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ABSTRACT

Social network data pertain to social relations between individuals, or between other
actors (countries, firms, etc.). The fact that each relation links two individuals, and
each individual can be related with multiple others, resultsin complicated stochastic
dependence structures. Longitudinal studies concerning the change and development of
social networks in time are important for progress in sociology and related disciplines,
but the literature does not contain enough satisfactory statistical models for longitudinal
social network data. The paucity of satisfactory models is related to the difficulty of
reconciling mathematical tractability>with the expression of substantively interesting
processes.

A review is given of models for longitudinal network data. Interesting develop-
ments are taking place in applying continuous-time Markov processes to model net-
work change. Such models can incorporate sociologically important effects. They are
in many aspects similar to computer simulation models .that are common now in so-
ciological theory, but contain a component of random change as an extra ingredient.
Difficulties of mathematical tractability can be resolved by using stochastic approxima-
tion methods to obtain estimators and tests. This is done, however, at the expense of
introducing some new problems: computer intense computations and ‘questions about
statistical efficiency. An example of this approach is given using a time series of
personal preference relations in a closed group.

" 1. STATISTICAL MODELS FOR SOCIAL NETWORKS

Social networks, as studied in sociology and other social sciences, are the
structures consisting of dyadic relations between individuals or other units
(organisations, countries, etc.); a commonly used terms for these units is actors,
stressing their active role in the constitution of the networks. This paper is
concerned with so-called entire networks, where all relationships within a given
set of n actors are considered. Such a network can be represented by an n x n
matrix X = (X;;), where X;; is a number or a vector representing the relation
directed from actor 5 to actor j (i,j = 1,...,n). Usually, self-relations are not
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212 T. A. B. Snijders

considered, so that the diagonal values X;; are non-defined. An often used
convention is X;; = 0.

Traditionally, much attention has been paid to binary relations. In this case,
X is a 0-1 matrix that is naturally seen as the adjacency matrix of a graph
or directed graph. Pioneering work in the development of statistical meth-
ods for graphs was done by Frank (1971). The substantive meaning of the
relationship can be, e.g., friendship, acquaintance, cooperation, opposition,
etc.

Special problems that must be dealt with in the statistical analysis of social
networks are constituted by the dependence structure of the elements of X:

e the dependence between the two halves X;; and Xj; of the dyad (X;

e
Xji);

e the dependence between the elements of each row, corresponding to
relations of the same sender i, and likewise among the elements of each
column, referring to one receiver j;

e more complicated dependence structures, such as transitivity: “a friend
of my friend is also my friend”, and group formation.

These types of dependence have been modelled by stochastic dependence but
also by using common parameters, €.g., row parameters and column parameters
referring to sender and receiver characteristics. An important concept for the
dyadic dependence is symmetry or reciprocity, indicating the tendency for Xij
and Xj;; to be similar. In the most simple case of binary (0-1) data, this has led
to the classification of dyads as muitual, (z:;,z;:) = (1, 1), asymmetric, (0,1) or
(1,0), and null, (0,0).

Another problem for the statistical analysis of social networks is

e the highly unbalanced nature of social network data: social structure
does not have a crystalline regularity at all, so that there is usually not
sufficient reason to assume simple balanced or symmetric structures. -

In spite of the rather large amount of work that has been done on statistical
and other data-analytic modelling of social network data, in many cases the cur-

rently available methods are not completely adequate to model the complexity
of social relation patterns.

Longitudinal data is in principle much more informative about the stud-
ied phenomena in social networks than cross-sectional data; but they create
additional problems for statistical analysis. A review of methods, including
exploratory methods, for analysing change in networks was given by Frank
(1991). The present paper is restricted to models that specify the joint proba-

bility distribution and discuss statistical procedures for time-series X ®),teT,
of social networks for a constant set of actors.
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2. SOME MODELS FOR LONGITUDINAL SOCIAL NETWORKS

2.1. Discrete Markov chains

It seems that the first statistical paper on longitudinal social networks was
written by Katz and Proctor (1959). They propose a Markov chain model for
binary relation networks, in which the dyads are assumed to be independent,
each following a Markov chain for the 4 possible outcomes in the outcome
space {0,1}2, where the transition probabilities for the two asymmetric¢ out-
comes (0,1) and (1,0) are obviously required to be identical. This assumption of
" dyad independence has haunted the social network statistical literature, because
the models become so complicated without it.

A recent paper that also proposes a Markov chain medel is (Carley and
Banks, 1995). They consider time series of directed graphs in which changes
occur randomly, while the change rate parameter may change (e.g., decay) over
time. The assumption of random changes is qulte restrlctlve and should be
tested when these methods are applied. B

2.2. Loglinear models

Sparked off by the work of Holland and Leinhardt (1981), many papers have
appeared about loglinear model§ for categorical (binary or more complicated)

networks. The basic model, called by Holland and Leinhardt the p; model, has
probability function®

K(a, B, p) exp (Z QTit + ) _Bigritpy mz‘j%’z’) ;

where an index replaced by a + indicates summation over that index. Some pa-
pers elaborating this approach are (Fienberg and Wasserman, 1981; Fienberg et
al., 1985; Wasserman and Weaver, 1985). Instead of using the incidental o;
and [; parameters, these papers focus mostly on models where the senders and
receivers are characterized by observed categorical actor-dependent variables.
An extensive review of the literature on the p; and other models is given by
Wasserman and Faust (1994).

The loglinear approach has been extended to longitudinal data by Wasserman
(1987) for 2 time points, and by Wasserman and Iacobucci (1988) for multiple
time points. The latter paper distinguishes between associative models, where
quite complicated association patterns between the time-dependent values for
each dyad (7, j) are modeled, and predictive models, that specify the conditional
distribution of a dyad at each given time points, assuming its history is given.
These models all assume independence between the dyads, however.
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2.3. Conditionally uniform models

Another line of statistical models for social networks, mainly represented by
directed graphs, is based on conditionally uniform models, i.e., models where
the probability distribution is uniform, conditional on a certain set of statis-
tics. Such a model reflects the notion that the conditioning statistics contain
something that is relevant in the studied phenomena, and the rest is caused by
random factors. Holland and Leinhardt (1975) initiated the study and applica-
tion of this type of model, emphasizing the uniform model conditiondl on the
dyad count, i.e., the numbers of mutual, asymmetric, and null dyads.
Conditionally uniform models become very complicated, however, when
more informative conditioning statistics are considered. For example, con-
ditioning on out-degrees and in-degrees is very relevant in sociological appli-
cations. When the relation can be interpreted as friendship or acquaintance,
the in-degrees reflect the level of activity of the individual actors, and the out-
degrees their popularity. These more complicated conditionally uniform models
arise also when exact tests are required for the loglinear models. For example,
to obtain an exact test for the hypothesis that the reciprocity parameter p in the
p1 model is equal to 0, one needs to condition on the sufficient statistics for

_ the null hypothesis, which is just the vector of in-degrees and out-degrees; this

leads to the uniform model, conditional on in- and out-degrees. This condi-
tionally uniform model is difficult to handle statistically because these degrees
can be regarded as incidental parameters, so that it is impossible to apply the

- usual asymptotic arguments. Algorithms for exact tests for this type of model

were proposed by Snijders (1991).

Because of these complications, conditionally uniform models have been
developed only for relatively simple conditioning statistics, and they are used
more as a ‘straw man’ null hypothesis models than as models that pretend to
represent reality. A conditional uniform model for longitudinal binary network
data at 2 time points, conditional on the entire digraph at time 1, and on the
numbers of newly formed and of disappeared relations for each actor, was
developed by Snijders (1990).

2.4. Continuous-time Markov chain models

The most promising type of model is the continuous-time Markov model, where
it is assumed that the social network, although observed only at discrete time
points, follows a Markov process in continuous time. Holland and Leinhardt
(1977a, 1977b); Wasserman (1977, 1979, 1980); Mayer (1984) proposed these
models and developed estimation techniques for a number of special cases.
Crucial for these estimation techniques is that either the dyads are assumed
to be independent, so that a reduction by sufficiency leads to an outcome
space with few elements, or other symmetrizing restrictions are made. An
example of the latter is Wasserman’s (1980) popularity model, where the rows
of the adjacency matrix are assumed to be independent, and the change rate of
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each X;; depends only on the column sum (in-degree) X ; which is an index
for actor j’s popularity, and where the assumption of stationarity is made.
Leenders (1995) extended the possibilities for modeling longitudinal binary
social network data as a continuous-time Markov processes, by dropping the
assumption of stationarity and by allowing change rates for every dyad to be
dependent on arbitrary covariates, provided that these remain constant between
the moments of observation. In the following sections we present another
elaboration of models that are also continuous-time Markov chains.

3. THE NEED FOR MODELS THAT REPRESENT SUBSTANTIVE
THEORY

Most of the network models reviewed above are almost trivial from the point
of view of sociological theory. The reason is the need to keep these models
mathematically tractable in order to apply conventional statistical methods.
For example, the assumption of independence between dyads excludes a priori
almost all sociologically interesting interactions. Conditionally uniform models
can serve at best as null models against which to test-sociological theories. The
continuous-time Markov models for networks offer more scope for expressing
sociological theories, but they have not yet found much application because of
the statistical difficulties associated with their practical use. The latter models
can be seen as statistical models, not explicitly derived from a sociological
theory, but in other aspects closely related to the models proposed below.

The remainder of this paper is devoted to statistical estimation of a class of
models for evolution of the relation network and of individual behavior in a
(non-changing) set of actors that are derived from sociological theories. A more
extensive discussion of these models and associated methods for parameter
estimation is given in (Snijders, 1995). The models treated are based on the
assumption that each actor has his or her own goals which he/she tries to
advance in accordance to his/her constraints and possibilities. The approach
will be in the spirit of so-called methodological individualism: the driving
force behind the network dynamics is constituted by the actors’ actions, where
each actor takes actions in order to further his own goals, which actions must
be in the domain of his own behavior or of the directed relationships from him
to others. More specifically, the models are in the rational choice tradltlon in
sociology, as expounded, e.g., by Coleman (1990).

These stochastic models are so complicated that the development for them of
statistical methods along classical lines (e.g., maximum likelihood estimators,
minimum variance unbiased estimators, likelihood ratio tests) is difficult and
seems to border on the impossible. On the other hand, computer simulation
of these models is often quite feasible if only the models can be expressed in
well-defined probability distributions. It will be shown below that computer
simulation opens the possibility of (computer-intensive) methods of statistical
inference, although these methods are not necessarily statistically efficient, or
optimal in other statistical senses.

\
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4. ELEMENTS OF STOCHASTIC ACTOR-ORIENTED NETWORK
MODELS

The outcome space for our dynamic network model has the following basic
components.

e The set of actors. In this paper a fixed and finite set of actors will be
considered; addition of new actors, or exit from the network, will not
be taken into consideration. The number of actors is denoted by n.

o The network of relations between the actors. All relations considered are
directed relations (e.g., liking, esteem or power) because of the approach
of methodological individualism. Relations commonly considered as
undirected relations, such as friendship or cooperation, will be regarded
as mutual directed relationships. Relations may be single, but it is more
interesting to consider multiple and/or valued relations. Relationships
between actors may (but need not) change in time, and may be deter-
mined by the social structure (e.g., hierarchy or kinship relations), but
it is more interesting when the relationships can be purposely changed
by the authors.

Time is considered in this model as a continuous parameter. The set of actors
is fixed, but the relation network may change in time. The state of the model
is the time-dependent value of the network. The probability distribution of the
evolution of the model is 45sumed to be a continuous-time Markov process
with finite outcome space. At random times (following a Poisson process of
which the parameter is to be estimated), a random actor may make a change in
the relations from him (or her) to the other actors. The transition ‘mechanism’
for this Markov process is described using the ‘following ingredients.

o The state of each actor is a function of the state of the model on which
depends his evaluation of this state in terms of his well-being. For exam-
ple, in a model of friendship networks, the state of an actor could be the
number of his friends, this concept is not necessary for the construction
of the model, but it is often convenient.

e Preference or utility functions for each actor, defined as a function of
the state of the actor. Utility functions can be the same for all actors,
but in more complicated models they may differ between actors.

o The actions that an actor can take. Actions refer to changeable relations
between the actors and other actors. For example, an action can be
a’ friendship invitation to another actor, or the acceptance of another
actor’s invitation to a power contest. It is quite common that in the

social structure there exist constraints to the actions that an author can
take.

e The choice made by an actor to perform a certain action (or to refrain
from doing so when the opportunity is offered) depends on the actor’s
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expectation of the utility of his state after the action. Ideally, the ac-
tor chooses the action that offers him the highest expected utility. Two
limitations to the principle of utility maximization will be taken into
account, however. First, the modeled utility functions will not be a per-
fect representation of the actors’ utilities. Therefore, the utilities that
propel the actors’ choices may also contain random, i.e., unexplained,
elements. (Random utility models are commonly used in econometric
modeling (see, e.g. (Maddala, 1983; Pudney, 1989).) Second, an ac-
tor’s future state may depend also on future actions of others, or on ‘other
things unknown to him; moreover, the actor’s capacity for strategic fore-
sight and general calculations is bounded. Therefore, instead of strictly
maximizing his expected utility, each actor may use a heuristic way to
approximate the expected utility associated to each of the alternatives
for action available to him at a given moment. The choice of action by
an actor will therefore be modeled as follows: for each alternative action
available to the actor, the approximate, or perceived, expected utility is
calculated; the actor does not necessarily choese the alternative with the
highest perceived utility, but chooses among the alternatives with given

probabilities which are a monotone increasing function of the perceived
utility.

-Analogous to linear regression modeling, these longitudinal models have to
account for a degree of unexplained, or random change; the various theoretical
effects introduced must push back this random aspect and explain the observed
change as much as p0551ble In the process of model building, a sequence of

increasingly complicated models can be fitted to the data, starting with a null
model of random change.

5. ESTIMATION

A more extensive account of the estimation method proposed in this section,
and of the example, is given in (Snijders, 1995).

The models considered in the remainder of this paper are Markov processes
(X(®) in continuous time of which the probability distribution is parametrized
by a k-dimensional parameter 6. It is not assumed that the distribution of X @)
is stationary. Fora discrete set of time points t = 7y,...,7), With M > 2,
observations on X(t) are available. For the type of models we have in mind,
the likelihood function is too complicated to calculate, but Monte Carlo com-
puter simulation of X(t) is possible with the time parameter ¢ starting at an
arbitrary value 79 with a given outcome z(7p). In other words, a random draw-
ing can be simulated from the conditional probability distribution of X (£);>r,,
given X(79) = z(79). Because of the intractable likelihood function, estimation
principles such as maximum likelihood are inapplicable. Therefore we propose
an unconventional estimation method: the method of moments implemented

e

= w1
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with Monte Carlo simulation. A related approach to estimation, also based on
simulated expected values, was proposed by McFadden (1989) and Pakes and

Pollard (1989). In this paper a different procedure is proposed, using stochastic
approximation to solve the moment equations.

5.1. Method of moments

The method of moments proposed here is based on the conditional distributions
of X(Tm+1) given X (7,,), because we concentrate on the development dynam-
ics of the network. We consider situations where observations at M = 2 time
points are available; or where no stationarity assumption is made, so that sep-
arate estimations ar performed for each time interval [1,,_1, 7,,]. Parameter 4
can be estimated by a conditional moment estimator based on a k-dimensional
statistic of the form

S(X(Tm——l)’ X(Tm))' (1)

The function S must be chosen such that its expectation, conditional on
X(7m-1), is a coordinate-wise increasing function of # (although this mono-
tonicity is not always easy to prove; we often may have to rely on the intuitive
plausibility of this monotonicity). For given data z(7,,—1), (r,) the estimate
g is defined to be the solution of

Bs{ S(X (=1, X(1m)) | X(Tn1) = a(rimn1)} @)
= S(CE(Tm—l)a :U('Tm))

»

The delta method can be used to derive an approximate covariance matrix for
6. Denote

25 = Covg {S(X (Tm-1) X (7)) | X(Tm-1) = 2(Tm-1)}, 3)
Dy = a—ae- Eg{S(X(Tm_l), X(Tm)) | X(Tim—1) = .’E(Tm_l)}; 4)

then the approximate covariance matrix of 4 is

Cov (8) ~ Do~'5o D))", 5
5.2. Stochastic approximation

We are in a situation where we wish to solve the equation (2), while we cannot
evaluate the left-hand side explicitly, but we do have a possibility to generate
random variables with the desired distribution. Stochastic approximation meth-
ods, in particular adaptive variants of the Robbins—Monro procedure, can be
used to obtain approximate solutions. For an introduction to stochastic approx-
imation and the Robbins—Monro procedure, and results about the consistency
of adaptive Robbins—Monro procedures, we refer to (Ruppert, 1991).
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The proposed procedure is represented here in abbreviated notation as a
recursive procedure to find the value of 4 that solves

E¢eZ =0 (6)

for some random variable Z with probability distribution F(), where Z and ¢
are k-dimensional. The random variable Z represents the statistic (1) and
its distribution is induced by the conditional distribution of X(r,), given
X(Tm-1) = z(Typ—1)-
The basic recursion formula for the Robbins—Monro (1951) procedure with
step-size 1/N is
1

On11=0n — — DN Zn(On), @)

N

where Zn(0) is a random variable with expected value EpZ. These steps
are made for N = 1,2,... up to a suitable total number Ny,c. The optimal
value of Dy is the derivative matrix (0E¢Z/96). In.adaptive Robbins—Monro
procedures (Venter, 1967), this matrix is estimated during the approximation
process as an average of difference quotients. For the stable estimation of these
difference quotients, it is essential to use common random numbers (see also
(Ruppert, 1991, Section 4.3)). The common random numbers technique is a
well-known technique in Monte €arlo simulation, used to reduce the variance
of differences between generated random variables. This technique operates
by generating two ormore random variables using the same stream of random
numbers, obtained by employing the same initialisation of the random number
generator. _

In order to estimate Dy and =4, we employ the following procedure. Since
the parameters 0;, j = 1,...,k, may have different ‘natural scales’, positive
numbers r; are used that indicate these scales; they should be in the order
of magnitude of the standard errors of the estimates of 0;, i.e., the square
roots of the diagonal elements of (5). These can be determined from earlier

experience, or by trial and error. Define e; as the scaled J-th unit vector

(ej; =74, ejn =0 for h # 5) and let ¢y denote a non-increasing sequence of
small positive numbers. Generate random variables

Zno ~F(fy),

A , (8)
ZNj NF(9N+CN6j) (]:1,...,k)

using common random numbers. In order to obtain sufficient stability for
the resulting process (7), it is advisable that the derivative matrices Dy be
estimated with a precision that is not too low, even in the first steps of the
process. For this reason, ny simulations are carried out before making any steps
of the type (7), just to have a sufficiently stable value for Dy. Specifically,
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values for (8) are simulated for N = 1 - nyg,...,0, with 6n = 64, the initial
value. The derivatives OE¢Z;/00; are estimated by

N

1 Znji — Zngi
G —— R 9
Dyii = g ey ©

n=1-ng

and the recursion process (7) is carried out for N > 1. We used ng = 10 and
Npax = 200 or 400. _

An estimate of the covariance matrix Z¢ can also be obtained from theé random
variables generated in the recursion process. If 6 is close to its limiting value
0, Zno generated according to (8) will have approximately the covariance
matrix 2. The expected value EZno —EoZ is approximately Dy(6n — ). As
a consequence, X can be estimated by ' : ’

N
~ 1 .
So= Z HnnHms o | (10)

n=1

where _ R _ .
Hyn = (Zno — Zavp — Dn(On — 0avy)»

1 & A o
Z(nyo = ]—\;Z Zno, = > bn.
o n=1

n=1 -

The resulting estimator for the covariance matrix (5) of 6 is
Cov (6) = Dy'SeDy . (11)

All nice properties of adaptivé Robbins—Monro procedures that have been
mathematically proved, are asymptotic for Npax — 00. A good starting value
for the recursions is important; from a poor starting value, it will take a very
large number of recursion steps (7) to reach the solution of (6). An interactive
procedure is used, where the drift in the values for § is monitored, and where

the value of IV can be reset to a lower value if the drift is still appreciable after
a relatively large number of steps.

6. NEWCOMB’S FRATERNITY

The book by Newcomb (1961), reports on an extensive longitudinal study of
two groups of students living together in a student fraternity house. In this
section a longitudinal model is proposed to express some of the theoretical
mechanisms that, according to Newcomb’s analysis, govern the development
of the friendship network in these groups. This model is intended to give an
example of the way of modeling proposed in the preceding section, and as a
reconstruction of a part of Newcomb’s theory.
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6.1. A model incorporating reciprocity and balance

The set of actors is the set of n = 17 men living in the house in year II; the
data used are those reported in the UCINET program (Borgatti, et al., 1992).
The relational data are given, for each moment where they are available, by
sociometric rankings made by each man of the 16 others. We shall interpret this
relation as liking. The ranking matrices are available for 15 almost consecutive
weeks. (Data for week 9 are missing.) The ranking of actor j by actor i is
denoted r;;, where the value 1 indicates highest preference. The vector ,

Tin = (Pij)j=1,...n; j#i

thus is the permutation of the numbers 1 to n—1 = 16 indicating the preference
ordering of actor i. The entire preference matrix is denoted by r. The diagonal
of this matrix is meaningless, and will be conventionally defined as 0. The
weeks are indicated by the time parameter t = 1,...,16 (¢t # 9). Ranks r;;
or matrices r referring to a specific time point ¢ are denoted ri;(t) or r(t),
respectively.

The state of the actor, mentioned in Section 4, can be taken to consist of
the complete preference matrix. (For this simple model, the concepts of the
actor’s state is not separately needed; it is mentioned here only for the sake of
formal completeness.) -

The preference function is thé crucial part of the model, and must express
some principal parts of the sociological theory developed and used by New-
comb. It will be codvenient to work with a tension function rather than a utility
function; a tension function is a function which the actors wish to minimize,
and it may be considered equivalent to a constant minus the utility function.
When starting with a bounded utility function, the tension function can be de-
fined as the maximum of the utility function minus its present value. (Hoede
(1990) and Zeggelink (1994) use tension functions in a similar way.) The prin-
cipal effects proposed by Newcomb are reciprocity and balance, and we shall
assume that each actor ¢ wishes to minimize a tension function p;(r) which is
the weighted sum of a reciprocity and a balance component. The reciprocity
effect means that the actor prefers that others like him to the same degree as

he likes them. The corresponding component of the tension function is defined
as

n
0= > (-l (12)
j=1, ji
The balance effect means that the actor prefers that others to whom he is
close view ‘the world’ in the same way as he views it himself. The group of
other persons in the house is considered as a significant part of the world that
determines an important part of the balance effect. Accordingly, the balance
effect is understood more restrictively as the actor’s preference that his friends
in the fraternity house have the same preference order for the various other
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persons in the house as he has himself. For defining the balance component, we
use a non-increasing function ¢(k) defined for k=1,...,n—1 which measures
the closeness to i of the actor whom he accords rank rj; = k. Assuming,
somewhat arbitrarily, that the opinions of actor i’s 5 closest friends in the
house are especially important to him, this function is defined as

6 —k)/5 for k=1,...,5; |
‘i’(k):{f) )/ fgi k>5. (13)

The difference between two actors’ views of their housemates is measured by
the sum of squared differences of rankings,

n

Z (Tih - "l;‘jh)z.

h=1, h#1,j

The balance component of the tension function is defined as

Pm= 3 o) Y, (i —rin) (14)

j=1, j#i h=1, h#i,j

The entire tension function is now

pi(x) = 01p{"(r) + cop” (o) (15)
»
The parameters «; and o indicate the importance of balance and reciprocity,
respectively. We assume that the actor has no strategic foresight, but is com-
pletely myopic: he chooses (probabilistically) between the various possible
actions on the basis of the value that his tension function will have immedi-
ately after the action has been taken.

We now come to the actions that can be taken by the actor. These actions
are changes in his preference ordering. It is assumed that the changes in the
actors’ preferences occur slowly, more or less continuously, and that each actor
is immediately aware of the changes in the others’ preferences. These frequent
but small changes are modeled as follows.

The time unit is a week, but time is regarded as a continuous parameter
within weeks. Each actor has opportunities for action, i.e., for changing his
preference order, at random time points in the week. These opportunities arise
independently for the different actors, and follow, for each actor, a Poisson
process with common intensity parameter A. This means that, at every point
on the continuous time axis and for every actor, the time that the actor has to
wait until his next opportunity for action has a negative exponential distribution
with mean 1/); for each actor, the number of opportunities for action per
week is a random variable having a Poisson distribution with expected value
M. The actions that each actor may take on these moments are interchanges of

e

I
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preferences: when actor i has an opportunity for action and if he has adjacent
preferences for j and h, e.g., 7i; =k, Tin = k+1 for some number k, 1 < k <
n—1, then he may interchange these preferences leading to Tij = k+1, rip = k.
When the actor has an opportunity for action, he may also leave his preference
order the same. Including this last possibility, the total number of possible
actions therefore is n. A sequence of many small changes of this kind can
change any ordering into any other ordering.

Given the preference orders of all the actors, the n alternative actions avail-
able to actor i at a given moment can lead to n different values for the pref-
erence matrix r; indicate these values by r) to r{®. Their tension values
for actor i are pz(r(l)) to pi(r™). One of these values, associated with the
‘no change’ alternative, is equal to his present tension. It is assumed that the
probability of taking an action is a logistic function of the tension values:

exp (- pi(r))
{change to r(’“)} ST exp (= por0)) (16)

This function can be motivated by a random utility argument as in (Maddala,
1983). This functional dependence of choice probabilities on utilities is often
called the multinomial logit model. Note that the exponential function used
in (16) has a unit (and therefore non-variable) scale parameter; this accords
with the use of the two free scale parameters oy and oy in the definition of the
tension function p;. #

The three parameters in this model are A, a1, and ay. A higher value of A
leads to more rapid change. A higher value of «; will tend to push r;; toward
rj;. A higher value of a; will have two effects: friendship choices (lower
values of r;;) of ¢ are encouraged to those j who have similar preferences
as i; and changes of i’s preferences are encouraged into the direction of the
preferences of his closer friends.

The probabilistic model for friendship development in the fraternity is now
complete. Mathematically speaking, it is a continuous-time Markov chain for
the discrete stochastic matrix r. Special sub-models are:

e a1 = ap = 0: purely random change;
e oy = (: change on the basis of reciprocity only.
The parameter A\ cannot be set to 0, because that would imply that no change
occurs at all. It is possible to consider the model where oy = 0, a; > 0, where

changes occurs on the basis of balance only while reciprocity plays no role.

This sub-model seems, however, very implausible theoretically, so we will not
pay attention to this possibility.

6.2. Statistics for moment estimation

In order to apply the method of moments, we need to choose statistics that
capture the effects of the three parameters in the model. The effects of the pa-
rameters were indicated above: A determines the rate of change, o reciprocity,
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and o, balance. A statistic that is relevant for the amount of change from time
t, with matrix r(t), to time ¢ + 1, with matrix r(t + 1), is the normed sum of
squared differences

Dist(t,t +1) = 2(n = 16)(n N 1 ; ) (Tij(t +1) - T'ij(t))2. (17)
SHLISN; 1]

The norming factor follows from asymptotic considerations under the null
model where a; = ap = 0. Statistics that are relevant for the parameters
oy and oy are the totals for reciprocity and balance over the set of all actors:

Rec(t+1) = ﬁ(ni—l_) > (ryt+ 1) —rit+ 1))’ (18)
. 1<i<jsn
Bal(t + 1) = % S e+ D) S (ratt+1) —rant+ )%, (19)
1<i,5<n h#i,j
i#j

where ¢ is a norming constant,

n—1
c= n(n—Z)ZqS(fc) .
k=1

The statistic that \has the role of (1) in the estimation process; is defined as
S(r(t +1),r(t)) = (Dist(t,t + 1), Rec(¢t + 1), Bal(t + 1)). (20)

The statistics Rec(¢ + 1) and Bal(¢ + 1) depend only on r(¢ + 1), not on r(t).
However, their probability distribution as it is used in the simulations for the
method of moments does depend on r(t), as this is the starting value for the
simulations in the time interval (¢,t + 1).

6.3. Parameter estimates

It is not a priori clear whether the parameters A\, a; and a; may be assumed
to be constant during the whole observation period. Therefore, results are
presented of estimation of parameters separately for all weeks. The estimation
has been performed for all transitions from week ¢ to week t+1: (¢t = 1,...,15),
where weeks 8 and 9 have been taken together because data for the beginning
of week 9 are missing. The outcomes of statistics (20) are presented in Table 1.

The parameter estimates are presented in Table 2.

The estimates of A quickly decrease from A = 192 for the first period to
values around 40 for the later periods. This means that larger changes in
preferences occurred in the beginning (the persons living in the house did not
know each other before moving in) than later. The estimates for oy and o2
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Table 1.
Outcomes of distance, reciprocity and balance statistics

Period t Distt, $+1) Rec(t+1)  Balt+1)
1 03538 26.43 29.89
2 0.1934 24.34 28.83
3 0.1500 25.88 26.57
4 0.1597 27.23 211
5 0.1199 29.69 19.91
6 0.0872 30.69 21.25
7 0.0810 26.68 20.16

8-9 0.0960 27.53 20.39
10 0.1067 28.28 18.02
11 0.1123 30.22 20.64
12 0.1062 29.51 20.59
13 0.0787 31.03 21.49
14 0.0948 29.84 18.58
15 0.1012 30.94 1739

Table 2.

Reciprocity with Balance Model: Robbins-Monro Moment Estimates

Period t A SE() & S.E.(&1) &y S.E.(&;)
1 1921 321 -=-0.0071  0.0015  0.0035  0.0008
2 938 157 0.0104 00042 00041  0.0023
3 67.0 114 00058 00023  0.0046  0.0009
4 72.6 144  0.0058 = 0.0024  0.0070  0.0011
5 530 99 00039 00037 00073  0.0013
6 370 47 0.0034 00053 00042  0.0017
7 31,5 3.6 0.0247 00062 . 0.0084  0.0016
8-9 425 59 0009 00035 00061  0.0019
10 450 7.6 00076 00060 00088  0.0027
11 503 69 00035 00032 00035  0.0016
12 467 67 0.008  0.0029° 0.0057  0.0011
13 329 41 00028 00055  0.0044  0.0018
14 387 105  0.0081  0.0044  0.0092  0.0041
15 443 57 00056 00083 00075  0.0054
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are quite variable; period 7 stands out with a high value for &;. The average
estimates are 0.0076 for «; and 0.0060 for a;.

Taken individually, many of the parameter estimates for ; and a; exceed
twice their standard error, which suggests that they are significantly larger than
0. To obtain tests for the significance of the a; and o, parameters in which
: the 14 periods are combined, the average parameter estimates for o and o
i were divided by their standard errors. The resulting t-values were 6.2 for oy
‘ and 9.5 for a;, indicating strongly significant reciprocity and balance effects.
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