.22), θ̂3 = 1.03 (s.e. 0.20), θ̂4 = 0.74 (s.e. 1.3). The corre-
spondence is not exact, which is understable given the fact that the estimators
are not equivalent.
Example: a more general actor-oriented model. A more general actor-
oriented model was also estimated. Recall that the actor-bound variable wj
was equal to 0 or 1, respectively, for researchers with low or high citation rates.
Some explorations with various effects led to the following model specification
and estimates. The change rate is modeled by

λi(θ, x) = θ1
{(n− xi+ − 1) exp(−θ2) + xi+ exp(θ2)}

n− 1
,

the utility function by

fi(x, θ) = θ3

∑
j

xij + θ4

∑
j

xijxji + θ5

∑
j

xijwj

+ θ6

∑
j

xij |wi − wj | + θ7

∑
j,h

xijxihxjh ,

and there is no gratification function. The estimated effects are as follows
(with standard errors in parentheses).

θ1 constant factor in rate 4.62 (0.99)
θ2 effect of out-degree on rate -0.69 (0.29)
θ3 number of relations -1.31 (0.58)
θ4 reciprocity 0.92 (0.29)
θ5 popularity of others with high citation rates -0.51 (0.21)
θ6 similarity to others with respect to citation rates 0.20 (0.24)
θ7 transitivity 0.255 (0.075)

The interpretation is that researchers with a high out-degree tend to make
less changes in their relationships; there are clear reciprocity and transitivity
effects; others with high citation rates tend to be chosen less; and the tendency
to choose others with the same citation rate (both high, or both low) is not
significant.

References
Bowman, K.O. & Shenton, L.R. (1985). Method of moments. p. 467 – 473

in Kotz, S., Johnson, N.L. & Read, C.B. (eds.) Encyclopedia of Statistical
Sciences, vol. 5. New York: Wiley.

Doreian, P. & Stokman, F.N. (eds.) (1997). Evolution of Social Networks.
Amsterdam etc.: Gordon and Breach.

Frank, O. (1991). Statistical analysis of change in networks. Statistica Neer-
landica, 45, 283 – 293.

Gouriéroux, C. & Montfort, A. (1996). Simulation-based econometric me-
thods. Oxford: Oxford University Press.



512

Leenders, R.Th.A.J. (1995a). Models for network dynamics: a Markovian
framework. Journal of Mathematical Sociology, 20, 1 – 21.

Leenders, R.Th.A.J. (1995b). Structure and influence. Statistical models for
the dynamics of actor attributes, network structure and their interdepen-
dence. Amsterdam: Thesis Publishers.

Maddala, G.S. (1983). Limited-dependent and qualitative variables in econo-
metrics. Cambridge: Cambridge University Press.

Mayer, T.F. (1984), Parties and networks: stochastic models for relationship
networks. Journal of Mathematical Sociology, 10, 51 – 103.

McFadden, D. (1989). A method of simulated moments for estimation of
discrete response models without numerical integration. Econometrica, 57,
995 – 1026.

Newcomb, T. (1961). The acquaintance process. New York: Holt, Rinehart
and Winston.

Norris, J.R. (1997). Markov Chains. Cambridge: Cambridge University Press.
Pakes, A. & Pollard, D. (1989). The asymptotic distribution of simulation

experiments, Econometrica, 57, 1027 – 1057.
Robbins, H. & Monro, S. (1951). A stochastic approximation method. Annals

of Mathematical Statistics, 22, 400 – 407.
Ruppert, D. (1991). Stochastic approximation. In Gosh, B.K. & Sen, P.K.,

Handbook of Sequential Analysis. New York: Marcel Dekker.
Snijders, T.A.B. (1995), Methods for longitudinal social network data. Pp.

211 – 227 in Tiit, E.-M., Kollo, T. & Niemi, H. (eds.), New Trends in
Probability and Statistics, Vol. 3: Multivariate Statistics and Matrices in
Statistics. Vilnius, Lithiania: TEV and Utrecht, The Netherlands: VSP.

Snijders, T.A.B. (1996). Stochastic actor-oriented models for network change.
Journal of Mathematical Sociology, 21, 149 – 172.

Van de Bunt, G.G., Van Duijn, M.A.J. & Snijders, T.A.B. (1995). Friendship
networks and rational choice. In Proceedings International Conference on
Social Networks, Volume 1: Methodology. London: CASSM, University of
Greenwich.

Wasserman, S. (1977). Stochastic models for directed graphs. Ph.D. disserta-
tion, University of Harvard, Dept. of Statistics.

Wasserman, S. (1979). A stochastic model for directed graphs with transition
rates determined by reciprocity. In Schuessler (ed.), Sociological Methodol-
ogy 1980. San Francisco: Jossey-Bass.

Wasserman, S. (1980). Analyzing social networks as stochastic processes.
Journal of the American Statistical Association, 75, 280 – 294.

Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and
Applications. New York and Cambridge: Cambridge University Press.

Zeggelink, E.P.H. (1994). Dynamics of structure: an individual oriented ap-
proach. Social Networks, 16, 295 – 333.


