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This paper gives a sketch of the main algorithms used in RSiena. It is meant as
background material for understanding the code of RSiena.

For the Generalized Method of Moments (‘GMoM’), there is the separate text
Changes RSiena GMoM.pdf.

1 Notation

Logarithms (denoted log) are natural logarithms.

Symbols given in italic sf font refer to the names of variables used in the R
or C++ code.

Generic symbols for variables

There are RN networks and RB behavior variables.
We require RN + RB ≥ 1; if the current structure of RSiena requires this,
then we require RN ≥ 1 (but if it is easy to work with RN = 0, RB ≥ 1 then
it would be nice to permit this.)

i, j actors.

m index for time period from tm−1 to tm (m = 2, . . . ,M ).

M observations total number of observations

x all RN networks jointly (one outcome).

z all RB behaviors jointly (one outcome).

y state: all networks and behaviors jointly (one outcome).

W variable with values N or B, indicating
whether something refers to network or behavior.

r index number of networks or behaviors,
ranging from 1 to RW .

missing missingness indicators
for ordered triples (i, j, r) referring to networks r

and for ordered pairs (i, r) referring to behaviors;
values are F (False ) and T (True );
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if T, then further specifications are Start / End / Both,
referring to the observation period from tm−1 to tm .

maxbehr maximum of the range of the r′th behavior variable.
N as superscript: refers to network dynamics.
B as superscript: refers to behavior dynamics.

Changing variables (outcomes)

obs as superscript: refers to observed values.

θ theta vector of all statistical parameters.

p pp dimension of θ.

J simulated data score function (vector of partial derivatives of log-likelihood)
(p-vector).

t time.

N
(r)
ij dummy tie variable indicating i

r→ j for rth network.

B
(r)
i behavior variable for rth behavior for actor i.

Replacing an index by + denotes summation over this index.
Toggling a number a in {0, 1} means replacing a by 1− a.

Functions

λN(r, i, x, z) rate function, network r.
(0 for inactive actors)

λB(r, i, x, z) rate function, behavior r.
(0 for inactive actors)

fN(r, i, x, z) evaluation function function, network r.

fB(r, i, x, z) evaluation function, behavior r.

gNe (r, i, j, x, z) endowment function function, network r
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gNc (r, i, j, x, z) creation function function, network r

gBe (r, i, x, z) endowment function, behavior r.

gBc (r, i, x, z) creation function, behavior r.

∆fN(r, i, j, x, z) change in fN(r, i, x, z) by toggling N
(r)
ij .

∆fB(r, i, v, x, z) change in fB(r, i, x, z) by changing B
(r)
i to B

(r)
i + v.

∼ E(λ) generate random variable according to exponential distribution
with parameter λ (note: expected value 1/λ).

Note. Whether the endowment function makes sense for behavior vari-
ables with a range of more than two values, is doubted. But we keep it
included anyway, for the moment.

The R convention is followed of denoting an assignment statement by a←
b, meaning that the variable a gets the value b.

2 Outline of model dynamics / simulation algorithm

The tie-based model is defined as a continuous-time Markov chain by the
following algorithm for generating the next change in the outcome. This is
formulated here for the case that the state space includes networks as well
as behavior. If there are no behavior variables B, then the steps referring
to these variables can simply be dropped. In the code this is function
simstats0c.

To estimate derivatives of expected values of statistics with respect to
the parameters, the score function method (Schweinberger and Snijders,
2007) is used in the default method to estimate standard errors. This is
indicated by ‘SF only’ and can be skipped if the finite differences (‘FD’)
option, which also employs common random numbers, is used to estimate
standard errors.

For each network variable numbered r the following logical (boolean) vari-
ables are defined at the moment of data entry:
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• uponly (r) =
{

for all i, j,m : x
(r) obs
ij (tm) ≤ x

(r) obs
ij (tm+1)

}
;

• downonly (r) =
{

for all i, j,m : x
(r) obs
ij (tm) ≥ x

(r) obs
ij (tm+1)

}
;

For each ordered pair of network variables numbered r and r′ ̸= r, we
define the following logical (boolean) variables:

• higher (r, r′) =
{

for all i, j,m : x
(r) obs
ij (tm) ≥ x

(r′) obs
ij (tm)

}
;

• disjoint (r, r′) =
{

for all i, j,m : min{x(r) obs
ij (tm), x

(r′) obs
ij (tm)} = 0

}
;

• atleastone (r, r′) =
{

for all i, j,m : max{x(r) obs
ij (tm), x

(r′) obs
ij (tm)} = 1

}
.

Analogous definitions uponly , downonly , higher can be made for behaviour
variables.

Model for microstep

1. Initialize time at t = 0; initialise networks and behaviors x, z at their
observations at wave m− 1.
SF only: initialise the score function at Jm = 0.

2. Current time, networks, behaviors, denoted by t, x, z.

3. For all r, generate ∆tNr ∼ E(λN(r,+, x, z)).

4. For all r, generate ∆tBr ∼ E(λB(r,+, x, z)).

5. Let W, r be the variable for which ∆tWr = minr{tNr , tBr }.
If W = N , goto 9; if W = B, goto 10.
(Note. An alternative, mathematically equivalent, is to choose
(W, r) with probabilities proportional to λW (r,+, x, z) and
only for this W, r generate ∆tWr ∼ E(λ+(+,+, x, z)).
This is more efficient but the gain in computation time must be negli-
gible.)

6. Choose i with probabilities λW (r, i, x, z)/λW (r,+, x, z).

7. Set t = t+∆tWr . (time step)
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8. SF only: set

Jm = Jm +
∂ ln

(
λW (r, i, x, z)/λ+(+,+, x, z)

)
∂θ

+
∂ lnλW (r, i, x, z)

∂θ
.

(Note: first added term for generating W, r, i; second term for t. )

9. Define C as the set of j for which N
(r)
ij is allowed to change.

This is the set of all j ∈ {1, . . . , n} from which are excluded all j ̸= i

for which at least one of the following hold:

(a) N
(r)
ij is structurally determined;

(b) uponly (r) and N
(r)
ij = 1;

(c) downonly (r) and N
(r)
ij = 0;

(d) for some r′ ̸= r, higher (r, r′) and N
(r)
ij = N

(r′)
ij = 1;

(e) for some r′ ̸= r, higher (r′, r) and N
(r)
ij = N

(r′)
ij = 0;

(f) for some r′ ̸= r, disjoint (r, r′) and N
(r)
ij = 0, N

(r′)
ij = 1;

(g) for some r′ ̸= r, atleastone (r, r′) and N
(r)
ij = 1, N

(r′)
ij = 0.

Obviously, in many cases, there are never any excluded j; and if
there is only one dependent network variable, the four last conditions
are never satisfied.
If C has one element, this must be i; then go to 2.
(The following steps in this item then are vacuous, so they can be
skipped.)
If C is empty, this is an error, and the program must stop with an error
message.

For all j ∈ C, calculate hj = ∆fN(r, i, j, x, z), and hi = 0.
For all j ∈ C with N r

ij = 1, calculate hj = hj − gNe (r, i, j, x, z).
For all j ∈ C with N r

ij = 0, calculate hj = hj + gNc (r, i, j, x, z).
Choose j ∈ C ∪ i with probabilities

πj =
exp(hj)∑
k exp(hk)

(1)

SF only: set Jm = Jm + ∂hj/∂θ −
∑

k πk ∂hk/∂θ.
If j ̸= i, toggle N r

ij. (network step)
Goto 2.
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10. Let C be the set of v ∈ {−1, 1}
for which B

(r)
i + v is within the range of B(r)

i .
For all v ∈ C, calculate hv = ∆fB(r, i, v, x, z), and h0 = 0.
If −1 ∈ C, calculate h−1 = h−1 − gBe (r, i, x, z).
If +1 ∈ C, calculate h+1 = h+1 + gBc (r, i, x, z).
Choose v ∈ C ∪ 0 with probabilities

πv =
exp(hv)∑
u exp(hu)

(2)

SF only: set Jm = Jm + ∂hv/∂θ −
∑

u πu ∂hu/∂θ.
Add v to Br

i . (behavior step)
Goto 2.

Stopping criterion

1. In the unconditional estimation option, microsteps continue until t ≥
1.
Note that, by convention, time duration between waves is set to be
unity.
SF only: set
Jm = Jm − (1− tlast)

(
∂ lnλ+(+,+, x, z)/∂θ

)
,

where tlast is the last generated value of t before t exceeded 1.

2. In the conditional estimation option, if the conditioning variable is
network N (r), microsteps continue until∑

i,j

| N (r)
ij − x

(r) obs
ij (tm−1) |≥

∑
i,j

| x(r) obs
ij (tm)− x

(r) obs
ij (tm−1) | ,

where the sum is over all tie variables that are not structurally fixed
at tm−1 or tm (note that it is possible that tie variables are structurally
fixed but have different subsequent values).
If the conditioning variable is behavior B(r), microsteps continue until∑

i

| B(r)
i − z

(r) obs
i (tm−1) |≥

∑
i

| z(r) obsi (tm)− z
(r) obs
i (tm−1) | ,

where the sum is over all actors that are not structurally inactive at
tm−1 or tm.

10



Score function

The generated statistics S can be written as S =
∑M

m=2 Sm, where Sm is
calculated in consequence of the simulation of the process in the period
from tm−1 to tm. Denote the value of J generated in this period by Jm. To
use the score function method, we calculate

<SJ>=
M∑

m=2

Sm J ′
m . (3)

This is a p× p matrix, and an estimate for ∂EθS/∂θ.
(Or do we work with

∑M
m=2(Sm − sobs)J ′

m for numerical accuracy?)

The decomposition into the M−1 periods is kept because it allows a more
efficient variance reduction (see further down).

(Mathematical note: for simulations taking place according to parameter
θ, EθJm = 0. We will later subtract a value smJ

′
m for an ‘almost constant’

sm; this does not affect the expected value, but leads to a considerable
variance reduction; see Schweinberger and Snijders (2007).)

3 Outline of Robbins-Monro algorithm for MoM and
ML

This section is based on the appendix of Snijders (2001), and updated
to include the algorithm changes that were incorporated after 2001. The
implementation of the algorithm in RSiena is function robmon, and has a
number of additional details to improve convergence.

This function is used for ML as well as MoM estimation. One difference
is that for MoM, estimation statistics are used as described in Section 4,
while for ML, the statistics are the complete-data score functions. Another
difference is that the covariance matrix of the estimator (which implies
the standard errors) is estimated differently. In the current section, the
description of the covariance matrix of the estimator is for the MoM. The
description of the covariance matrix of the ML estimator is given in Sec-
tion 11.
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The purpose of the algorithm is to approximate the solution of the moment
equation

EθS = s , (4)

where s = sobs, the observed value. The solution is denoted by θ0. The
algorithm is a multivariate version of the Robbins-Monro (1951) algorithm.
It uses the idea of Polyak (1990) and Ruppert (1988) to employ a diagonal
matrix D̃ in the iteration step (5)

θ̂N+1 = θ̂N − aN D̃−1 (SN − s) , (5)

and estimate the solution by partial averages of θ̂N rather than the last
value; and it uses the idea of Pflug (1990) to let the values of aN remain
constant if the average products of successive values (SN−s)(SN−1−s) are
positive, since this suggests that the process still is drifting toward its limit
value. However, the specification used here deviates from Pflug’s proposal
by requiring, for the premature decrease of aN , that for each coordinate
the partial sum of the product of successive values be negative, rather than
requiring this only for the sum over the coordinates. Further, the number of
steps for which aN is constant is bounded between a lower and an upper
limit to ensure that aN is of order N−c.

Under the option doubleAveraging , the iteration step is

θ̂N+1 = θ̄N − aN N D̃−1 (SN − s) , (6)

where

θ̄N =
1

N

∑
n≤N

θ̂n , SN =
1

N

∑
n≤N

sn ,

implementing a proposal of Bather (1989) studied by Schwabe and Walk
(1996).

Whether the algorithm yields an estimate that indeed solves the moment
equation (4) to a satisfactory degree of precision is checked in the ‘third
phase’ of the algorithm below.

The reason for incorporating the matrix D̃ is to achieve better compatibility
between the scales of S and of θ. The diagonal elements of D̃ are defined
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as the estimated values of the derivatives ∂Eθ(Sk)/∂θk where θ is at its
initial value. To see that this leads to compatibility of the scales of S and θ

note that in the extreme case where var(Sk) = 0 and the diagonal elements
of D̃ are equal to ∂Eθ(Sk)/∂θk, (5) for aN = 1 is just the iteration step of
the Newton-Raphson algorithm applied to each coordinate of S separately.
Thus, beginning the algorithm with aN in the order of magnitude of 1 will
imply that the initial steps have an approximately right order of magnitude.

The results of Polyak and Ruppert do not point exclusively to diagonal
matrices; other positive definite matrices could also be used. Therefore,
the option is available instead of a diagonal matrix to use a partial diago-
nalization; this uses the parameter diagonalize set in sienaModelCreate.

The number of dimensions of θ and of S is denoted by p and the initial
value is denoted θ1. ‘Generating S ∼ θ’ means to simulate the model
according to parameter value θ and calculate the statistics S.

The estimation of derivatives has two options: finite differences (‘FD’) and
score function (‘SF’). SF is more efficient and unbiased (Schweinberger
and Snijders, 2007) and therefore is the default, FD is available for some
models for which the derivatives of the log-likelihood needed for SF have
not yet been worked out.

The FD option is based on disturbing the current parameter values by
adding the value ϵj, and using common random numbers. Because of
the discrete nature of the simulated statistics, a very small ϵj will yield
simulated values that with high probability are equal to the values ob-
tained without the disturbance. This is undesirable (see Schweinberger
and Snijders (2007)). Good values of ϵj must be such that with rather high
probability (say, more than .5) the simulated values are not identical to
those obtained without the disturbance.

Symbols given in italic sf font refer to the names of variables used in the R
code.

The standard initial value is calculated in function getNetworkStartingVals()
in file effects.r . This uses an adapted version of (11.41) in Snijders (2005).
The adaptation is a precision-based weighting of multiple periods in case
M ≥ 3 (the vector prec used in the function is a measure of precision).

The algorithm consists of three phases.
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1. In this phase a small number n1 of steps are made to estimate
dfra = D(θ1) =

(
∂Eθ(S)/∂θ

)
|θ=θ1.

This estimate is used to define D̃. Denote by ej the j′th unit vector in
p dimensions.

Initialise Sumd = 0p×p, SumS = 0p×1.
For SF, initialise additionally
SumSm = 0p×1 and SumJm = 0p×1 for m = 2, . . . ,M .
For N = 1 to n1, do the following.

(FD) Generate

fra = S ∼ θ1

Sj ∼ θ1 + ϵjej (j = 1, . . . , p),

where all these p + 1 random vectors use a common random
number stream to make them strongly positively dependent and
where ϵj are suitable constants.
Compute the difference quotients

sdf = dj = ϵ−1
j (Sj − S) ;

for small values of ϵj the expected value of the matrix d =

(d1, ..., dp) approximates D(θ1). However, ϵj must be chosen not
too small because otherwise the variances of the dj become too
large.
Update

SumS = SumS + S

Sumd = Sumd + d

(SF) Generate

fra = S ∼ θ1

its components being Sm (m = 2, . . . ,M) (see ‘Score Function’
above), the complete-data score functions Jm (m = 2, . . . ,M ),
and d =<SJ> according to (3).
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Update

SumS = SumS + S

Sumd = Sumd + d

SumSm = SumSm + Sm, m = 2, . . . ,M

SumJm = SumJm + Jm, m = 2, . . . ,M

The differences fra −s are stored as sf in procedure doPhase1or3Iterations
.

At the end of Phase 1, calculate the following results:

(a) Estimate Eθ1S by

s̄ =
SumS

n1

.

(b) In CalculateDerivative : Estimate D(θ1) by

FD: D̂ =
Sumd

n1

SF: D̂ =
Sumd

n1

−
∑M

m=2 SumSmSumJm

n2
1

.

(c) Partially (or entirely) diagonalized matrix

D̃ = diagonalize × diag(D̂) + (1− diagonalize )× D̂

where diagonalize is set in function sienaAlgorithmCreate, with
default value 1.

(d) Componentwise regression coefficients of statistics S on scores∑
m Jm, i.e., for each coordinate j,

RegrCoef j =
ĉov(Sj,

∑
m Jmj)

v̂ar(Sj)

from the values generated in Phase 1.
(For purely descriptive purposes, the corresponding correlation
coefficients are also calculated.)
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(e) Make one partial estimated Newton-Raphson step,

θ̂ = θ1 − a1D̂
−1 (s̄− s) .

where

targets = s = observed values.

Phase 2. Note 1: I cannot find anything about phase2.0 in the current code –
ts 23-05-13.
Note 2: the use of observedPos and observedNeg apparently was
discontinued.
The boolean variable phase2.0 differentiates between having or not
having a subphase 2.0. Such a subphase was introduced in version
R-Forge 1.1-220 (August 2012).
If phase2.0 then kmin = 0, else kmin = 1.
Repeat for k = kmin, . . . , kmax (subphases):
function proc2subphase

(a) Initialise nit = N = 0, Sumθ̂ = 0p×1, Sum∆ = 0p×1, Sprev = 0p×1,
ac = AC = 0p×p, observedPos = observedNeg = FALSEp×1.

(b) Generate

fra = S ∼ θ

or, for multiple processes, as the average of int independent
replicates of such variables;
if dolby , then also generate the sum of scores

∑
m Jm and

calculate

fra = fra − regrCoef ∗
(∑

m

Jm)

(componentwise multiplication); this serves for reducing the vari-
ance while not affecting the expected value.
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(c) Update

Sum∆ = Sum∆ + (S − s)

If doubleAveraging , θ̂ = Sumθ̂/N − aN D̃−1 Sum∆

else θ̂ = θ̂ − aN D̃−1 (S − s)

N = N + 1

Sumθ̂ = Sumθ̂ + θ̂

if N ≥ 2, then AC = AC+ (S− s)(Sprev − s)′

observedPos j = observedPos j or fra j ≥ 0 (for all j)

observedNeg j = observedNeg j or fra j ≤ 0 (for all j)

Sprev = S .

(updates for observedPos and observedNeg relevant for k = 0

only)

(d) Stopping rule for subphase k = 0:
If N >= n+

2k or observedPos = observedNeg = TRUEp×1 then
goto (b).

Stopping rule for subphase k ≥ 1:
If N >= n+

2k or (N >= n−
2k and maxk ACkk ≤ 0), then{

update θ̂ = N−1Sumθ̂ ; set ak = ak × reductionfactor
}

; goto
(b).
(But if phase2.0 then the update to θ̂ is done only for k ≥ 2. )

In the code, theta = θ, gain = aN , ac = AC, thav = Sumθ̂, nit = N ,
n2min = n−

2k, n2max = n+
2k.

Phase 3. Phase 3 is used only for the estimation of D(θ) and Cov(θ̂), and as
a check for the (approximate) validity of (4). The value of θ̂ is left
unchanged in this phase and is equal to the value obtained after last
subphase of phase 2. The procedure is mainly as in phase 1.

Initialise Sumd = 0p×p, SumS = 0p×1, SumSqS = 0p×p.
For SF, initialise additionally SumSm = 0p×1 and SumJm = 0p×1 for
m = 2, . . . ,M .
For N = 1 to n3, do the following.
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(FD) Generate

fra = S ∼ θ

Sj ∼ θ + ϵjej (j = 1, . . . , p),

where all the p + 1 random vectors use a common random
number stream to make them strongly positively dependent and
where ϵj are suitable constants. Compute the difference quo-
tients

sdf = dj = ϵ−1
j (Sj − S) .

Update

SumS = SumS + S

SumSqS = SumSqS + S S ′

Sumd = Sumd + d

(SF) Generate

fra = S ∼ θ

its components being Sm (m = 2, . . . ,M) (see ‘Score Function’
above), the complete-data score functions Jm (m = 2, . . . ,M ),
and d =<SJ> according to (3).
Update

SumS = SumS + S

SumSqS = SumSqS + S S ′

Sumd = Sumd + d

SumSm = SumSm + Sm, m = 2, . . . ,M

SumJm = SumJm + Jm, m = 2, . . . ,M

At the end of Phase 3, calculate the following results:

(a) Estimate Eθ̂S and Covθ̂S by

s̄ =
SumS

n3

, Σ =
SumSqS

n3

− s̄ s̄′ .
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(b) To check (approximate) validity of (4) compute the t-ratios for
convergence,

tstat = tj =
s̄j − sobsj

σj

, (7)

where σj is the square root of the j′th diagonal element of Σ.

(c) In CalculateDerivative3 : Estimate D(θ̂) by

FD: D̂ =
Sumd

n3

SF: D̂ =
Sumd

n3

−
∑M

m=2 SumSmSumJm

n2
3

.

(d) Estimate the covariance matrix of θ̂ by

Cov(θ̂) = D̂−1ΣD̂
′−1 . (8)

The standard errors are the square roots of the diagonal ele-
ments of Cov(θ̂).

(e) For possible later use with the prevAns option, recalculate the
componentwise regression coefficients

RegrCoef j =
ĉov(Sj,

∑
m Jmj)

v̂ar(Sj)

(all j) from the values generated in Phase 3.

This algorithm contains various constants that can be adapted so as to
achieve favorable convergence properties. Experience with various data
sets led to the following values.

The number of steps in Phase 1 is

n1 = n1 = 7 + 3p .

In the dolby option, at least 50 steps are taken in Phase 1.
The minimum number of steps in subphase 2.k is

n2minimum[1] = n−
2k = ((2.52)k) × (7 + p)
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which is meant to approximate n−
2k = 24(k+2)/3(7+p); the maximum number

is

n2maximum[1] = n+
2k = n−

2k + 200 .

For multiple processes, we use

n−
2k = ((2.52)k−1) × max{5, (7 + p) × 2.52/int }

where int is the number of processes. These bounds n−
2k and n+

2k are
determined so that N3/4aN tends to a finite positive limit.
For large p they are rather conservative (i.e., unnecessarily large).
The default number of steps in phase 3 in the SF option is n3 = n3 = 1000.
For the FD option, 500 is a good default.

The default number of subphases is nsub = 4; more or fewer subphases
could be used to obtain smaller or larger precision, but 4 seems really a
good number.
The initial value of aN in phase 2 is firstg = 0.2, and for multiple processes
0.2 ×

√
int .

The reductionfactor at the end of subphases in phase 2 is for MoM estima-
tion parameter reduceg set by sienaAlgorithmCreate (default 0.5), but for
ML estimation it is 0.25.

The values of epsilon = ϵj in the FD option are chosen initially as 0.1, but
in Phase 1 a check is made and if the j′th coordinate of d − dj is exactly
0 for all or most of the simulations then ϵj is adaptively increased. The
variability obtained by the use of small values of ϵj is more serious than
the bias obtained by the use of a large value. An ideal value would be to
have ϵj slightly less than the standard error of θ̂j. However, this is known
only after the estimation has finished. (Of course in many cases there
have been done earlier estimations, and the information obtained from
them might be used for this purpose.)

3.1 prevAns: using the previous answer

The prevAns option in siena07 does the following.

1. Using the function updateTheta , for the requested effects the initial
parameter values are taken from the previous answer object.
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2. If the specifications of the previous answer and the current effects
object correspond, then the following objects are taken from Phase
3 of the previous answer, and used to substitute for the calculations
done at the end of Phase 1:
dfra ; matrix dinv which is used to calculate matrix D ; sf ; regrCoef ;
regrCor .
This substitution is determined by the flag haveDfra .

3.2 Convergence criterion

Up to version 1.1-284, the proposed convergence criterion focused on
the t-ratios for convergence tstat defined in (7), of which the maximum
absolute value

tmax = max
j
{tstat j}

should be less than 0.10. This was supported by simulations of the es-
timators using this convergence criterion, for which expected values and
coverage rates of confidence intervals were good. Since then it has ap-
peared that the convergence criterion should be improved, and the follow-
ing conclusion was reached.

The overall maximum convergence ratio should be used as an additional
convergence criterion. It is defined as the maximum t-ratio for conver-
gence for any linear combination of the parameters,

tconv.max = max
b

{
b′
(
s̄− sobs

)
√
b′Σ b

}
, (9)

where s̄ is the average simulated vector of statistics and sobs is its observed
value. This is equal to (use Cauchy-Schwarz)

max
c

{
c′Σ−1/2

(
s̄− sobs

)
√
c′c

}
=

√(
s̄− sobs

)′
Σ−1

(
s̄− sobs

)
. (10)

The definition implies that

tconv.max ≥ tmax .
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Further, the vector b∗ of weights that has the largest convergence t-ratio
(i.e., the largest value of the expression in braces in (9)) is

b∗ = Σ−1/2c∗ = Σ−1/2Σ−1/2
(
s̄− sobs

)
= Σ−1

(
s̄− sobs

)
. (11)

In case of difficult convergence, the latter vector of weights may be used to
diagnose which is the linear combination giving most trouble to the algo-
rithm. It may be even more instructive to study the weights of standardized
statistics (i.e., statistics divided by their standard deviation).

These can be obtained from RSiena, if the answer object is called ans, as

(solve(ans$msf) %*% apply(ans$sf,2,mean)) * sqrt(diag(ans$msf))

A more readable representation may be given by

round((solve(ans$msf) %*% apply(ans$sf,2,mean)) * sqrt(diag(ans$msf)), 5)

A study was made, using several data sets and model specifications, in
which estimations were first run until tmax ≤ 0.10, and then continued
(with prevAns ) until tconv.max ≤ 0.20 and then on until tconv.max ≤ 0.15.
After each of these three endpoints, the estimate was retained. This led to
a set of estimates θ̌i each with their estimated covariance matrices Σ̌i and
values tmax i and tconv.max i.

To summarize these estimations and covariance matrices, only those i

were used for which tconv.max i ≤ 0.10, to obtain robust estimates (ele-
mentwise) of the mean θ̌i, and of the mean Σ̌i; these are denoted θ̄ and Σ̄.
It was checked that Σ̄ still was positive definite. The quality of all estimates
θ̌i then was assessed by the squared Mahalanobis-type distances

di = (θ̌i − θ̄)′ Σ̄−1 (θ̌i − θ̄) .

Regarding θ̄ as the true estimate, this measures the how well θ̌i approxi-
mates the true estimate, and therefore can be regarded as a measure of
convergence.

This led to plots such as those in Figure 1 (obtained for a model with
some highly correlated effects, for which the algorithm was expected to en-
counter some difficulties). We see clearly that, although the great majority
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Figure 1: Distances di as a function of tmax (left) and tconv.max (right)

of distances for tmax i ≤ 0.10 are small, some distances are too large. By
contrast, the distances are well approximated by a function of tconv.max i,
and for tconv.max i ≤ 0.25 all deviations are small. This supports the rule
to require tconv.max i ≤ 0.25 or (on the safe side) tconv.max i ≤ 0.20 as a
signal of convergence.

3.3 Some remarks about GMoM and sienacpp

The Generalized Method of Moments (‘GMoM ’) as decribed in Amati et al.
(2015) was first implemented in sienacpp() , now also in RSiena .

The following indicates how some of the matrices in the description of the
algorithm in Amati et al. (2015) can be obtained from a sienaFit object ans
produced by sienacpp() .

The dimension of the parameter is P = ans$pp, of the statistics Q =
ans$qq, with Q ≥ P .

First, let

fit <- ans$sienafit[[1]]

To get some understanding of what is in this object, look for rifySienaFit
in file RInterface.cpp .
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The matrix z$sf = fit$phase3 statistics is a sample in Phase 3
from the distribution of S∗. Hence Cov(S∗) is estimated by

cov0 <- cov(fit$phase3_statistics)

which is given as ans$msf. As indicated in (8) of Amati et al. (2015), the
inverse W =

(
Cov(S∗)

)−1 is used :

W <- solve(cov0)

The Q×P matrix of derivatives Γ is estimated by t(fit$gamma). For the
matrix B we use B1 as defined by

B0 <- t(fit$gamma) %*% W

B1 <- solve(diag(sqrt(rowSums(B0*B0)))) %*% B0

Hence the covariance matrix of θ̂ under the GMoM can be obtained as

D0 <- B1 %*% fit$gamma

D0inv <- solve(D0)

cov2 <- B1 %*% cov1 %*% t(B1)

covtheta <- D0inv %*% cov2 %*% t(D0inv)

For the GMoM, the t-ratios for convergence are calculated for the de-
fault (main) statistics for the effects. The maximum convergence ratio is
calculated for all linear combinations of BS∗. Therefore, the maximum
convergence ratio refers to the result of the estimation algorithm, and is not
necessarily larger than the absolute values of all t-ratios for convergence.
When some of the latter are large, this is an indication of poor model fit.

4 Statistics for MoM

The statistics used for the MoM are proposed in Snijders (2001) and Snij-
ders et al. (2007).
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4.1 Multi-group projects

In the following sections, statistics are often added for all periods from
m = 2 to m = M . For multi-group data sets the situation is different.
Such data sets can be implemented by ‘glueing’ the data sets as one
sequence after each other. This is done by the function sienaGroupCreate.
Another implementation is by considering the data set as nested, with
periods nested in groups. In the sequential implementation, we can denote
statistics for period m by Sm; in the nested implementation, statistics for
period m in group g are denoted by Sgm. Denote the number of groups by
G, and the number of waves for group g by Mg; and the cumulative sums
of these by

Cg =

g∑
h=1

Mh .

In the sequential implementation, summations of the form

M∑
m=2

Sm

should be replaced by

G∑
g=1

Cg∑
m=Cg−1+1

Sm .

In the nested implementation they should be replaced by

G∑
g=1

Mg∑
m=2

Sgm .

4.2 Rate function for networks

For an effect in the rate function

λX(αX , i, y) = ρXm exp
(∑

k

αX
k s

X
ki(y)

)
, (12)
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the statistic for the method of moments to estimate αX
k is

M∑
m=2

∑
i

{
sXki
(
y(tm−1)

) ∑
j

| xij(tm)− xij(tm−1) |
}

. (13)

In the unconditional method of moments, the statistic to estimate ρXm is∑
i

∑
j

| xij(tm)− xij(tm−1) | . (14)

In the conditional method of moments, this statistic is used for the stopping
criterion for the simulations in period m− 1.

4.3 Evaluation function for networks

For an effect in the evaluation function sXik(x, z), the change statistic or
change contribution is defined by

∆X
kij(x, z) = sXik(x

(+ij), z)− sXik(x
(−ij), z) (15)

where x(+ij) is x to which the tie i→ j has been added, and x(−ij) is x from
which the tie i→ j has been deleted. (Note that this definition implies that
(15) is not affected by the value of xij in x as used in the left hand side.)

The quantity introduced in the beginning, called ∆fN(r, i, j, x, z), is a linear
combination of the change statistics:

∆fN(r, i, j, x, z) = ±
∑
k

β
X(r)
k ∆

X(r)
kij (x, z) (16)

where β
X(r)
k is the appropriate element of the parameter vector θ, and

where ± = +1 if the toggle means that tie i→ j is added, while ± = −1 if
the toggle means that this tie is dropped.

In the C++ code, the change contribution is the function calculateContribu-
tion() , of which the basic instance is defined in NetworkEffect() and specific
instances in all functions defining specific effects.

The statistic used for estimation, also called the target statistic, is defined
as follows. To be explicit, denote all changing covariates (monadic and/or
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dyadic) by v, with value v(tm) for wave m, and all constant covariates by
w. The sum of the effect over all actors is defined by

sXk (x, z, v, w) =
∑
i

sXik(x, z, v, w) . (17)

If there is only one network as dependent variable then there is no z so we
can write sXk (x, v, w). The target statistic then is

M∑
m=2

sXk (x(tm), v(tm−1), w) . (18a)

Note that v is taken at wave m − 1, because for changing covariates the
assumption is that the value observed at wave m − 1 remains valid up to
just before wave m.
If there are two dependent variables, one network and one behavior, then
the target statistics for the network are

M∑
m=2

sXk (x(tm), z(tm−1), v(tm−1), w) . (18b)

and for the behavior
M∑

m=2

sZk (x(tm−1), z(tm), v(tm−1), w) . (18c)

Note the cross-lagged way of using the waves in these equations. This is
explained in Snijders et al. (2007).

If the number of dependent variables is more than one for other configu-
rations of dependent variables, like multiple networks or a network with
multiple behaviors, the same cross-lagged principle is used: for wave
m ∈ {2, . . . ,M}, the dependent variable is taken as observed in wave m

and all explanatory (‘independent’) variables as observed in wave m− 1.

In the C++ code, the summand in (18) is the function evaluationStatistic() .
It is used in StatisticCalculator.cpp . It is defined in NetworkEffect.cpp and
BehaviorEffect.cpp as the sum of egoStatistic(i) over all actors i, which are
the terms in (17). For NetworkEffect.cpp , these are computed as

egoStatistic(i) =
∑
j

xij tieStatistic(i, j) . (19)
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Note that these are virtual effects, and will be refined in specific network
effects, which are descendants of class networkEffect . It is necessary to
redefine either egoStatistic or tieStatistic . Redefining both is superfluous,
as is shown by the above. (If they would both be redefined for some effect,
then tieStatistic for this effect would never be used.)

The ”number of distances equal to 2” effect is an example of an effect
where decomposition (19) is not straightforward, and the egoStatistic() is
defined using initializeStatisticCalculation and cleanupStatisticCalculation . The
basic instances of all these functions also are defined in NetworkEffect() ,
and specific instances of egoStatistic() or tieStatistic() are defined in all
functions defining specific effects.

A special case of the construction is given by so-called generic effects, see
the documentation in classdesign .

Another construction uses the function statistic() ; see networkEffect.cpp :
’A convenience method for implementing statistics for both evaluation and
endowment function. It assumes that the statistic can be calculated by
iterating over ties (i, j) of a network Y and summing up some terms sij(X)

with respect to another network X, namely, s(X, Y ) =
∑

(i,j)∈Y sij(X). For
evaluation function, X = Y . For endowment function, X is the initial
network of the period, and Y is the network of ties that have been lost
during the network evolution.’

In networkEffect.cpp , creationStatistic() uses endowmentStatistic() ; endow-
mentStatistic() uses statistic() ; statistic() uses egoStatistic() , and the latter
uses tieStatistic() . If one of these is redefined in a given model or model
class, then this chain is broken and the lower elements in the chain will be
replaced by the redefinitions.

Preprocessing and postprocessing is possible using the functions initial-
izeStatisticCalculation() and cleanupStatisticCalculation() . For examples, see
balanceEffect . InStructuralEquivalenceEffect also is an example of interest-
ing constructions in this respect.

The estimation statistics for the creation and endowment effects are calcu-
lated by applying the effect statistic to the network of gained ties, and the
network of lost ties, respectively. This happens in functions
StatisticCalculator::calculateNetworkCreationStatistics and
StatisticCalculator::calculateNetworkEndowmentStatistics .
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4.4 Actor statistics

StatisticCalculator::StatisticCalculator has an argument returnActorStatistics ,
with the result that all calls of evaluationStatistic , endowmentStatistic and
creationStatistic also return the contributions by actor.

Functions getTheActorStatistics and getActorStatistics use
returnActorStatistics =TRUE.

siena07setup.cpp has a non-exported function getTargetActorStatistics that
is used in getTargets .

In simstats.c , if returnActorStatistics is present with value TRUE for the
sienaAlgorithm object, the actorStatistics are returned as ans[[10]]. This
possibility is not documented.

Currently, the sienaAlgorithm object never is given a component
returnActorStatistics .

4.5 Interaction effects for networks

User-defined interactions for network change are defined as follows.

Consider two network effects sXia(x, z) and sXib (x, z). Denote their change
statistics = change contributions by

∆X
aij(x, z) and ∆X

bij(x, z) .

Then the interaction is defined by the change contribution

∆X
a×b,ij(x, z) = ∆X

aij(x, z)×∆X
bij(x, z) . (20)

For interactions between three effects it is analogous, with change statistic

∆X
a×b×c,ij(x, z) = ∆X

aij(x, z)×∆X
bij(x, z)×∆X

cij(x, z) .

The question is, when does this makes sense, and what is the appropriate
MoM estimation statistic. The change statistic and the estimation statistic
must hang together according to (15) and (18), as mentioned above. For
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user-defined interactions to be properly defined by (20), we must indicate
the estimation statistic to be used and prove that this satisfies (15) and
(18).

Sufficient conditions for user-defined interactions are the following.

4.5.1 Dyadic effects

An effect is defined to be dyadic if it can be written as

sXik(x, z) =
∑
j

xij ckij(x, z) (21)

where ckij(x, z) is independent of xi∗ defined as the row xi∗ = (xi1, . . . , xin).
For a dyadic effect we have

∆X
kij(x, z) = ckij(x, z)

and

sXk (x, z) =
∑
ij

xij ckij(x, z) .

The interaction between two dyadic effects is defined by

sXa×b,i(x, z) =
∑
j

xij caij(x, z) cbij(x, z) . (22)

We then have

∆X
a×b,ij(x, z) = caij(x, z) cbij(x, z)

sXa×b(x, z) =
∑
i

xij caij(x, z) cbij(x, z) .

This indeed satisfies (15) and (18). The same holds for interactions be-
tween three (or more) dyadic effects. One could say that the interaction
between two dyadic effects is again a dyadic effect.
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4.5.2 Ego effects

An effect is defined to be an ego effect if it can be written as

sXik(x, z) =
∑
j

xij cki(x, z) (23)

where cki(x, z) is independent of xi∗ defined above, and independent of
j (as the notation indicates). (This definition implies that an ego effect is
also a dyadic effect.)
For an ego effect we have

∆X
kij(x, z) = cki(x, z)

and

sXk (x, z) =
∑
ij

xij cki(x, z) .

An interaction between an ego effect a and any effect b is defined by

sXa×b,i(x, z) = cai(x, z) s
X
ib (x, z) . (24)

This definition implies

∆X
a×b,ij(x, z) = cai(x, z)∆

X
bij(x, z)

sXa×b(x, z) =
∑
ij

cai(x, z) s
X
ib (x, z) .

Given that effect b satisfies (15) and (18), this interaction also satisfies (15)
and (18). The same holds for interactions between two ego effects and any
third effect, because the interaction between two ego effects is again an
ego effect.

In C++, whether an effect is an ego effect is used in NetworkInteraction-
Effect.cpp for the calculation of the estimation function. This uses the
property that ego effects always have a tieStatistic() .

4.5.3 Contextual effects

Some effects that do not satisfy the conditions defining ego or dyadic
effects are defined as ‘ego’ or ‘dyadic’ anyway, because they are meant
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to be used as contextual effects in interactions, where the ‘context’ is
meant to represent the conditions under which ego makes the choice in
the ministep. They are represented as elementary effects (see below).
Such effects are indicated by the suffix ” ego” or ” dya” in the shortName .

4.5.4 Implementation

For the implementation of network interaction effects, see function class
NetworkInteractionEffect.cpp . A dyadic or ego effect should be defined with
a tieStatistic() rather than an egoStatistic() .

4.6 Interaction effects for behavior

Interaction effects can be defined for those behavior effects where the
effect is defined as a product of the behavior itself (zi) and something
independent of zi itself, although it may depend on the other dependent
variables and even on zj for j ̸= i. In mathematical terms, for effects
defined as

sZik(x, z) = zi s
Z0
ik (x, z) (25)

where sZ0
ik (x, z) is a function not depending on zi. Most effects are of this

kind; if I am right, all except for the quadratic tendency effect and effects
involving similarity with respect to Z.

Note that this concerns effect for the same behavior variable Z. (I drop the
index r here.)

For such effects, the change contribution is sZ0
ik (x, z) and the evaluation

statistic is (25).

The interaction of two such effects, with indices k1 and k2 (where it is
allowed that k1 = k2) is defined by the evaluation statistic

sZi(k1◦k2)(x, z) = zi s
Z0
ik1
(x, z) sZ0

ik2
(x, z) (26)

(I just used a circle ◦ to denote the interaction) and the change contribution

sZ0
ik1
(x, z) sZ0

ik2
(x, z) .
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??????? RSiena is written in terms of an arbitrary allowed change. I have
coded the change as

difference ∗ sZ0
ik1
(x, z) sZ0

ik2
(x, z) .

I have I hope this is correct. I have multiplied together the terms for each
ego and then divided by the value or difference until only one value or
difference is retained.

For interactions between three effects it is just the same. The same effects
qualify, the evaluation statistic is

sZi(k1◦k2◦k3)(x, z) = zi s
Z0
ik1
(x, z) sZ0

ik2
(x, z) sZ0

ik3
(x, z)

and the change contribution

sZ0
ik1
(x, z) sZ0

ik2
(x, z sZ0

ik3
(x, z) .

4.7 Effects: interactionType

The effects object has a variable (column) that is called interactionType.
See the manual. For network effects, the interaction type is "ego", "dyadic",
or "" (blank); for behaviour effects, it is "OK" or "". This indicates, using
the rules above, whether a interaction is allowed. This is checked in the
internal RSiena function fixUpEffectNames . Since "ego" is stronger than
"dyadic", the former is used when the property is satisfied.

For elementary network effects (see the manual) the change statistics
are not derived from an evaluation function. Therefore the requirement
(15) does not apply. Elementary effects have interactionType set to
”dyadic”.

4.8 Weighted effects for behavior

Another concept, which is similar to interaction, is weighted effects. This
is defined for effects involving a network X. Again I drop the index r.
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The effect can be weighted by an actor variable; which can be an actor
covariate as well as a dependent actor behavior (the same behavior as the
one under consideration or a different one). Denote this variable by V . The
weighting is carried out by multiplying each xij (but not other tie variables;
only ties with i as a sender) by vj; thus, in the interactions of the preceding
subsection we are working with vi but now with vj. (The weighted indegree
effect below is an exception to this general description.) This multiplication
is done in the change contribution as well as the evaluation statistic.

Let me give the following examples (going through the list in the manual).

3. weighted average similarity effect, defined by the weighted average
of centered similarity scores simz

ij between i and the other actors j

to whom he is tied,

sbehi3◦V (x) =

∑
j vj xij(sim

z
ij − ŝimz)∑

j vj xij

;

(and 0 if
∑

j vj xij = 0) ;

4. weighted total similarity effect, defined by the weighted sum of cen-
tered similarity scores simz

ij between i and the other actors j to whom
he is tied,
sbehi4◦V (x) =

∑
j vj xij(sim

z
ij − ŝimz) ;

5. weighted indegree effect,
by an exception to the rule this could be defined as sbehi5◦V (x) = zi

∑
j vj xji ;

6. weighted outdegree effect,
sbehi6◦V (x) = zi

∑
j vj xij ;

8. weighted average similarity × reciprocity effect, defined by the sum
of centered similarity scores simz

ij between i and the other actors j

to whom he is reciprocally tied,

sbehi8◦V (x) =

∑
j vj xijxji(sim

z
ij − ŝimz)∑

j vj xijxji

;

(and 0 if
∑

j vj xijxji = 0) ;
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9. weighted total similarity × reciprocity effect, defined by the sum of
weighted centered similarity scores simz

ij between i and the other
actors j to whom he is reciprocally tied,
sbehi9◦V (x) =

∑
j vj xijxji(sim

z
ij − ŝimz).

Let us omit the popularity-interaction effects, which already contain a
weight.

14. weighted average alter effect, defined by the product of i’s behavior
multiplied by the average behavior of his alters (a kind of ego-alter
behavior covariance),

sbehi14◦V (x) = zi

∑
j vj xij zj∑
j vj xij

(and the mean behavior, i.e. 0, if the ratio is 0/0) ;

15. weighted average reciprocated alter effect, defined by the product of
i’s behavior multiplied by the average behavior of his reciprocated
alters,

sbehi15◦V (x) = zi

∑
j vj xij xji zj∑
j vj xij xji

(and 0 if the ratio is 0/0) ;

19. weighted reciprocated degree effect,
sbehi19◦V (x) = zi

∑
j vj xij xji .

4.9 Calculation of cross-lagged statistics in C++

For coevolution models, evaluation effects of one dependent variable on
another dependent variable (such effects are called ‘mixed effects’) are
estimated in the Method of Moments by cross-lagged statistics (Snijders
et al., 2007, formulae 26 and 27).

Evaluation effects are calculated in
StatisticCalculator::calculateNetworkEvaluationStatistics

and in the first part of
StatisticCalculator::calculateBehaviorStatistics.
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In these functions, two states of the entire data set (with all dependent
variables and covariates) are used:

lpPredictorState is the state of everything at the start of the wave;

pCurrentLessMissingsEtc is the state of everything at the end of the
simulations, changed in a way that deals with missingness of data and
structurally fixed values (this is documented in missingsEtc.pdf).(
Naming conventions in siena\src are that private variable names start

with the letter l – for local – and names of pointer variables have the first
or second (after l) letter p.

)
In StatisticCalculator::calculateNetworkEvaluationStatistics,
the simulated state of this dependent network in pCurrentLessMissingsEtc
is used to replace the component of lpPredictorState corresponding
to this dependent network. The modified lpPredictorState is then
used to initialize all evaluation effects.

4.10 Contemporaneous statistics for GMoM

Note that the use of the variable pSimulatedState in the C++ code
always is for the GMoM. It indicates that the simulated state instead of the
preceding state should be used for the evaluation statistics.

Estimation of co-evolution models by the Generalized Method of Moments
(‘GMoM’) operates as follows. For estimating the mixed effects, in which
one dependent variable is being explained by another dependent variable,
the Method of Moments uses cross-lagged estimation statistics, as dis-
cussed in the preceding section. Amati et al. (2019) proposed a GMoM
estimator in which the cross-lagged statistics are supplemented with con-
temporaneous statistics.

GMoM statistics are effects with type=gmm. Contemporaneous effects for
co-evolution models all have shortNames ending in gmm.

Computing the contemporaneous statistics is achieved in
StatisticCalculator::calculateNetworkGMMStatistics by ini-
tializing the gmm effects using function effect::initialize with five
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parameters (for other effects they have four), adding parameter
State * pSimulatedState. This initialization is prepared in classes
NetworkEffect and BehaviorEffect by defining initialize as vir-
tual functions

void NetworkEffect::initialize(const Data * pData,

State * pState, State * pSimulatedState,

int period, Cache * pCache)

and

void BehaviorEffect::initialize(const Data *pData,

State *pState, State *pSimulatedState,

int period, Cache *pCache)

A similar construction is used for generic effects in class GenericNetworkEffect.

These virtual functions initialize then are redefined for the contem-
poraneous gmm statistics by making effect::evaluationStatistic

depend on the contemporaneous instead of the cross-lagged statistics.
This is done, for the currently implemented contemporaneous gmm statis-
tics, in effect classes CovariateDependentNetworkEffect,
NetworkDependentBehaviorEffect, and NetworkAlterFunction.
Because of the inheritance property this needs to be done only once in
each chain of classes, and will work for all effect classes inheriting from
these three.

The actual contemporaneous gmm statistics then are defined by modifying
the corresponding effects of type=eval such that a constructor is added
with the parameter bool simulatedState, and the five-parameter ver-
sion of effect::initialize is added. The same is done for functions
defining generic effects.

Examples of this can be seen in effect classes
CovariateEgoEffect, CovariateSimilarityEffect,
and OutTieFunction. These then are specified as gmm statistics in
effectFactory by using them with simulatedState=true.
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5 Rate effects

Rate effects are currently of three types, defined by the rateType column
of allEffects.csv. The values are ”structural”, ”diffusion”, ”covariate”,
or NA.

Function DependentVariable::initializeRateFunction in Dependentvariable.cpp
initializes the rate function; here also the functions
model/effects/StructuralRateEffect.h and model/effects/DiffusionRateEffect.h are
used.

Functions StatisticCalculator::calculateNetworkRateStatistics and StatisticCal-
culator::calculateBehaviorRateStatistics in StatisticCalculator.cpp calculate the
rate functions.

The RateX effect is defined in a funny way. If you look for the string
”RateX”, it occurs nowhere in the cpp directory. It is identified by being the
only rate effect of type ”covariate”, together with the dependent variable
name and the explanatory variable, given by the parameter ”interaction1”.
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6 Likelihood-based calculations:
Chain structures

This algorithm follows the definitions in Snijders et al. (2010). The notation
also is taken from that paper.

The basic data structure for likelihood-based calculations is called a chain.
This is a sequence of changes that can take one (‘observed’) value of y to
a next one.

To allow later generalization to valued networks as easily as possible,
we define a condition D (for dichotomous) that is defined on the level
of variables (networks or behavioral variables); in our current system D

is True for networks and False for behavioral variables, but this can be
different in future uses.

One change is called a ministep , denoted ms, and is defined as:

ms = (w, i, j, r, d, pred , succ , lOptionSetProb ,lChoiceProb , rRate )

(27)

where

w (‘aspect’) = ‘network’ or ‘behavior’ (abbreviated to N – B );
i (‘actor’) = actor if w = B, sending actor if w = N;
j (‘actor’) = meaningless 0 if w = B, receiving actor if w = N;
r (‘variable number’) = number of variable (1 ≤ r ≤ Rw );
d (‘difference’) = meaningless 0 if D, amount of change if not D

(where D depends on w, r);
currently we require d ∈ {−1, 0, 1}, but at some
later moment exceptions to this rule may be allowed;

pred (‘predecessor’) = pointer to preceding ministep;
succ (‘successor’) = pointer to next (succeeding) ministep;
lOptionSetProb (‘log OptionSet probability’)

= log probability of making a ministep of this OptionSet,
where the OptionSet is defined below as (w, i, r);

lChoiceProb (‘log choice probability’)
= log probability of making a ministep of this choice,

where the choice is (j, d), given that (w, i, r);
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rRate (‘reciprocal rate’) = reciprocal of aggregate (summed) rate function
immediately before this ministep.

To indicate the components/fields of a ministep we use the notation ms.w,ms.i,
etc.
The precise definitions of lOptionSetProb , lChoiceProb , and rRate are given
below in the specification of function StepProb . The values (w, i, j, r, d)

may also be called the coordinates of the ministep.

In Siena 3, d, pred and succ are called difh, predh and such; and the
program uses rates instead of reciprocal rates, but this was implemented
only very incompletely anyway.

The ministep is practically the same as what is called a microstep in Sec-
tion 2, but used here in a more precise way. These words are not inten-
tionally different.
The log probability and reciprocal rate depend not only on the chain and
the ministep, but also on the initial state y or y(tm−1) valid before the start
of the chain; and on the model specification and model parameters. Their
computation is done by procedure StepProb described in Section 8.

The interpretation is that a ministep operates on (i.e., changes) outcome y

as implemented by the following function.

1. ChangeStep(y,ms) transforms state y as follows,
where ms = (w, i, j, r, d, ...);
This can also be denoted ChangeStep(y, (w, i, j, r, d));

• if w = N and i ̸= j, change N
(r)
ij to 1−N

(r)
ij ;

• if w = B, change B
(r)
i to B

(r)
i + d.

The inverse operation is very simple:
in general, Inverse

(
ChangeStep(y, (w, i, j, r, d))

)
= ChangeStep(y, (w, i, j, r,−d));

in particular, Inverse
(
ChangeStep(y, (N, i, j, r, 0))

)
= ChangeStep(y, (N, i, j, r, 0)).

The definition of ChangeStep implies that only those values of d are al-
lowed that do not lead B

(r)
i outside of the bounds of this variable. I think

this should not always be checked except perhaps for in a test phase, but
the creation and transformation of ministeps should contain checks that
ensure this condition.
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ChangeStep is called a lot, and it will be helpful that it is implemented in a
very fast way.

The Option of a ministep is defined as (Network, i, j, r) for Network mini-
steps, and as (Behavior, i, r) for Behavior ministeps. This defines the
variable changing by the ministep. Recall that j is meaningless for w = B.
In general, we can define the options of a ministep as (w, i, j, r). Option is
called ‘kind’ in Siena 3.

The OptionSet of a ministep is defined as (w, i, r). This defines the choice
situation / option set for the ministep.

This definition also means that network ministeps with i = j and behavior
ministeps with d = 0 have no effect on the outcome. Such ministeps are
permitted, and are called diagonal ministeps.

A chain from observation y(tm−1) to observation y(tm) is a sequence of
ministeps ms1,ms2, ...,msT which, when applied sequentially, transform y(tm−1)

into y(tm). We then say that the chain connects y(tm−1) to y(tm). For M
observations, therefore, we require a sequence of M − 1 chains.

For a sequence of ministeps ms1,ms2, ...,msT we define the following func-
tions. For disregarded values of the ministep (depending on whether it is
a N or B ministep) we use the wildcard symbol *.

2. NetworkNumber(i, j, r, S) = ♯{s | 1 ≤ s ≤ S,Option(mss) = (N, i, j, r)}.
In words, this is the number of ministeps, up to and including ministep
number S, which imply a change in tie variable (i, j) for Network r.

3. BehSum(i, B, r, S) = ΣS
s=1 (mss.ds) I{Option(mss) = (B, i, ∗, r)}

where I is the indicator function defined as I(A) = 1 if A is True and
0 if A is False .
In words, this is the partial sum, ending at ministep number S, of the
d (difference) values of all ministeps by actor i for Behavior r.

If the outcomes y(tm−1) and y(tm) are completely defined (without any
missing data) then the requirements on this sequence are as follows.

Networks : (since changes are defined as toggles)
For all i, j, r with 1 ≤ r ≤ RN , i ̸= j,

N
(r)
ij (tm−1) = N

(r)
ij (tm) ⇔ NetworkNumber(i, j, N, r, T ) is even ;

(28a)
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which is equivalent to

N
(r)
ij (tm−1) = 1−N

(r)
ij (tm) ⇔ NetworkNumber(i, j, N, r, T ) is odd .

(28b)

Behavior : (since changes are defined as increments)
For all i, r with 1 ≤ r ≤ RB,

B
(r)
i (tm−1) + BehSum(i, B, r, T ) = B

(r)
i (tm) (29)

and

1 ≤ B
(r)
i (tm−1) + BehSum(i, B, r, S) ≤ maxbehr for all 1 ≤ S < T.

(30)

For each option there is a missingness indicator

mis(w, i, j, r)

which is True or False , depending on whether in at least one of the two
end points of the chain, y(tm−1) or y(tm), the corresponding variable N

(r)
ij

or B
(r)
i is missing. The use of these indicators is that restrictions (28)

and (29) are not required for the missing data. For missing behavior data,
however, condition (30) still is required to ensure that the variable remains
within range.

4. The number of Network options with missing values is defined as

NumMisNet =
n∑

i=1

n∑
j=1
j ̸=i

I{mis(N, i, j, r)} ,

where I{True } = 1 and I{False } = 0 .

5. The number of Behavior options with missing values is defined as

NumMisBeh =
n∑

i=1

I{mis(B, i, ∗, r)} .

It must be noted that missing data are not handled in the best possible way
in the likelihood-based procedures in Siena 3, and this is done differently
here. Therefore, results for likelihood-based procedures in Siena 3 and
RSiena will be different.

Classes of functions are required which do the following:
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1. Create and transform chains.

2. Calculate probabilities related to chains.

3. Store chains: read from and write to file.

7 Likelihood-based calculations:
Create and transform chains

7.1 Data types

1. Ministep. See (27).
The Option of a ministep is (Network, i, j, r) for Network ministeps,
and (Behavior, i, r) for Behavior ministeps. Note that this defines the
variable that is being changed by the ministep.
Note that in Siena 3 this is called the rKind (restricted Kind), and the
‘Kind’ there also includes the value d. A ministep ms is diagonal if it
is of Option (Network, i, j, r) with i = j, or of Option (Behavior, i, r)
with ms.d = 0.

2. Chain. This is a sequence of ministeps connected by the pointers
pred and succ , with a first and last element. The first and last ele-
ments are dummies, i.e., they are of a special Option and OptionSet
(Extreme, 0, 0, 0) which implies no change:
ChangeStep(y, first ) = ChangeStep(y, last ) = y.
Section 13 on structurally fixed values gives an exception to this rule,
however, for the last element.
The first and last elements are used just to have handles for the
start and end of the chain. Of course, first .pred =last .succ = nil.
Or perhaps it is more convenient to define first .pred = first and last
.succ = last .
The first and last ministeps are not diagonal.

The connection implies that if msa and msb are two ministeps with
msb.pred = msa, then msa.succ = msb. The first element has a nil
pred , and the last element has a nil succ .
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7.2 Functions

In Siena 3, I have defined the ministep type with various other pointers
and attributes useful for navigating in the chain. These are functions of
the chain, and including them in the ministep type is for the purpose of
computational efficiency. These functions are the following. They are de-
fined as functions of the ministep in a given chain. They are not important
in themselves, but might be useful for updating the variables relating to
CCPs (see below).

1. nrOption. The total number of ministeps in the chain of the same
Option.

2. predOption . Pointer to the last earlier (‘preceding’) ministep of the
same Option, and first if such a ministep does not exist.
Called predhrkind in Siena 3.

3. succOption . Pointer to the first later (‘succeeding’) ministep of the
same Option and last if such a ministep does not exist.
Called suchrkind in Siena 3.

The chain defines an order relation (binary function) of ministeps in an
obvious way, representing the time order in which the ministeps take place.
When there may be the possibility of confusion, this is called the chain
order.

1. msa < msb if there is a sequence ms1, ...,msK (K ≥ 0) of ministeps
such that msa.succ = ms1,msb.pred = msK , and msk.succ = msk+1

for all k, 1 ≤ k ≤ K − 1.

2. For msa < msb, we denote by length(msa,msb) the number of mini-
steps from msa to msb, including these end points, which is the value
K + 2 according to the preceding definition.

3. For msa < msb, we denote by [msa,msb] the interval of ministeps from
msa to msb, i.e., the sequence msa,ms1, ...,msK ,msb of the definition
in (1).
The interval [msa,msa] is defined as the ministep msa.
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4. In the obvious way, we define recursively

ms.succ 0 = ms (31)

ms.succ k+1 =
(
ms.succ k

)
.succ . (32)

Thus, length(ms,ms.succ k) = k + 1 for k ≥ 0.

An ordered pair of ministeps (msa,msb) with msa < msb is called a CCP
(consecutive canceling pair ) if they are of the same Option, not diagonal,
cancel each other’s effect (see next sentence), have no other ministep of
the same Option in between, and there is at least one ministep of a differ-
ent Option in between (i.e., length(msa,msb) ≥ 3), and neither ministep is
missing at start or end of the interval. Two non-diagonal ministeps msa and
msb cancel each other’s effect if the following hold: either they are both of
the same Option (Network, i, j, r) (then they cancel because they toggle
the same binary variable), or both are of the same Option (Behavior, i, r)
and msa.d+ msb.d = 0.

For example, if the chain contains a total of three ministeps msa,msb,msc
of the Option (Network, 1, 2, 1), with msa < msb < msc, and none of which
are each others’ immediate predecessors/successors, then (msa,msb) and
(msb,msc) are CCP’s.

The reason for this definition is to use it later in defining changes in the
chain, such that each change has a unique (i.e., exactly one) inverse
operation. Adding a CCP to a chain will not lead to violations of (28, 29),
although it may lead to violation of (30), which therefore must be separately
checked. There is a one-to-one correspondence between the set of all
operations of dropping a CCP from a chain, and the set of all operations of
adding the two elements of a CCP to the chain as immediate predecessors
of two ministeps msa < msb for which msa is not the first element, and there
is no ministep msc with msa < msc < msb of the same Option as msa and
msb, and which do not lead to violation of (30). All this is elaborated later,
and given here only as a motivation for this definition.

Basic functions of the chain are the following.
Since these are frequently used, they should be stored and updated when
the chain is changed; this is done in the Update function.
The condition SimpleRates is defined below.
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1. TotNumber, the number of ministeps of the chain, excluding the first
;
so an empty chain consisting only of the first and last ministeps with
first .succ = last has TotNumber = 1.

2. DiagNumber, the number of diagonal ministeps of the chain.

3. CCPNumber, the number of CCP’s in the chain.

4. ChainNumMisNet, the number of ministeps of some Option (N, i, j, r)

for which mis(N, i, j, r) is true.

5. ChainNumMisBeh, the number of ministeps of some Option (B, i, ∗, r)
for which mis(B, i, ∗, r) is true.

6. ChainNumInitMis, the number of Options (w, i, j, r) for which the ini-
tial value N

(r)
ij (tm−1) or B(r)

i (tm−1) is a missing value.

7. Used only if (not SimpleRates):
mu =

∑T−1
s=2 mss.rRate , where T = TotNumber.

Note that the sum is over all ministeps in the chain except the two
extremes (first and last ).

8. Used only if (not SimpleRates):
sigma2 =

∑T−1
s=2 (mss.rRate )2.

The chain can be denoted by

ms0,ms1,ms2, . . . ,msTotNumber ,

in which ms0 and msTotNumber are the extreme elements.

The following functions may be defined on the Options of ministeps: They
are not important in themselves, but might be useful for updating the vari-
ables relating to CCPs.

1. NumberOption(w, i, j, r), the number of ministeps of the chain of Op-
tion (w, i, j, r).
For the network ministeps this will be a sparse matrix, in the sense
that for large networks most of the values NumberOption(N, i, j, r)

will be 0.
This is called NumberrKind in Siena 3.
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2. Multiple(w, i, j, r) = True if NumberOption(w, i, j, r) ≥ 2 and False if
NumberOption(w, i, j, r) ≤ 1.
We say that a Option can be multiple or non-multiple.

7.3 Operations

Basic operations on chains are the following. Of course they have to
guarantee the consistency of all the derived variables and pointers. The
consistency of the log probabilities and reciprocal rates is treated sepa-
rately (when it is needed), see Section 8.

1. Create an empty chain consisting only of the elements (first , last ).

2. InsertBefore(ms, w, i, j, d, r) :
for a currently existing ministep ms ̸= first , insert the ministep with
values (w, i, j, d, r) between ms.pred and ms.

3. Delete a ministep, and link up its predecessor and successor.

4. RandomElement :
draw a random ministep from the chain, excluding the first element;
note that the probabilities are 1/TotNumber.

5. RandomElementNotAfter(ms) :
draw a random ministep from the chain, among the elements after
the first element up to and including ministep ms;

6. Connect : construct randomly a chain that connects two outcomes
y(tm−1) and y(tm) .
This is done by repeatedly applying RandomElement and InsertBe-
fore. If there are no higher , disjoint , or atleastone relations between
the various different networks (in particular if RN = 1), the following
procedure can be used.

For all RN networks:
For all (i, j), i ̸= j:

if N (r)
ij (tm−1) ̸= N

(r)
ij (tm),

then InsertBefore (RandomElement, N, i, j, 0, r);
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For all RB behaviors:
For all i:

Define D = B
(r)
i (tm)−B

(r)
i (tm−1);

if D > 0, then D times InsertBefore(RandomElement, B, i, 0, 1, r);
if D < 0, then −D times InsertBefore(RandomElement, B, i, 0,−1, r).

However, if there are any higher , disjoint , or atleastone relations
in force, then inserting the changes at randomly chosen places can
lead to violations of these requirements. Inserted network changes
that might lead to such violations therefore must take account of
earlier inserted changes for the same (i, j). In such cases the con-
nections for the networks can be made by the following procedure.
With ‘incompatible’ is referred to the incompatibility because of the
higher , disjoint , or atleastone requirements.

For r running from 1 to RN :
For all (i, j), i ̸= j:

if N (r)
ij (tm−1) ̸= N

(r)
ij (tm), define by R the set of networks r′, 1 ≤ r′ < r,

for which N
(r)
ij (tm) is incompatible with N

(r′)
ij (tm−1).

(For these r′ it must hold that N (r′)
ij (tm−1) ̸= N

(r′)
ij (tm),

because N
(r)
ij (tm) must be compatible with N

(r′)
ij (tm);

therefore the following requires the change in option (N, i, j, 0, r) to
take place before the changes in options (N, i, j, 0, r′) for r′ ∈ R.)
Let ms be the first ministep among all inserted ministeps
of option (N, i, j, r′) for r′ ∈ R;
then InsertBefore (RandomElementNotAfter(ms), N, i, j, 0, r).

The Connect procedure yields a chain connecting the two outcomes y(tm−1)

and y(tm) which has minimum length.

The following random draws are not always possible, since the sets from
which a random element is drawn, may be empty. (It may be noted,
however, that usually the set will be non-empty.) RandomMultipleOption
and RandomCCPOption are dropped! This will be simpler and probably at
least as efficient as Siena 3.

7. RandomDiagonal :
draw a random diagonal ministep from the chain; note that the prob-
abilities are 1/DiagNumber.
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8. RandomCCP :
draw a random CCP (msa,msb) from the chain; note that the proba-
bilities are 1/CCPNumber.

9. RandomMisNet :
draw a random ministep msa from the chain of which the Option
(w, i, j, r) satisfies w = N and mis(N, i, j, r).
Note that the probabilities are 1/ChainNumMisNet.

10. RandomMisBeh :
draw a random ministep msa from the chain of which the Option
(w, i, j, r) satisfies w = B and mis(B, i, ∗, r).
Note that the probabilities are 1/ChainNumMisBeh.

11. RandomInitMis :
draw a random Option (w, i, j, r) for which the initial value N

(r)
ij (tm−1)

or B(r)
i (tm−1) is a missing value.

Note that the probabilities are 1/ChainNumInitMis.
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8 Likelihood-based calculations:
Calculate probabilities related to chains

An important special case is the case of state-constant rate functions,
i.e., rate functions λW (r, i, y) depending only on W , r, and i but not on
y, and therefore not changing as a consequence of the simulations. This
is important also because the majority of users will use state-constant rate
functions. In the case of state-constant rate functions, everything related
to λ needs to be calculated only when parameters are changed.
Denote this by the Boolean ConstantRates.

We define a special Boolean condition SimpleRates. The default is to let
SimpleRates = ConstantRates, but this may be changed by the user (not
in the gui). In practice it will be changed only for the purposes of algorithm
comparison.

Ministeps are interpreted as changes in the chain (procedure ChangeStep).
These changes are made with certain probabilities, and the rate of change
has a certain value when the ministep is going to be made. The probabil-
ities and rates depend on the state immediately before the ministep; this
depends in turn on the state at the start of the chain, and the sequence
of ministeps before the current ministep. For a ministep ms in the chain
with a given initial state y (say, y = y(tm−1)), the state obtaining before ms
can be defined recursively as follows (where ChangeStep is treated as a
function with states as outcomes).

1. StateBefore(first ) = y.

2. StateBefore(ms.succ ) = ChangeStep(StateBefore(ms),ms).

Thus, the state before ms is obtained by repeatedly applying ChangeStep:

StateBefore(ms) = ChangeStep(length(first ,ms)− 1)(yinitial)

(where the superscript indeed means raising the operator to a power, i.e.,
executing it repeatedly.)

The log-probabilities and rates are defined by the following procedure. For
the mathematical symbols πj, πv, λ(...), Jm, see the notation of Section 2
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where the microstep/ministep is treated for the purpose of simulation of
the model, and where the same ingredients are used.

The functions StepProb1 to StepProb3 are often used one after each
other, and utilizing this will lead to efficiency gains.

1. StepProb1(input y, w, i, r;output rr, lospr);
this calculates the aggregate rate for current state y and returns rr

as its reciprocal:

rr ← 1/λ+(+,+, y) .

it calculates the probability of getting the OptionSet (w, i, r) and re-
turns it as lospr :

lospr ← log

(
λw(r, i, y)

λ+(+,+, y)

)
If ConstantRates these are trivial look-up operations (the values then
depend only on the parameters included in the functions λ, not on y).

Note that in some cases this must be done for all (w, i, r), sometimes
only for one value of (w, i, r). When it is done for all cases, this is
denoted
StepProb1(y, ∗; rr, lospr∗),
and then lospr∗ is an output array of suitable dimensions.

2. StepProb2(input y, w, i, j, r, d;output rr, lospr, lcpr);
After doing the same as in StepProb1(y, w, i, r; rr, lospr),
this calculates for the current state y, conditional on the assumption
that a ministep of OptionSet (w, i, r) is made, the log of the condi-
tional probability that this will be the ministep with value (w, i, j, r, d);
for w = N (network) this is lcpr ← log(πj) using πj defined in (1);
for w = B (behavior) this is lcpr ← log(πd) using πv defined in (2).
Output variables rr, lospr, lcpr are the rRate , lOptionSetProb , and
lChoiceProb of this ministep.

Note that for a given (w, i, r), in some cases this must be done for all
j (if w = N ) or d (if w = B), in other cases only for one value of j or
d. If it is done for all j or d, the notation is
StepProb2(y, w, i, ∗, r, ∗; rr, lospr, lcpr∗)
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and again lcpr∗ is an array of suitable dimension.
If the function is denoted StepProb2(y,ms; rr, lospr, lcpr), this is the
same as StepProb2(y, w, i, j, r, d; rr, lospr, lcpr) with the coordinates
w, i, j, r, d for the ministep filled in.

3. StepProb3(input y, w, i, j, r, d;output rr, sc);
This calculates rr as in StepProb1(y, w, i, r; rr, lospr);
in addition, it calculates the contribution of this ministep to the score
function, which in Section 2 is what is added (as described there for
three occasions) to Jm, and stores this in the p-vector sc. Output
lospr and lcpr dropped from StepProb3 because not needed.

While operating on the chain, it is important to keep the log probabilities
and rates up to date. This requires the following procedure. It updates only
part of the chain, and is applied when it is known that the earlier and later
parts do not need to be updated.

4. Update(ms) for a ministep ms:
Update TotNumber, DiagNumber, CCPNumber, ChainNumMisNet,
ChainNumMisBeh.
Use StepProb2 to update the log probabilities and rates for ministep
ms.
If not SimpleRates: Update the values of mu and sigma2.

5. Update(msa,msb) for ministeps msa < msb:
Update TotNumber, DiagNumber, CCPNumber, ChainNumMisNet,
ChainNumMisBeh.
Use StepProb2 to update the log probabilities and rates for all mini-
steps from msa to msb (i.e., all ministeps between these two in the
chain order, including these two ministeps themselves).
If not SimpleRates: Update the values of mu and sigma2.

This is called UpdateRateslprobs in Siena 3.

In many cases, StepProb* has been called just before Update, so that the
log probabilities and rates are known already and the expensive procedure
StepProb* does not have to be called again.

Depending on the implementations, the auxiliary variables for working with
CCPs must also be suitably updated.
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9 Likelihood-based calculations:
Metropolis-Hastings steps

A basic required functionality is to simulate from the distribution of chains
that connect y(tm−1) to y(tm), given the model specification and model
parameters. This is done by repeated application of Metropolis Hastings
steps. These are of the following types, with associated probabilities. The
probabilities are constants with default values that can be changed by the
very experienced user.

1. MH InsertDiag
(called MH TryInsertDiag in Siena 3), associated probability pridg.

2. MH CancelDiag
(called MH TryCancelDiag in Siena 3), associated probability prcdg.

3. MH Permute, associated probability prper.

4. MH InsPermute, associated probability pripr.

5. MH DelPermute, associated probability prdpr.

6. MH InsMis, associated probability prims.

7. MH DelMis, associated probability prdms.

8. MH RandomMis dropped version May 30.

Function MH DelPermute also uses internal probabilities prmin and prmib.
If the number of actors always is n, and all networks are one-mode, these
could have the default values

prmin =
NumMisNet

NumMisNet +RN n(n− 1)
(33)

prmib =
NumMisBeh

NumMisBeh +RB n
(34)

In the general case, RN n(n− 1) would be replaced by the total number of
dyadic tie variables, and RB n by the total number of individual behaviour
variables. (The reasoning is as follows. In procedure MH DelPermute this
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probability serves to balance changes in missings with changes in CCPs,
and the total available number of variables/options for which there could
be CCPs is RN n(n− 1) and RB n, respectively).
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The definitions of these procedures have three parts:

A. Choose the proposal.

B. Calculate the probability (usually pra) for this proposal.

C. With probability pra carry it out in practice.

The earlier (version before February 1) description only contained parts B
and C. What were the input parameters for those earlier versions now are
calculated in part A, and therefore now only have an internal role. The only
remaining input parameter is c0, the maximal order of the permutations.

Functions MH InsertDiag and MH CancelDiag are each other’s inverses.
Similarly, MH InsPermute and MH DelPermute are each other’s inverses.
Function MH Permute is the inverse of another MH Permute, for a suitable
other permutation. Functions MH InsMis and MH DelMis are each other’s
inverses.

Function MH Permute basically is part of the two functions MH InsPermute
and MH DelPermute. Including it in those functions is done for computa-
tional efficiency (most of the calculations have to be done anyway).

The variable below called KappaFactor denotes the factor with which the
variable called κ in Snijders et al. (2010) (equation (16) for the SimpleR-
ates case, and (21) else) has to be multiplied if the MH step is accepted.
The correspondence for the SimpleRates case is as follows:
nα1(t2 − t1) in (16) is λ+(+,+, y) = 1/rr here;
R in (16) is TotNumber− 1 here.

As notation I use the R convention of denoting an assignment statement
by a← b, i.e., the variable a gets the value b.

9.1 Diagonal Insert

The function MH InsertDiag(output pra, accept) is roughly described as
follows. The interpretation is that the proposal is made to insert a diagonal
element of OptionSet (w, i, r) immediately before a ministep ms; according
to a random decision with probability pra, computed within the function,
this proposal is put into effect (yielding accept = True ) or not (yielding
accept = False ).
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Part A:

1. ms ← RandomElement

2. y ← StateBefore(ms)

3. StepProb1(y, ∗;output rr, lospr∗)

4. With probabilities defined by exp(lospr∗) choose OptionSet (w, i, r).
If i is not active, or w = B and B(r)(i) is structurally fixed, then exit.

Note: the proposal probability here is

exp(lospr)

TotNumber
which is used below in the definition of pra.

Part B:

9. StepProb2(y, w, i, i, r, 0; rr, lospr, lcpr)
(lospr was already calculated above)

10. If SimpleRates, let

KappaFactor← 1

rr × TotNumber
(35)

else

KappaFactor←

√
sigma2

sigma2 + rr2
× exp

(
(1−mu)2

2 × sigma2
− (1−mu− rr)2

2 (sigma2 + rr2)

)
.

(36)

11.

pra← KappaFactor × exp(lcpr) × TotNumber × prcdg
(DiagNumber + 1) × pridg

(37)

Check the use of lospr and lcpr, which may be different from the
earlier version.
Note: the proposal probability and the new chain probability both
include factors exp(lospr) which cancel out.
if (pra > 1), then pra← 1.
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Part C:

12. With probability pra let accept ← True , else accept ← False .

13. If accept, then

(a) InsertBefore(ms, w, i, i, r, 0)
Earlier the order was wrong: it said w, i, i, 0, r instead of w, i, i, r, 0.

(b) Update(ms)
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9.2 Diagonal Delete

The function MH CancelDiag(output pra, accept) is roughly described as
follows.
The interpretation is that the proposal is made to delete a diagonal mini-
step ms; according to a random decision with probability pra, computed
within the function, this proposal is put into effect (yielding accept = True )
or not (yielding accept = False ).

Part A:

1. ms ← RandomDiagonal

Note: the proposal probability here is

1

DiagNumber

which is used below in the definition of pra.

Part B:

14. rr ← ms.rRate

15. If SimpleRates, let

KappaFactor← rr × (TotNumber − 1) (38)

else

KappaFactor←

√
sigma2

sigma2− rr2
× exp

(
(1−mu)2

2 × sigma2
− (1−mu + rr)2

2 (sigma2− rr2)

)
.

(39)

16.

pra← KappaFactor × exp(−ms.lChoiceProb ) × DiagNumber × pridg
(TotNumber− 1) × prcdg

.

(40)

Note: the proposal probability and the new chain probability both
include factors exp(ms.lOptionSetProb ) which cancel out.
if (pra > 1), then pra← 1.
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Part C:

17. With probability pra let accept ← True , else accept ← False .

18. If accept, then

(a) Delete(ms)

(b) If (not SimpleRates), let

i. mu ← mu− rr ;
ii. sigma2 ← sigma2− rr2 .

9.3 Permute

In this section, various formulations are changed but the main content is
the same; from the next section to Section 13, the text is new. This is not
indicated by colour any more.

A rough description of the function
MH Permute(input c0;output pra, accept) is as follows.
The input parameter c0 is a relatively small integer – in Siena 3 it is deter-
mined adaptively with a maximum value of 40.
Within the function, if msa.succ (c0−1) < last then c = c0, else c is truncated
to length[msa, last ] − 1; and msb = msa.succ (c−1). Thus, msa and msb are
two non-extreme ministeps with msa < msb and c = length[msa,msb] ≤ c0.
Further, perm is a permutation of the numbers 1, 2, . . . , c.
The proposal made is to permute the c ministeps in the interval [msa,msb]
by perm; according to a random decision with probability pra, computed
within the function, this proposal is put into effect (yielding accept = True )
or not (yielding accept = False ).

Part A:

1. repeat msa ← RandomElement until msa ̸= last .

2. c← min{c0, length(msa, last )− 1}.
If c = 1 then exit.

3. Let perm be a random permutation of the numbers 1 to c,
and denote msb = msa.succ (c−1).
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4. y ← StateBefore(msa)

5. For all r, 1 ≤ r ≤ RB, check (30) for the permuted chain.
This condition needs to be checked here only for ministeps from msa
to msb.
For any variable (w, r) that is involved in a condition of the kind
higher , disjoint , or atleastone , similarly check these conditions for
the potential new chain.
If at least one of these conditions are not satisfied, exit.

The inverse of the proposal is a proposal of exactly the same kind. The
proposal probability is

1

(TotNumber− 1) × c!

but this needs not be used, since the proposal probability is the same as
the probability of the inverse proposal.

Part B:

6.

sumlprob←
c∑

s=1

(msa.succ s−1).(lChoiceProb + lOptionSetProb ) ;

If (not SimpleRates), then below we use the values mu and sigma2;
these refer to the current chain.

sumlprob new← 0 ;

mu new← mu−
c∑

s=1

(msa.succ s−1).(rRate ) ;

sigma2 new← sigma2−
c∑

s=1

(msa.succ s−1).(rRate )2 ;

7. Note that still y = StateBefore(msa) as was assigned above.
For 1 ≤ s ≤ c denote by Coordinatess the values (w, i, j, r, d) of
msa.succ s−1.
For s running from 1 to c, do:
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(a) StepProb2(y,Coordinatesperm(s); rrs, losprs, lcprs);

(b) sumlprob new ← sumlprob new + lcprs + losprs ;

(c) If (not SimpleRates), then

i. mu new ← mu new + rrs ;
ii. sigma2 new ← sigma2 new + (rrs)

2 ;

(d) ChangeStep(y,Coordinatesperm(s));

8. If SimpleRates, let

KappaFactor← 1 (41)

else

KappaFactor←

√
sigma2

sigma2 new
× exp

(
(1−mu)2

2 × sigma2
− (1−mu new)2

2 × sigma2 new

)
.

(42)

9.

pra← KappaFactor × exp(sumlprob new− sumlprob) (43)

if (pra > 1), then pra← 1.

Part C:

10. With probability pra let accept ← True , else accept ← False .

11. If accept, then permute the chain from msa to msb by perm,
and Update(msa,msb).

9.4 Insert – Permute

The function MH InsPermute (input c0;output misdat, pra, accept) is de-
fined as follows.
The input parameter c0 is a relatively small integer – in Siena 3 it is deter-
mined adaptively with a maximum value of 40.

61



First a rough description is given.

First a vector of coordinates (w0, i0, j0, r0, d0) is selected. The output vari-
able misdat indicates whether option (w0, i0, j0, r0) is missing (see function
mis defined above).

In the regular case, where misdat = False , the proposal is made to insert
the non-diagonal coordinates (w0, i0, j0, r0, d0) before a random ministep
msa and insert (w0, i0, j0, r0,−d0) before some ministep msb with msa <

msb, such that the two inserted ministeps will be a CCP. This requires the
following:
▶ (C1)

(
(w0 = N)⇒ i0 ̸= j0

)
and

(
(w0 = B)⇒ d0 ̸= 0

)
;

▶ (C2) there are no ministeps of the type (w0, i0, j0, r0) in the interval
[msa,msb.pred ].

Since we must be calculating various probabilities anyway, we shall use the
opportunity also to propose permuting an interval [msa,mse] of ministeps;
the length of this interval is c. However, we do not wish to risk and create
extra CCPs by doing so, as this would require more complicated counting
for the calculation of acceptance probabilities. Therefore, first we have
a provisional value of c; if the interval of c ministeps starting from msa
contains two ministeps of the same Option, then c is decreased to a value
such that it is certain that permuting the interval of this length starting
from msa will not affect the number of CCPs. This truncation of c uses the
auxiliary ministep msf .
If c ≥ 2, perm is a permutation of the numbers 1, 2, . . . , c, and the pro-
posal includes permuting the ministeps in the interval [msa,msa.succ c−1]

by perm.

If misdat = True and the link is missing at the end of the period, the pro-
posal is made to insert the non-diagonal ministep (w0, i0, j0, r0, d0) before
a random ministep msa, and permute the c ministeps starting with msa,
where again c is c0 truncated to the number of available places.

If misdat = True and the link is not missing at the end of the period do
nothing.

According to a probability pra, the proposal is put into effect (yielding
accept = True ) or not (yielding accept = False ).

The steps taken in the function are as follows.
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Part A:

1. Repeat msa ← RandomElement until msa < last .

2. y ← StateBefore(msa)

3. StepProb1(y, ∗; rr, lospr∗)
With probabilities defined by exp(lospr∗) choose OptionSet (w0, i0, r0),
under the condition that (w0, i0, r0) ̸= OptionSet(msa).
We just choose one and if same var and actor as msa we exit. Not
sure how to express it in your notation. I set pr2 to 1 below because
of this
If i0 is not active, exit.
If uponly or downonly holds for variable (w0, r0), then exit.
pr2 ← 1− exp(lospr∗(Option(msa))) .
By lospr ∗ (Option(msa)) is denoted the element of the array lospr∗
giving the log-probability of the OptionSet of the ministep msa.

4. StepProb2(y, w0, i0, ∗, r0, ∗; rr, lospr, lcpr∗)
With probabilities defined by exp(lcpr∗):
if w0 = N choose j0 and let d0 = 0, if w0 = B choose d0 and let j0 = 0.
If (w0, i0, j0, r0, d0) is diagonal then exit.
If w0 = N and N (r0)(i0, j0) is structurally fixed, or w0 = B and B(r0)(i0)

is structurally fixed, then exit.
If w0 = B and the chain after inserting (w0, i0, j0, r0, d0) before msa
would not satisfy (30) any more at msa, then exit.

Denote the log-probability of the realized choice by lcpr;
note that also lospr now is the log-probability of the option set choice
realized in the preceding step, so it was already calculated earlier.

5. misdat← mis(w0, i0, j0, r0)

6. (a) If (not misdat):

i. Let msd be
the first ministep in the chain after msa of Option (w0, i0, j0, r0);
or the last ministep if there is no ministep after msa of this
Option.
This can be determined using the pointer succOption .
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ii. ChoiceLength← length(msa,msd)− 1

Condition (iii) omitted

(Note that not going beyond this ministep msd, and msa having
an OptionSet different from (w0, i0, r0), implies that (C2) will be
satisfied.)

(b) If misdat :
If ministep is not missing at the end of the period, exit. Other-
wise, ChoiceLength← 1

7. (a) If (not misdat):
Let msb a random ministep in the interval [msa.succ ,msd]. Note
that the number of choices here is ChoiceLength.

(b) If misdat :
msb ← last

8. (a) ThisLength← length(msa,msb)− 1

(b) c← min{c0,ThisLength}
(Note that c ≥ 1; if c = 1, then the permutation applied below is
trivial, and the permutation as well as the checks involved can
be skipped, because they have no effect.)

(c) If ThisLength ≤ c0,
then msg ← msb.pred ,
else msg ← msa.succ c .

(d) If the interval [msa,msg] contains any pair of two non-diagonal
ministeps of the same Option:

i. define msf as the last ministep in [msa,msg] such that all
Options of non-diagonal ministeps in [msa,msf ] are distinct;

ii. c← min{c, length([msa,msf ])− 1}.
(The permutation below will then affect only ministeps strictly
before msf ; this will ensure that the permuted ministeps,
together with msf , all have distinct Options and therefore
the permutation cannot affect the number of CCPs.)

(e) mse ← msa.succ (c−1)

9. Let perm be a random permutation of the numbers 1 to c.
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10. For all variables (w, r) involved in a condition of the kind higher ,
disjoint , or atleastone , check these conditions for the chain changed
as follows:
(w0, i0, j0, r0, d0) inserted before msa,
if (not misdat): (w0, i0, j0, r0,−d0) inserted before msb,
and the interval [msa,mse] permuted according to perm.
This needs to be checked here only for ministeps from msa to msb.
If at least one of these conditions are not satisfied, exit.

The proposal probability is

exp (lospr + lcpr)

pr2 × (TotNumber− 1) × ChoiceLength × (c!)

This is used in pra below.
We also need the probability of the inverse proposal (except for the factor
c! which cancels), and therefore calculate the following.

11. This item is used only if not misdat :
if NumberOption(w0, i0, j0, r0) = 0 :

NewCCPNumber← CCPNumber + 1 ;

if NumberOption(w0, i0, j0, r0) ≥ 1 and w0 = N :

(a) if msa.pred in the original chain (before the insertion) is of Option
(w0, i0, j0, r0) then

NewCCPNumber← CCPNumber + 1 ,

(b) else

NewCCPNumber← CCPNumber + 2 ;

if NumberOption(w0, i0, j0, r0) ≥ 1 and w0 = B :
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if { there is a ministep of option (w0, i0, j0, r0) before msa,
and the last such ministep is not msa.pred },
define d− as the d-coordinate of the last such ministep,
and d− ← 0 otherwise;
if there is a ministep of option (w0, i0, j0, r0) after msb,
define d+ as the d-coordinate of the first such ministep,
and d+ ← 0 otherwise; and let

NewCCPNumber←
CCPNumber+I{d−×d0 = −1}+I{d+×d0 = +1}

where I{A} = 1 if A is true and 0 otherwise.

We find NewCCPnumber by insertions, calculate pr1 and then re-
move the insertions

12.

if (not misdat) : pr1 ←
1− prmin− prmib
NewCCPNumber

;

if misdat and w0 = N : pr1 ←
prmin

ChainNumMisNet + 1
;

if misdat and w0 = B : pr1 ←
prmib

ChainNumMisBeh + 1
.

(only the non-misdat case was changed).

Part B:

13.

sumlprob←
ThisLength∑

s=1

(msa.succ s−1).(lChoiceProb + lOptionSetProb ) ;

If (not SimpleRates), then below we use the values mu and sigma2;
these refer to the current chain.

sumlprob new← 0 ;
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mu new← mu−
ThisLength∑

s=1

(msa.succ s−1).(rRate ) ;

sigma2 new← sigma2−
ThisLength∑

s=1

(msa.succ s−1).(rRate )2 ;

14. Note that still y = StateBefore(msa) as was assigned above.
StepProb2(y, w0, i0, j0, r0, d0; rr0, lospr0, lcpr0);
sumlprob new ← sumlprob new + lcpr0 + lospr0 ;
If (not SimpleRates), then

(a) mu new ← mu new + rr0;

(b) sigma2 new ← sigma2 new + (rr0)
2.

ChangeStep(y, (w0, i0, j0, r0, d0))

15. For 1 ≤ s ≤ ThisLength denote by Coordinatess the values (w, i, j, r, d)

of msa.succ s−1.

16. For s running from 1 to c, do:

(a) StepProb2(y,Coordinatesperm(s); rrs, losprs, lcprs) ;

(b) sumlprob new ← sumlprob new + lcprs + losprs ;

(c) If (not SimpleRates), then

i. mu new ← mu new + rrs ;
ii. sigma2 new ← sigma2 new + (rrs)

2 ;

(d) ChangeStep(y,Coordinatesperm(s)) .

17. For s running from c+ 1 to ThisLength do:

(a) StepProb2(y,Coordinatess; rrs, losprs, lcprs)

(b) sumlprob new ← sumlprob new + lcprs + losprs

(c) If (not SimpleRates), then

i. mu new ← mu new + rrs

ii. sigma2 new ← sigma2 new + (rrs)
2

(d) ChangeStep(y,Coordinatess)

18. if (not misdat):

67



(a) StepProb2(y, w0, i0, j0, r0,−d0; rr0, lospr0, lcpr0)

(b) sumlprob new ← sumlprob new + lcpr0 + lospr0

(c) If (not SimpleRates), then

i. mu new ← mu new + rr0 ;
ii. sigma2 new ← sigma2 new + (rr0)

2 .

(d) ChangeStep(y, (w0, i0, j0, r0,−d0))
Note that at this point, y has been transformed to StateBe-
fore(msb) of the current (‘old’) chain.

19. If SimpleRates, then

(a) if (not misdat):

KappaFactor← 1

rr2 × TotNumber × (TotNumber + 1)

(b) if misdat :

KappaFactor← 1

rr × TotNumber

(This was changed 30-05-10; earlier. the lines were, erroneously, as
follows:)

(a) if (not misdat):

KappaFactor← 1

rr2 × (TotNumber + 1)× (TotNumber + 2)

(b) if misdat :

KappaFactor← 1

rr × (TotNumber + 1)

else (i.e., if not SimpleRates)

KappaFactor←

√
sigma2

sigma2 new
× exp

(
(1−mu)2

2 × sigma2
− (1−mu new)2

2 × sigma2 new

)
.

(44)
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20.

pra←KappaFactor × exp(sumlprob new− sumlprob) (45)

× prdpr × pr1 × pr2 × (TotNumber− 1) × ChoiceLength
pripr × exp (lospr + lcpr)

(46)

if (pra > 1), then pra← 1.

Part C:

21. With probability pra let accept ← True , else accept ← False .

22. If accept, then

(a) insert (w0, i0, j0, r0, d0) before msa;

(b) if (not misdat), insert (w0, i0, j0, r0,−d0) before msb;

(c) permute the chain from msa to msa.succ c−1 by perm;

(d) Update the chain for the changed part.

9.5 Delete – Permute

The function MH DelPermute (input c0;output misdat, w0, pra, accept) is
defined as follows.
The input parameter c0 is a relatively small integer – in Siena 3 it is deter-
mined adaptively with a maximum value of 40.

First a rough description is given.

At the start, there is a choice between deleting a ministep for a missing
data variable, reflected by misdat = True ; or deleting a CCP, reflected by
misdat = False . Although this seems to be quite different, still it has been
combined in one procedure because the overlap in the missing and non-
missing cases is so large.

If misdat = False (the regular case), the proposal is made to delete two
ministeps msa and msb that together are a CCP.
Then the number c is provisionally min{c0, length(msa,msb)− 2}.
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If misdat = True , the proposal is made to delete one ministep for a missing
data variable, msa.
Then provisionally c = min{c0, length(msa, last )− 2}.
Like in MH InsPermute, a check is made for the existence of several mini-
steps of the same Option in the interval of c ministeps after msa; if this is
the case, then c is decreased just like in MH InsPermute.

In both cases, the output parameter w0 is the aspect (Network or Behavior)
of ministep msa. The reason for having this output is the possibility to tune
the values of the probabilities prmin and prmib.

In addition, if c ≥ 2, perm is a permutation of the numbers 1, 2, . . . , c, and
the proposal includes permuting the ministeps in the interval [msa.succ ,msa.succ c]

by perm.

According to aprobability pra, the proposal is put into effect (yielding accept
= True ) or not (yielding accept = False ).

The steps taken in the function are as follows.

Part A:

1. With probability prmin + prmib let misdat← True ,
else misdat← False .

2. (a) if (not misdat):

i. If CCPNumber = 0, then exit.
ii. (msa,msb)← RandomCCP
iii. ThisLength← length(msa,msb)

(b) if misdat :

i. With probability

prmin
prmin + prmib

let w0 ← N , else w0 ← B.
ii. if w0 = N , then

A. if ChainNumMisNet = 0, then exit.
B. msa ← RandomMisNet

iii. if w0 = B, then
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A. if ChainNumMisBeh = 0, then exit.
B. msa ← RandomMisBeh

iv. ThisLength← length(msa, last )

v. If msa.succ = last (i.e., ThisLength = 2), exit.

3. c← min{c0,ThisLength− 2}.
Note that in the case (not misdat) the definition of a CCP implies
c ≥ 1.
If misdat, the ‘exit’ in the preceding step implies that c ≥ 1.

4. If ((ThisLength− 2 ≤ c0) and (not misdat)),
then msg ← msb.pred ,
else msg ← msa.succ (c+1) .
(msg is an upper bound to the interval if ministeps that will be per-
muted.)

5. If the interval [msa.succ ,msg] contains any pair of two non-diagonal
ministeps of the same Option:

(a) define msf as the last ministep in [msa.succ ,msg] such that all
Options of non-diagonal ministeps in [msa.succ ,msf ] are dis-
tinct;

(b) c← min{c, length([msa.succ ,msf ])− 1}.
(The permutation below will then affect only ministeps strictly
before msf ; this will ensure that the permuted ministeps, to-
gether with msf , all have distinct Options and therefore the per-
mutation cannot affect the number of CCPs.)

6. Let perm be a random permutation of the numbers 1 to c.

7. y ← StateBefore(msa) .

8. For all variables (w, r) involved in a condition of the kind higher ,
disjoint , or atleastone , check these conditions for the chain with msa
and msb deleted, and with msa.succ to msa.succ c permuted by perm.
This needs to be checked here only for ministeps from msa.succ to
msb.pred .
If at least one of these conditions are not satisfied, exit.
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To calculate the proposal probabilities of this proposal and the inverse
proposal, used in pra below, we need to calculate the following.

9.

if (not misdat) : pr1 ←
1− prmin− prmib

CCPNumber
;

if misdat and w0 = N : pr1 ←
prmin

ChainNumMisNet
;

if misdat and w0 = B : pr1 ←
prmib

ChainNumMisBeh
.

10. If (not misdat):

(a) let msd be
the first ministep in the chain after msb of the same Option (w0, i0, j0, r0);
or the last ministep if there is no ministep after msb of this
Option.
This can be determined using the pointer succOption .

(b) Let ChoiceLength← length(msa,msd)− 3.
Note that ChoiceLength≥ 1.
The information we need in the following is only ChoiceLength,
we can forget about msd itself.

11. If misdat, ChoiceLength← 1 .

The probability of this proposal is

pr1
c!

.

Part B:

12. If misdat then MaxLength← c, else MaxLength← ThisLength.
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13.

sumlprob←
MaxLength∑

s=1

(msa.succ s−1).(lChoiceProb + lOptionSetProb ) ;

If (not SimpleRates), then below we use the values mu and sigma2;
these refer to the current chain.

sumlprob new← 0 ;

mu new← mu−
MaxLength∑

s=1

(msa.succ s−1).(rRate ) ;

sigma2 new← sigma2−
MaxLength∑

s=1

(msa.succ s−1).(rRate )2 ;

14.

lpr0 ← msa.(lChoiceProb + lOptionSetProb )

(This is part of the log probability for the reverse proposal.)

15. Note that still y = StateBefore(msa) as was assigned above.

(w2, i2, j2, r2, d2)← (msa.succ ).Coordinates ;

StepProb1(y, w2, i2, r2; rr2, lospr2) ;

pr2 ← 1− exp(lospr2)

pr2 is set to 1 as for insert permute. (pr2 also is part of the log
probability for the reverse proposal; the others of these numbers with
subscript 2 are not used any more.)

16. For 1 ≤ s ≤ ThisLength − 2 denote by Coordinatess the values
(w, i, j, r, d) of msa.succ s.

17. Note that still y = StateBefore(msa) as was assigned above.
For s running from 1 to c, do:

(a) StepProb2(y,Coordinatesperm(s); rrs, losprs, lcprs)
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(b) sumlprob new ← sumlprob new + lcprs + losprs

(c) If (not SimpleRates), then

i. mu new ← mu new + rrs

ii. sigma2 new ← sigma2 new + (rrs)
2

(d) ChangeStep(y,Coordinatesperm(s))

18. For s running from c+ 1 to ThisLength− 2 do:

(a) StepProb2(y,Coordinatess; rrs, losprs, lcprs)

(b) sumlprob new ← sumlprob new + lcprs + losprs

(c) If (not SimpleRates), then

i. mu new ← mu new + rrs

ii. sigma2 new ← sigma2 new + (rrs)
2

(d) ChangeStep(y,Coordinatess);
note that at this point, if (not misdat), y has been transformed to
StateBefore(msb) of the current (‘old’) chain.

19. If SimpleRates, then

(a) if (not misdat):

KappaFactor← rr2× (TotNumber − 1)× (TotNumber − 2)

(b) if misdat :

KappaFactor← rr × (TotNumber − 1)

(This was changed 30-05-10; earlier. the lines were, erroneously, as
follows:)

(a) if (not misdat):

KappaFactor← rr2 × TotNumber × (TotNumber − 1)

(b) if misdat :

KappaFactor← rr × TotNumber
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else (i.e., if not SimpleRates)

KappaFactor←

√
sigma2

sigma2 new
× exp

(
(1−mu)2

2 × sigma2
− (1−mu new)2

2 × sigma2 new

)
.

(47)

Part C:

20. With probability pra let accept ← True , else accept ← False .

21. If accept, then

(a) permute the chain from msa to msa.succ c−1 by perm;

(b) delete msa;

(c) if (not misdat), delete msb;

(d) Update the chain for the changed part.

9.6 Randomize Initial Missings: Insert

This section is new in the version of May 30, 2010.

Two functions are used to randomize values of variables for which the
value at the start of the period, element of y(tm−1), is missing. These are
MH InsMis and MH DelMis. They are called only when there is at least
one missing value in y(tm−1).

Introducing a natural Bayesian element in this otherwise frequentist pro-
cedure, these procedures utilize prior probability distributions for the un-
observed initial variables. For the very first observation y(t1), a simple
specification of these prior distributions is as follows (using m = 1).

• All unobserved variables are prior independent.

N. For the network variables, N
(r)
ij (tm−1) has a prior distribution with

probability
P{N (r)

ij (tm−1) = 1} = net prior(r, i, j).
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B. For the behavior variables, B
(r)
i (tm−1) has a prior distribution with

probabilities
P{B(r)

i (tm−1) = v} = beh prior(r, i, v) for v in the permitted range of
his variable.

The simplest and presumably very adequate way is to let this depend only
on the dependent variable, N (r) or B(r):

net prior(r, i, j) = observed density of network r, observation m− 1,

beh prior(r, i, .) = observed distribution of behavior r, observation m− 1,

For m ≥ 3 the best solution would be to do the simulations of the m − 1

chains in sequence, and utilize the simulated last version of the preceding
period as the first version of the following period. This does not go well, I
presume, with the current architecture of RSiena which further needs no
communication between simulation of different periods. A simple way out
is to use the priors above here also (i.e., for general m). I think this will be
very reasonable, unless there are a lot of missing data or the interest of
the analysis is precisely in the missings.

The function MH InsMis (output w0, i0, j0, r0, pra,accept) is defined as fol-
lows. First a rough description is given.

The initial state of the chain is denoted yinit; this must be equal to y(tm−1)

except for the coordinates for which there is an initial missing value, and
these coordinates are being changed in this procedure.

A random selection is made among the coordinates (options) for which the
initial value is missing. This yields the values (w0, i0, j0, r0).
For this variable, the proposal is made to insert a ministep (w0, i0, j0, r0, d0)

before some existing ministep msa; this msa is randomly chosen, under the
constraint that there are no earlier ministeps of option (w0, i0, j0, r0); the
proposal also includes transforming the initial value yinit by the opposite
change (w0, i0, j0, r0,−d0) (which amounts to changing the current value of
N

(r0)
i0j0

(tm−1) if w0 = N or B(r0)
i0

(tm−1) if w0 = B) so that from msa onward,
the chain is the same as it used to be.

The steps taken in the function are as follows.

Part A:
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1. If ChainNumInitMis = 0, then exit.

2. (w0, i0, j0, r0)← RandomInitMis ;
if w0 = B, then

(a) pr1 ← 0.5 ,

(b) d0 ← random choice in {−1,+1} ;

else

(a) pr1 ← 1 ,

(b) d0 ← 0 .

3. If w0 = B, and subtracting (rather than adding), as this is what is
actually done. d0 to the current value of B(r)

i0
(tm−1) (which is one of

the coordinates in yinit) would lead to a value of this variable outside
of its permitted range, then

(a) pr1 ← 1 ,

(b) d0 ← −d0 ,

(c) reversed← true ,

else
reversed← false .

4. Let msb be
the first ministep in the chain of Option (w0, i0, j0, r0);
or the last ministep if there is no ministep of this Option.
(Above there has been mention somewhere of the pointer succOption
; I do not know if something like that has been implemented, but
clearly some of the same machinery might be used here.)

5. ChoiceLength← length(first ,msb)− 1

6. Let msa a random ministep in the interval [first .succ ,msb].
(Thus, msb also is permitted.)
Note that the number of choices here is ChoiceLength ≥ 1.
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7. If variable (w0, r0) is involved in any of the conditions uponly , downonly
, higher , disjoint , or atleastone , then :

If changing yinit by (w0, i0, j0, r0,−d0) while inserting a
ministep of option (w0, i0, j0, r0, d0) immediately before msa
would lead to a violation of at least one of these conditions,
then:

(a) if reversed or (w0 = N ) then exit, else

d0 ← −d0
pr1 ← 1 ;

(b) If for this opposite value of d0, changing
yinit by (w0, i0, j0, r0,−d0) while inserting
a ministep of option (w0, i0, j0, r0, d0)

immediately before msa would also violate
one or more of these conditions, then exit.

The proposal probability here is

pr1
NumInitMis× ChoiceLength

.

This is used in pra below.

Part B:
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8.

sumlprob ←
msa.pred∑

ms=first.succ
(ms.(lChoiceProb + lOptionSetProb ) ;

sumlprob new ← 0 ;

mu new ← mu −
msa.pred∑

ms=first.succ
(ms.rRate ) ;

sigma2 new ← sigma2 −
msa.pred∑

ms=first.succ
(ms.rRate )2 .

9. y ← yinit ;

Let pr2 be the prior probability (see net prior and beh prior discussed
above) of value y(w0, i0, j0, r0) and pr3 the prior probability of the
value when this variable is changed according to ministep (w0, i0, j0, r0,−d0)
;

ChangeStep(y, (w0, i0, j0, r0,−d0)) (now we have the new initial value);

StepProb1(y, w0, i0, j0, r0; rr0, lospr0);

If (not SimpleRates), then

(a) mu new ← mu new + rr0 ,

(b) sigma2 new ← sigma2 new + (rr0)
2 ;

10. For ms running from first .succ to msa.pred do:

(a) StepProb2(y,ms.Coordinates; rr, lospr, lcpr), where ms.Coordinates
are the coordinates of ministep ms;

(b) sumlprob new ← sumlprob new + lcpr + lospr

(c) If (not SimpleRates), then

i. mu new ← mu new + rr ;
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ii. sigma2 new ← sigma2 new + (rr)2 .

(d) ChangeStep(y,ms)

11. (a) StepProb2(y, w0, i0, j0, r0, d0; rr0, lospr0, lcpr0)

(b) sumlprob new ← sumlprob new + lcpr0 + lospr0

12. If SimpleRates (which implies rr = rr0), then

(a)

KappaFactor← 1

rr0 × TotNumber

else (i.e., if not SimpleRates)

KappaFactor←

√
sigma2

sigma2 new
× exp

(
(1−mu)2

2 × sigma2
− (1−mu new)2

2 × sigma2 new

)
.

(48)

13.

pra← KappaFactor × exp(sumlprob new− sumlprob) (49)

× prdms × ChoiceLength × pr3
prims × pr1 × pr2

; (50)

if (pra > 1), then pra← 1.

Part C:

14. With probability pra let accept ← True , else accept ← False .

15. If accept, then

(a) ChangeStep(yinit, (w0, i0, j0, r0,−d0))

(b) insert (w0, i0, j0, r0, d0) before msa;

(c) Update the chain for the changed part.
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9.7 Randomize Initial Missings: Delete

This section is new in the version of May 30, 2010.

Two functions are used to randomize values of variables for which the
value at the start of the period, element of y(tm−1), is missing. These
are MH InsMis and MH DelMis. They are called only when there is at
least one missing value in y(tm−1). This section specifies MH DelMis. The
same prior distributions net prior(r, i, j) and beh prior(r, i, v) are used as
in the preceding section.

The function MH DelMis (output w0, i0, j0, r0, pra,accept) is defined as fol-
lows. First a rough description is given.

The initial state of the chain is denoted yinit; this must be equal to y(tm−1)

except for the coordinates for which there is an initial missing value, and
one of these coordinates may be changed in this procedure.

A random selection is made among the coordinates (options) for which the
initial value is missing. This yields the output values (w0, i0, j0, r0).
If no ministep of this option exist, then nothing happens. If ministeps of
this option do exist, the proposal is made to delete the first ministep of
this option; given that the ministep has the coordinates (w0, i0, j0, r0, d0),
the proposal is combined with changing transforming the initial value yinit

by this change (w0, i0, j0, r0, d0) (which amounts to changing N
(r0)
i0j0

(tm−1) if
w0 = N or B(r0)

i0
(tm−1) if w0 = B) so that after the to-be-deleted ministep,

the chain will be the same as it used to be.

The quantities ChoiceLength and pr1 are computed because they play a
role in the proposal probability for the reverse proposal, and hence in the
acceptance probability of this proposal.

The steps taken in the function are as follows.
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Part A:

1. If ChainNumInitMis = 0, then exit.

2. (w0, i0, j0, r0)← RandomInitMis .

3. Let msa be the first ministep in the chain of Option (w0, i0, j0, r0), and
d0 ← msa.d .
(Above there has been mention somewhere of the pointer succOption
; I do not know if something like that has been implemented, but
clearly some of the same machinery might be used here.)

4. Let msb be the second ministep in the chain of Option (w0, i0, j0, r0);
and the last ministep if there is no second of this option;
ChoiceLength← length(first ,msb)− 2.
(msb is not used further.)

5. If w0 = B, and adding 2d0 to B
(r)
i0
(tm−1) would not lead to a value of

this variable outside of its permitted range, then

pr1 ← 0.5,

else

pr1 ← 1 .

6. If variable (w0, r0) is involved in any of the conditions uponly , downonly
, higher , disjoint , or atleastone :

(a) If changing yinit by (w0, i0, j0, r0, d0) while deleting ministep msa
would lead to a violation of this condition, then exit.

(b) If pr1 = 0.5 and changing yinit by (w0, i0, j0, r0, 2d0) while simul-
taneously replacing ministep msa by a ministep with coordinates
(w0, i0, j0, r0,−d0) would lead to a violation of this condition, then:

pr1 ← 1 .

The proposal probability here is

1

NumInitMis
.

This is used in pra below.
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Part B:

7.

sumlprob ←
msa∑

ms=first.succ
(ms.(lChoiceProb + lOptionSetProb ) ;

sumlprob new ← 0 ;

mu new ← mu −
msa∑

ms=first.succ
(ms.rRate ) ;

sigma2 new ← sigma2 −
msa∑

ms=first.succ
(ms.rRate )2 .

8. y ← yinit ;

Let pr2 be the prior probability (see net prior and beh prior discussed
above) of value y(w0, i0, j0, r0) and pr3 the prior probability of the
value when this variable is changed according to ministep (w0, i0, j0, r0, d0)

;

ChangeStep(y, (w0, i0, j0, r0, d0)) ;

StepProb1(y, w0, i0, j0, r0; rr0, lospr0);
Krists had added lospr0 and lcpr0 to sumlprobnew. I removed this.

If (not SimpleRates), then

(a) mu new ← mu new + rr0 ,

(b) sigma2 new ← sigma2 new + (rr0)
2 .

9. For ms running from first .succ to msa.pred do:

(a) StepProb2(y,ms.Coordinates; rr, lospr, lcpr),
where ms.Coordinates are the coordinates of ministep ms ;

(b) sumlprob new ← sumlprob new + lcpr + lospr
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(c) If (not SimpleRates) and (ms < msa.pred ), then

i. mu new ← mu new + rr ,
ii. sigma2 new ← sigma2 new + (rr)2 ;

comment : the reciprocal rate calculated for ms = msa.pred is, in the
proposed new chain, rRate for msa.succ , which is unchanged
and has not been subtracted in step 7.

(d) ChangeStep(y,ms) .

10. If SimpleRates (which implies rr = rr0), then

KappaFactor← rr0 × (TotNumber − 1)

else (i.e., if not SimpleRates)

KappaFactor←

√
sigma2

sigma2 new
× exp

(
(1−mu)2

2 × sigma2
− (1−mu new)2

2 × sigma2 new

)
.

(51)

11.

pra←KappaFactor × exp(sumlprob new− sumlprob) (52)

× prims × pr1 × pr3
×prdms × ChoiceLength × pr2

; (53)

if (pra > 1), then pra← 1.

Part C:

12. With probability pra let accept ← True , else accept ← False .

13. If accept, then

(a) ChangeStep(yinit, (w0, i0, j0, r0, d0))

(b) delete ministep msa;

(c) Update the chain for the changed part.
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10 Likelihood-based calculations:
Simulation complete-data log-likelihoods

The simulation of the complete-data log-likelihood for a given parameter
θ is done as follows (cf. Section 3.4 in Snijders et al. (2010)). Separate
chains are made for all periods m = 1, . . . ,M − 1. This chapter describes
what is done for each period.

1. The chain is initialized by the procedure Connect and by setting

yinit ← y(tm−1) .

2. After this initialization, a burn-in is necessary (only once, at the start
of the likelihood-based MCMC process, i.e., only for the very first
value of θ employed; search for “previous value” in Snijders et al.
(2010)).

3. A large number of Metropolis Hastings steps is used to transform the
current chain to a new chain which can be regarded as a random
draw from the conditional distribution of chains given the observed
data, for the current parameter value θ.

4. For this chain, the complete-data log-likelihood is calculated.

10.1 Burn-in

The burn-in procedure here is different from the one in Siena 3 (the differ-
ence is not important).

As a pre-burn-in it is good to insert, immediately after Connect, some
diagonal steps and some mutually canceling pairs of steps as long as
this increases the likelihood of the chain. This is done as follows, using
functions MH InsertDiag and MH InsPermute explained below.

5. Repeat MH InsertDiag(pra, accept) until 5 times ‘not accept ’.

6. Repeat MH InsPermute(1, misdat, pra, accept) until 5 times ‘not
accept ’.
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The number 5 is arbitrary but reasonable.

After the pre-burn-in nummax Metropolis Hastings steps are made as
described in the following section, where nummax is a suitable number.
I suggest nummax = 500 for the moment; we may experiment with other
values.

To keep users at ease it will be good to have the gui (if it is being used)
display the message ‘Burn-in iterations’ during the burn-in phase.

10.2 Metropolis Hastings steps

The Metropolis Hastings step is a probabilistic choice between the follow-
ing procedures.

1. With probability pridg, make step MH InsertDiag;

2. with probability prcdg, make step MH CancelDiag;

3. with probability prper, make step MH Permute;

4. with probability pripr, make step MH InsPermute;

5. with probability prdpr, make step MH DelPermute;

6. with probability prims, make step MH InsMis;

7. with probability prdms, make step MH DelMis;

Probabilities prims and prdms will be 0 if ChainNumInitMis = 0.
Evidently, pridg + prcdg + prper + pripr + prdpr + prims + prdms = 1, and
I suppose that it makes sense to try working with pridg = prcdg, pripr =
prdpr, and prims = prdms.

The probabilities of the various Metropolis Hastings steps are parameters
of the algorithm. I believe that in Siena 3, the following values were used:
pridg = prcdg = 0.05;
prper = 0.3;
pripr = prdpr = 0.3;
prims = prdms = 0.
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If for all dependent variables uponly or downonly holds, then pripr = prdpr
= 0.

If ChainNumInitMis > 0, the probabilities prims and prdms associated with
the steps MH InsMis and MH DelMis could have the default value

prims = prdms =
ChainNumInitMis

2(RN n(n− 1) + RB n)
,

truncated to some range between, say, .001 and .05. (These values will
still require further experimentation!)

The integer number c0 ≥ 0, used in procedures MH Permute, MH InsPermute,
and MH DelPermute to define the length of the sequence of ministeps to
be permuted, is a parameter of the algorithm and is determined adaptively.
It depends on the period. (In Siena 3 this is stored in the variable numm.)
The heuristic idea is that if proposals for permuting longer sequences
(which make larger steps in the outcome space but imply more work) have
a lower probability to be accepted, then we aim at an acceptance rate of
about 0.5; if proposals with longer sequences have a higher acceptance
probability, then we can propose the permutation of long sequences. In all
cases c0 is bounded between cmin = 2 and cmax = 40. (The constants 2 and
40 are parameters meant to be touched only for algorithmic fine-tuning by
very experienced users.) c0 can be initialised at 20 for all periods. The
adaptive procedure is as follows.

After each of the procedures MH Permute, MH InsPermute, and MH DelPermute:

‘up’ If accept, then c0 ← c0 + 0.5,
but c0 is not allowed to exceed min{cmax,TotNumber-1} .

‘down’ If not accept, then c0 ← c0 − 0.5,
but c0 is not allowed to become less than cmin.

This adaptive choice is suggested by the Robbins-Monro algorithm as a
way to aim at an acceptance rate of 0.5 under the conditions and con-
straints mentioned above. It is felt that the complications for the con-
vergence of the Metropolis Hastings algorithm that are caused by this
adaptation are of such a minor nature that they can safely be ignored.
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However, it is important to check the algorithm and tune the adaptation; in
particular if c0 would hover close to cmin this might be a sign that something
is not well.

The number of Metropolis Hastings steps until the next recorded complete-
data log-likelihood (with a Robbins-Monro step, or for a Bayesian random
update of the parameters) for period m− 1 is

NumStep =MultiplicationFactor×(
TotalDistance(Network) + TotalDistance(Behavior)

)
(54)

where

TotalDistance(Network) =
RN∑
r=1

∑
i,j

| x(r) obs
ij (tm)− x

(r) obs
ij (tm−1) | ,

where the sum is over all tie variables that are not structurally fixed at tm−1

or tm (note that it is possible that tie variables are structurally fixed but have
different subsequent values) and

TotalDistance(Behavior) =
RB∑
r=1

∑
i

| z(r) obsi (tm)− z
(r) obs
i (tm−1) | ,

where the sum is over all actors that are not structurally inactive at tm−1 or
tm.

The MultiplicationFactor must be tuned by the user, based mainly on infor-
mation about the autocorrelations of generated function values (scores) in
Phase 3. A reasonable default value is 5.0, but often (mostly?) higher val-
ues will be necessary. For the Robbins-Monro methods, autocorrelations
should preferably be less than 0.4, and a warning may be issued in the
output file if this is not the case.

For diagnostic output, it will be good to have information about the pro-
portion of accepted Metropolis Hastings proposals of all the different step
types for all the RN + RB different outcome variables (networks and be-
haviors); about the distribution of c0; and about the autocorrelations of the
generated scores in Phase 3. This information should be on the sienaFit
object, but only the autocorrelations should be reported by default; the rest
should be available on request.
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10.3 Score functions

After the NumStep Metropolis-Hastings steps of the preceding subsection,
the score function must be calculated for the resulting chain. This can be
done separately for each of the periods, yielding Jm for m = 2, . . . ,M as
defined in Section 2. This is elaborated in this section.

The score function for the parameters of the rate function here is different
from what is specified in simstats0c. The reason is that for the likelihood-
based calculations, the ‘complete data’ is the embedded chain (without the
time increments), whereas in simstats0c the complete chain, including the
time increments (‘tau’), is used. In simstats0c the contributions to the score
function are calculated immediately after each ministep. Working with only
the embedded chain is more efficient, because part of the variability is
integrated out; the advantage for the likelihood-based calculations is that
there are no complications springing from changing dimensionality of the
continuous part of the outcome space. For rate functions depending on
the state y, working with the embedded chain entails the complications
associated with the constant denoted κ and its consequence KappaFactor.

First consider the case where the rate function does not depend on the
state y = (x, z), although it may depend on the actor i, and it will depend
(if RN + RB > 1) on the dependent variable labeled by (w, r). The rate
function then is expressed by

λw(θ, r, i, y) = ρwr exp(αw
r s

w
ri) (55)

(where αw
r s

w
ri is the inner product of these two vectors). Thus, there is

a basic rate parameter ρwr for each dependent variable labeled (w, r); in
addition there may be actor-dependent variables swri that affect the rate for
dependent variable (w, r), but the parameters αw

r are distinct for distinct
dependent variables.

All sums over actors i in the following are over the active actors.

Denote the number of ministeps of OptionSet (w, i, r) by Tw
ri and Tw

r =∑
i T

w
ri . Note that

∑
w,r T

w
r = TotNumber − 1. The score functions are
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given for the basic rate parameters by

∂ complete data log-likelihood
∂ρwr

=
Tw
r

ρwr
−
∑

active i

exp(αw
r s

w
ri) , (56)

which for cases with only a basic rate parameter λw(θ, r, i, y) = ρwr , and
constant number of active actors nact, reduces to

∂ complete data log-likelihood
∂ρwr

=
Tw
r

ρwr
− nact ; (57)

and, denoting the index number of the covariate for the rate function by h,
the score functions for the other rate parameters are

∂ complete data log-likelihood
∂αw

rh

=
∑

active i

swrih
(
Tw
ri − ρwr exp(αw

r s
w
ri)
)

(58)

=
∑

active i

swrih
(
Tw
ri − λw(θ, r, i, y)

)
.

More background is given in Appendix A.

In the general case, where rates can depend on the state y, we use a
heuristic approximation which is the direct generalization of the above.
Suppose the rate function is given by

λw(θ, r, i, y) = ρwr exp(αw
r s

w
ri(y)) (59)

which is just like (55) except that now the variables swri(y) are functions of
y and not only of (w, r, i). Then we must sum over the ministeps, denoted
here by m = 1, . . . ,TotNumber−1, instead of over the actors. By ∆w

ri(m) we
denote the indicator function of the event that in ministep m, actor i makes
a ministep in variable (w, r); in terms of the earlier sections, the event that
the OptionSet of ministep m is (w, i, r); we define ∆w

ri(m) = 1 if this event
is true, and 0 if it is false. Thus,

∑
m ∆w

ri(m) = Tw
ri and

∑
w,r,i ∆

w
ri(m) = 1.

The state before ministep m is denoted ym.

The score functions now are given for the basic rate parameters by

∂ complete data log-likelihood
∂ρwr

=

Tw
r

ρwr
− 1

TotNumber− 1

TotNumber−1∑
m=1

∑
active i

exp(αw
r s

w
ri(ym)) ,

(60)
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and for the other rate parameters they are

∂ complete data log-likelihood
∂αw

rh

=

TotNumber−1∑
m=1

∑
active i

swrih(ym)

(
∆w

ri(m)− ρwr exp(αw
r s

w
ri(ym))

TotNumber− 1

)

=
TotNumber−1∑

m=1

∑
active i

swrih(ym)

(
∆w

ri(m)− λw(θ, r, i, ym)

TotNumber− 1

)
. (61)

This reduces to the equations above in case that the functions swri(y) are in-
dependent of y, so there is nothing against using these last two equations
in all cases.

In Phase 3 of the Robbins-Monro algorithm, we need something extra, viz.,
the complete-data observed information matrix, which is the p×p matrix of
minus the second partial derivatives of the log-likelihood function. Denote
this by Hm.

11 Likelihood-based calculations:
Robbins-Monro algorithm

The Robbins-Monro algorithm as above is applied, but now to the statistic
defined as the score function S =

∑M
m=2 Jm. Note that equation to be

solved here is

EθS = 0 ,

so the role of the observed value s in the MoM is now taken by the number
0.

The estimated covariance matrix of the ML estimator is(
Σ̂complete − Σ̂missing

)−1

where Σ̂complete is the estimated complete data information matrix while
Σ̂missing is the estimated information matrix for the missing data (cf. (25) in
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Snijders et al. (2010)). Σ̂complete is obtained as the average of the gener-
ated

∑M
m=2Hm over all Phase-3 iterations, and Σ̂missing is obtained as the

covariance matrix of the generated score functions in Phase 3, i.e., Σ in
(a) of Phase 3 of Section 3.

My experience with this estimated covariance matrix is mixed, as the dif-
ference between two positive definite matrices sometimes turns out to be
not positive semi-definite itself. In such cases having a long Phase 3
will improve things. It will be worthwhile to think about a better way of
estimating Cov(θ̂).

In the Robbins-Monro algorithm we might later experiment with an adap-
tation, in which after the Robbins-Monro update step we solve for ρ using
the score function for ρ – consider (56), (57), and (60). (I am not sure that
this works well, as this might conflict with the stochasticity of the Robbins-
Monro algorithm.)

12 Likelihood-based calculations:
Store chains

For communication with users and with other programs, it is necessary to
have a way of reading chains from files and writing them to files. Chains
also have to be communicated to R.

For writing, I propose to have two ways of writing them. Always, one line
for each ministep, in their natural order. Numbers within lines separated
by separator that can be space, tab, (comma & space).

1. brief: the line gives w, r, i, j, d in this order (note r comes second).

2. long: the line gives w, r, i, j, d, rRate , lOptionSetProb , lChoiceProb in
this order.
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13 Likelihood-based calculations:
Structurally fixed values

If N r(i, j) is structurally fixed and N r(i, j)(tm−1) = N r(i, j)(tm), then the
chain for period m must not contain any ministeps of Option (Network,
i, j, r).
If Br(i) is structurally fixed and Br(i)(tm−1) = Br(i)(tm), then the chain for
period m must not contain any ministeps of Option (Behavior, i, ∗, r).

For the variables that are structurally fixed but have values at tm differ-
ent from their values at tm−1, the principle is that these changes are en-
forced either directly before the last ministep, or as part of the last mini-
step (whichever is the simpler or more elegant; I think the latter). These
changes do not contribute anything to probabilities or rates; this can be im-
plemented formally by omitting them from sums or by defining lChoiceProb
= 0 and rRate = 0. If there are several such variables, the order in which
these changes are enforced does not matter (and is inconsequential).

14 Meta-analysis

Results from several independent network data sets can be combined in a
meta-analysis according to the method of Snijders and Baerveldt (2003),
who applied the method of Cochran (1954) (also described by Hedges and
Olkin (1985)) to this type of analysis. This section also elaborates some
further methods.

Suppose we have N independent network data sets, in which the same
sets of covariates are used, and that were analyzed by the same model
specification. The meta-analysis is done for each parameter separately.
Thus, for this explanation we focus on any coordinate of the parameter
vector, and denote this coordinate by θ. From the j′th data set we obtain
estimate θ̂j with standard error sj. The model postulates that

θ̂j = θj + Ej, (62)

where θj for j = 1, . . . , N is an i.i.d. sample from a distribution with mean
µθ and variance σ2

θ ; and Ej is independent of θj and has mean 0 and
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standard deviation sj. Thus, we ignore in this analysis the error in the es-
timation of the estimation error var(Ej). The purpose of the meta-analysis
is estimating and testing µθ and σ2

θ .

What we observe from data set j is not θj but the estimate θ̂j . This is a
random variable with mean µθ and variance σ2

θ + s2j .

14.1 Preliminary and two-step estimator

Here we give the unbiased estimator for σ2
θ and a two-stage estimator

for the mean µθ that were presented in Snijders and Baerveldt (2003),
following Cochran (1954).

A preliminary unbiased estimator for µθ is given by

µ̂OLS
θ =

1

N

∑
j

θ̂j . (63)

This estimator does not take into account the fact that the standard errors
s2j may be different. This implies that, although it is unbiased, the estimator
may be inefficient. Its standard error is

s.e. (µ̂OLS
θ ) =

√
1

N
(σ2

θ + s̄2) (64)

where

s̄2 =
1

N

∑
j

s2j (65)

is the average error variance. An unbiased estimator for the variance σ2
θ is

σ̂2,OLS
θ =

1

N − 1

∑
j

(
θ̂j − µ̂OLS

θ

)2
− s̄2 . (66)

In words, this is the the observed variance of the estimates minus the
average error variance. If this difference yields a negative value, it will be
good to truncate it to 0.
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Given that the latter estimator has been calculated, it can be used for
an improved estimation of µθ, viz., by the weighted least squares (WLS)
estimator

µ̂WLS
θ =

∑
j

(
θ̂j/(σ̂

2,OLS
θ + s2j)

)∑
j

(
1/(σ̂2,OLS

θ + s2j)
) . (67)

This is the ‘semi-weighted mean’ of Cochran (1954), treated also in Hedges
and Olkin (1985), Section 9.F. Its standard error can be calculated as

s.e.
(
µ̂WLS
θ

)
=

1√∑
j 1/(σ̂

2,OLS
θ + s2j)

. (68)

14.2 Maximum likelihood estimator

The maximum likelihood estimator (MLE) under the assumption that the θ̂j
are independent and normally distributed (note that this is an assumption
about their marginal distributions, not their distributions conditional on the
true values θj) is defined by two equations. The first is the equation for µ̂
given σ2:

µ̂ =

∑
j

(
θ̂j/(σ

2 + s2j)
)∑

j

(
1/(σ2 + s2j)

) . (69)

The second is the requirement that the profile log-likelihood for σ2 is maxi-
mized. This profile log-likelihood is given by

p(σ2) = − 1

2

∑
j

log
(
σ2 + s2j) −

1

2

∑
j

(
θ̂j − µ̂

)2
σ2 + s2j

. (70)

As a first step to maximize this, the derivative and second derivative can
be computed; here it should be kept in mind that µ̂ = µ̂(σ̂2) is given as a
function of σ̂2 in (69) – however, that part cancels out in the derivative so
forgetting this might still yield the correct answer. Further it is convenient
to work with the function cj(σ

2) = 1/(σ2 + s2j) and note that dcj/dσ2 = −c2j .
The result is

d p(σ2)

d σ2
= − 1

2

∑
j

1

σ2 + s2j
+

1

2

∑
j

(θ̂j − µ̂)2

(σ2 + s2j)
2

(71)

d2 p(σ2)

d (σ2)2
= − 1

2

∑
j

1(
σ2 + s2j

)2 −∑
j

(θ̂j − µ̂)2

(σ2 + s2j)
3
. (72)
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Thus, one way to compute the MLE is to iterate the two steps:

1. Compute µ̂ by (69)

2. Solve d p(σ2)/d σ2 = 0 using definition (71).

Another way is to iterate the two steps:

1. Compute µ̂ by (69)

2. One Newton-Raphson step (or two):

σ2
new = σ2 +

∑
j cj(cjd

2
j − 1)∑

j c
2
j(2cjd

2
j + 1)

(73)

where

cj =
1

σ2 + s2j
, dj = θ̂j − µ̂ .

The results of this iteration scheme will be denoted by µ̂IWLS
θ and σ̂2,IWLS

θ

(IWLS for iteratively reweighted least squares), but the name ML could
equally well be used.

The standard error of µ̂IWLS
θ can be calculated as

s.e.
(
µ̂IWLS
θ

)
=

1√∑
j 1/(σ̂

2,IWLS
θ + s2j)

. (74)

14.3 Testing

(This section again follows Snijders and Baerveldt (2003).)

For testing µθ and σ2
θ , it is assumed that the parameter estimates θ̂j con-

ditional on θj are approximately normally distributed with mean θj and
variance s2j . The first null hypothesis to be tested is that the effects are
0 in all groups. This can be tested by the test statistic

T 2 =
∑
j

(
θ̂j
sj

)2

(75)
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which has an approximate χ2 distribution with N degrees of freedom under
the null hypothesis. The test that the mean effect µθ is zero can be tested
on the basis of the t-ratio

tµθ
=

µ̂θ

s.e.
(
µ̂θ

) (76)

which has approximately a standard normal distribution under the null
hypothesis. Finally, the test that the variance of the effects σ2

θ is zero can
be tested using the test statistic

Q = T 2 − t̃2 (77)

where

t̃ =

∑
j θ̂j/s

2
j√∑

j 1/s
2
j

(78)

which has under the null hypothesis approximately a chi-squared distribu-
tion with N − 1 degrees of freedom.

14.4 Fisher combination of p-values

Fisher’s (1932) procedure for combination of independent p-values is ap-
plied both to left-sided and right-sided p-values. In this way, we are able to
report tests for both the following testing problems:

H
(R)
0 : θj ≤ 0 for all j;

H
(R)
1 : θj > 0 for at least one j.

Significance is interpreted here, that there is evidence that in some (at
least one) data set, parameter θj is positive.

H
(L)
0 : θj ≥ 0 for all j;

H
(L)
1 : θj < 0 for at least one j.

Significance is interpreted here, that there is evidence that in some (at
least one) data set, parameter θj is negative.
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Note that it is very well possible that both one-sided combination tests are
significant: then there is evidence for some positive and some negative
effects.

The procedure operates as follows. Calculate p+j and p−j , being the right
and left one-sided p-values:

p+j = 1− Φ

(
θ̂j
sj

)

p−j = Φ

(
θ̂j
sj

)
,

where Φ is the c.d.f. of the standard normal distribution. The Fisher com-
bination statistic is defined as

C+
j = −2

N∑
j=1

ln
(
p+j
)

C−
j = −2

N∑
j=1

ln
(
p−j
)
.

Both of these must be tested in a χ2 distribution with 2N degrees of
freedom.

14.5 Combinations of score-type tests

It is possible that for a parameter, score-type tests are given instead of
estimates. Then these score-type tests can be combined also in a Fisher
procedure. This is done just as above; but now for p-values obtained from
the standard normal variates obtained as a result from the score-type test.
Of course this makes sense only if the tested null values are all the same
(usually 0).

14.6 Further regression analyses

The data frame of values (θ̂j, sj), j = 1, . . . , N is made available for further
analysis, possibly extended by other variables x, for analysis according to
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the model

θ̂j ∼ N
(
x′
jβ, σ

2 + s2j
)
, independent for j = 1, . . . , N. (79)

Note that the IWLS estimates of Section 14.2 are the estimates under such
a model if x′

jβ is comprised of just a constant term.

IWLS/ML regression analysis here can be carried out by iteration of the two
steps mentioned above, but now the step (69) is replaced by a weighted
least squares analysis with weights being normalised versions of

wj =
1

σ2 + s2j
.

14.7 Differences in model specification

In practice, it can happen that a set of data sets is being offered for a meta-
analysis in which the model specifications are not identical. An example is
the case where one of the independent variables has variance 0 in some
data sets (e.g.: an analysis of networks in schools, with pupils’ sex as an
independent variable; there may be some all-girls or all-boys schools).

This then must be noted in the output; and the data sets combined as if
this parameter here has an estimate 0 but with an infinite standard error
– in other words, this parameter should be ignored for this data set; and
this data set should not add to the degrees of freedom for this particular
parameter.
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15 Models for Dynamics of Non-directed Networks

For notational simplicity only, this section assumes that there is only one
network. This is not a restriction, it merely means that we can denote xij

instead of x(r)
ij .

In this section it is assumed that the network is non-directed, i.e., ties have
no directionality: Xij = Xji holds by necessity, and the tie variables Xij

and Xji are treated as being one and the same variable. This is the case
in many types of tie, such as mutual collaboration or agreement. Ties now
are indicated by i↔ j.

15.1 Two-sided Choices

For modeling non-directed networks, it is necessary to make assumptions
about the negotiation or coordination between the two actors involved in
the creation or termination of a tie. We present several models, all based
on a two-step process of opportunity and choice, and making different as-
sumptions concerning the combination of choices between the two actors
involved in a tie.

For the opportunity, or timing, process, two options are presented.

1. One-sided initiative: One actor i is selected and gets the opportunity
to make a change, based on rate function λi(x;α, ρm).

2. Two-sided opportunity : An ordered pair of actors (i, j) (with i ̸= j) is
selected and gets the opportunity to make a new decision about the
existence of a tie between them.
This is based on pairwise rate functions denoted λij(x;α, ρm). The
waiting time until the next opportunity for change by any pair of actors
has the exponential distribution with parameter

λtot =
∑
i ̸=j

λij(x;α, ρm) .
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The probability that the next opportunity for change is for pair (i, j) is
given by

P{Next opportunity for change is for pair (i, j)} = λij(x;α, ρm)

λtot(x;α, ρm)
.

(80)

For the moment, we have only implemented the case where λij is a
product

λij(x;α, ρm) = λi(x;α, ρm)λj(x;α, ρm) ,

so that

λtot =
(∑

i

λi(x;α, ρm)
)2
−
∑
i

(
λi(x;α, ρm)

)2
. (81)

The choice process is modeled as one of three options D(ictatorial), M(utual)
and C(ompensatory). We now define, for graphs x and i ̸= j, by x(+ij) the
graph which is identical to x in all tie variables except possibly for the tie
between i and j, and to which the tie i ↔ j is added if it was not already
there: x(+ij)

ij = 1. For the non-directed case, x(±ij) is defined by analogy to
the definition above: it is the graph identical to x except that the indicator
for the non-directed tie i↔ j has been toggled: x(±ij)

ij = x
(±ij)
ji = 1− xij =

1− xji. Thus if xij = 0 then x(+ij) = x(±ij); if xij = 1 then x(+ij) = x.

In all cases assumption (7.) as defined for the directed case is retained,
and assumption (8.) is replaced as indicated below.

D. Dictatorial : One actor can impose a decision about a tie on the other.
Like in the directed case, actor i selects the (myopically) best toggle
of a single tie variable Xij given the objective function fi(x; β) plus a
random disturbance, and actor j just has to accept. Combined with
the two opportunity options, this yields the following cases.

8.D.1. (alias A-1 alias AFORCE)
The probability that the tie variable changed is Xij, so that the
network x changes into x(±ij), is given by

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑n

h=1 exp
(
fi(x(±ih); β)

) . (82)

101



8.D.2. (alias B-1 alias BFORCE)
The probability that network x changes into x(±ij), is given by

pij(x, β) =
exp

(
fi(x

(±ij); β)
)

exp
(
fi(x; β)

)
+ exp

(
fi(x(±ij); β)

) . (83)

M. Mutual :
Both actors must agree for a tie between them to exist, in line with
Jackson and Wolinsky (1996).

8.M.1. (alias A-2 alias AAGREE)
In the case of one-sided initiative, actor i selects the best pos-
sible choice, with probabilities (82). If currently xij = 0 so that
this means creation of a new tie i ↔ j, this is proposed to
actor j, who then accepts according to a binary choice based
on objective function fj(x; β), with acceptance probability

P{j accepts tie proposal} =
exp

(
fj(x

(+ij); β) + βb
)

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β) + βb

) ,
where βb is an offset; this is a fixed parameter, given as UniversalOffset
in sienaAlgorithmCreate, and is not estimated.
If the choice by i means termination of an existing tie, the pro-
posal is always put into effect. Jointly these rules lead to the
following probability that the current network x changes into
x(±ij):

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑n

h=1 exp
(
fi(x(±ih); β)

)
×

(
exp

(
fj(x

(+ij); β) + βb
)

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β) + βb

))1−xij

.

(84)

(Note that the second factor comes into play only if xij = 0,
which implies x(+ij) = x(±ij).)

8.M.2. (alias B-2 alias BAGREE)
In the case of two-sided opportunity, actors i and j both recon-
sider the value of the tie variable Xij. Actor i proposes a change
(toggle) with probability (83) and actor j similarly. If currently
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there is no tie, xij = 0, then the tie is created if this is proposed
by both actors, which has probability

pij(x, β) = (85a)

exp
(
fi(x

(+ij); β)
)(

exp
(
fi(x; β)

)
+ exp

(
fi(x(+ij); β)

))×
exp

(
fj(x

(+ij); β)
)(

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β)

)) .

If currently there is a tie, xij = 1, then the tie is terminated if one
or both actors wish to do this, which has probability

pij(x, β) = 1− (85b){
exp

(
fi(x; β)

)(
exp

(
fi(x; β)

)
+ exp

(
fi(x(±ij); β)

))× (85c)

exp
(
fj(x; β)

)(
exp

(
fj(x; β)

)
+ exp

(
fj(x(±ij); β)

))
}

.

C. Compensatory : (alias B-3 alias BJOINT)
The two actors decide on the basis of their combined interests.
The combination with one-sided initiative is rather artificial here, and
we only elaborate this option for the two-sided initiative.

8.C.2. The binary decision about the existence of the tie i↔ j is based
on the objective function fi(x; β) + fj(x; β). The probability that
network x changes into x(±ij), now is given by

pij(x, β) =
exp

(
fi(x

(±ij); β) + fj(x
(±ij); β)

)
exp

(
fi(x; β) + fj(x; β)

)
+ exp

(
fi(x(±ij); β) + fj(x(±ij); β)

) .

(86)

The two model components, rate function and objective function, can be
put together by considering the transition rates. Given that the only permit-
ted transitions between networks are toggles of a single tie variable, the
transition rates can be defined as

qij(x) = lim
∆t↓0

P{X(t+∆t) = x(±ij) | X(t) = x}
∆t

(87)
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for i ̸= j. Note that this definition implies that the probabilities of toggling a
particular tie variable Xij in a short time interval are approximated by

P{X(t+∆t) = x(±ij) | X(t) = x} ≈ qij(x)∆t .

In the derivation of the score functions account must be taken of the fact
that toggling variable Xij is the same as toggling Xji, and the rules de-
scribed above give different roles for the first and the second actor in the
pair (i, j). For the models with one-sided initiative, the transition rate is

qij(x) = λi(x;α, ρm) pij(x, β) + λj(x;α, ρm) pji(x, β) , (88)

and for the models with two-sided opportunity

qij(x) = λij(x;α, ρm) pij(x, β) + λji(x;α, ρm) pji(x, β) . (89)

15.2 Score function for two-sided ties: objective function

The score function for the complete data likelihood with respect to the β

parameters is as follows. (Explained here in shorthand for readers knowing
theory and terminology from other papers.) It can be calculated as the sum
of the contributions from all the ministeps, where ministeps leading to no
change are also included. Therefore, we only need to give the expression
for the score function contribution for a single ministep leading from x to
x(±ij); and the contribution for a ministep leading to no change, but where
the actor or pair of actors concerned in the ministep is known.

We must realize that the phrase “score function for the complete data
likelihood” is ambiguous, because we have liberty to define what we take
as complete data; perhaps ‘augmented data’ would be a better term. We
can use any data augmentation that allows an easy calculation of the score
functions. More extensive augmentation introduces extra variability and
thereby extra noise in the score function. For example, in the models with
one-sided initiative, if the data augmentation includes the knowledge of
who took the initiative, then effectively we are working with the transition
rates

qij(x) = λi(x;α, ρm) pij(x, β) (90)
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instead of (88). We shall always do this. This leads to simpler but some-
what noisier score functions.

In the following, the complete/augmented data always includes the know-
ledge of the actor i who takes the initiative, and in the two-sided opportu-
nity case the ordered pair (i, j) who make the ministep.

For the case M.1 we shall give two different expressions which differ in this
way.

By A− is denoted the set of potential alters in a given ministep and we
denoteA = A−∪{i} where i is the actor making the ministep, but signifying
here ‘no change’ so alternatively this could be denoted by 0. In the default
case, A = {1, . . . , n}; if not all actors are active then A− will contain only
active actors; but it will be potentially a smaller set if one of the conditions
uponly , downonly , higher , disjoint , or atleastone holds.

Denote the change in objective function when toggling xij by

(∆ f)ij(x, β) = fi
(
x(±ij); β

)
− fi(x; β) ,

which implies

(∆ f)ii(x, β) = 0.

Further denote

p1ij(x, β) =
exp

(
(∆f)ij(x, β)

)∑
h∈A exp

(
(∆f)ih)(x, β)

) (91)

and

p0ij(x, β) =
exp

(
(∆f)ij(x, β)

)
1 + exp

(
(∆f)ij)(x, β)

) . (92)

In the following, we often use expressions such as
∂(∆ f)ij(x, β)

∂βk

.

Since the changes ∆ fij(x, β) are linear combinations (16), these partial
derivatives are the change contributions of the effects,

∂(∆ f)ij(x, β)

∂βk

= ski(x
(±ij))− ski(x) . (93)

This is denoted in shorthand by

sijk = ski(x
(±ij))− ski(x) , (94)

where the dependence on x is omitted. Note that siik = 0.
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15.3 Dictatorial D.1 (alias A-1 alias AFORCE)

Probability of change, see (82)

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑

h∈A exp
(
fi(x(±ih); β)

) = p1ij(x, β) . (95)

This is just the same as the directed case. Well-known calculus leads to
the score function

∂ log pij(x, β)

∂βk

=
∂ log p1ij(x, β)

∂βk

=
∂(∆f)ij(x, β)

∂βk

−
∑
h∈A

p1ih(x, β)
∂(∆f)ih(x, β)

∂βk

= sijk −
∑
h∈A

p1ih(x, β) sihk . (96a)

This formula also applies to the case of no change j = i, where it yields

∂ log pii(x, β)

∂βk

= −
∑
h∈A

p1ih(x, β) sijh . (96b)

15.4 Dictatorial D.2 (alias B-1 alias BFORCE)

Note that we condition here on the choice, in the opportunity process, of i
and j, in this order: i is allowed to make a decision which then is imposed
on j. The probability of change is, see (83),

pij(x, β) =
exp

(
fi(x

(±ij); β)
)

exp
(
fi(x; β)

)
+ exp

(
fi(x(±ij); β)

) = p0ij(x, β) . (97)

Well-known calculus leads to the score function for change:

∂ log pij(x, β)

∂βk

=
∂ log p0ij(x, β)

∂βk

= (1− p0ij(x, β))
∂(∆f)ij(x, β)

∂βk

= (1− p0ij(x, β)) sijk ; (98a)

for no change:

∂ log
(
1− pij(x, β)

)
∂βk

= −p0ij(x, β)
∂(∆f)ij(x, β)

∂βk

= −p0ij(x, β) sijk .

(98b)
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15.5 Mutual M.1 (alias A-2 alias AAGREE)

The probability of change is

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑

h∈A exp
(
fi(x(±ih); β)

)
×

(
exp

(
fj(x

(+ij); β) + βb
)

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β) + βb

))1−xij

= p1ij(x, β)
(
p0ji(x, β)

)(1−xij) (99)

= p1ij(x, β)
(
xij + (1− xij)p0ji(x, β)

)
, (100)

where it may be noted that xij is the current state (before the possible
change).

The outcome ‘no change’ may be further refined into the following list of
possibilities:

[i−]: i decides not to propose any change.

[ij−]: (i proposes to j to add a tie, but this is rejected by j), for j ∈ A−.

The probability that there is no change is as follows (somewhat arbitrarily
we denote this here by pi0)

pi0(x, β) = 1−
∑
j∈A−

p1ij(x, β)
(
xij + (1− xij)p0ji(x, β)

)
. (101)

This can be decomposed into the sub-events as listed above, with proba-
bilities

p[i−](x, β) = p1ii(x, β) , (102)

p[ij−](x, β) = (1− xij)
(
1− p0ji(x, β)

)
. (103)

For the score functions, we combine (98a) and (96a). The score function
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for a change is

∂ log pij(x, β)

∂βk

=
∂(∆f)ij(x, β)

∂βk

−
∑
h∈A

p1ih(x, β)
∂(∆f)ih(x, β)

∂βk

+ (1− xij)(1− p0ji)
∂(∆f)ji(x, β)

∂βk

= sijk −

(∑
h∈A

p1ih(x, β)sihk

)
+ (1− xij)(1− p0ji)sjik .

(104a)

The score function for no change is a bit tedious,

∂ log pi0(x, β)

∂βk

=
−1

pi0(x, β)

∑
j∈A−

{
xij

∂p1ij
∂βk

+ (1− xij)
(
p0ji

∂p1ij
∂βk

+ p1ij
∂p0ji
∂βk

)}
(104b)

where ∂p0ij/∂βk and ∂p1ij/∂βk must be substituted from (98a) and (96a). I
do not think this can be simplified to an important extent.

If instead of ‘no change’ we work with the sub-events [i−] = ‘i wishes no
change’ and [ij−] = ‘i proposed to add a tie which is rejected by j’, the
score functions are

∂ log p[i−](x, β)

∂βk

= −
∑
h∈A

p1ih(x, β) sijh (104c)

as in (96b), and

∂ log p[ij−](x, β)

∂βk

= (1− xij)

(
sijk −

∑
h∈A

p1ih(x, β) sihk − p0ji(x, β) sjik

)
(104d)

which is much simpler indeed.

15.6 Mutual M.2 (alias B-2 alias BAGREE)

The probability of change is:
if xij = 0,

pij(x, β) = p0ij(x, β) p0ji(x, β) (105a)
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and if xij = 1,

pij(x, β) = p0ij(x, β) + p0ji(x, β)− p0ij(x, β) p0ji(x, β) . (105b)

For the case xij = 1, it is easier to start working with the probability of no
change,

1− pij(x, β) =
(
1− p0ij(x, β)

)(
1− p0ji(x, β)

)
. (105c)

This gives the following four cases:

1. xij = 0, change:

∂ log pij(x, β)

∂βk

=
(
1− p0ij(x, β)

)
sijk +

(
1− p0ji(x, β)

)
sjik ;

(106a)

2. xij = 0, no change:

∂ log (1− pij(x, β))

∂βk

=

− pij(x, β)

1− pij(x, β)

{(
1− p0ij(x, β)

)
sijk +

(
1− p0ji(x, β)

)
sjik
}
;

(106b)

3. xij = 1, change:

∂ log pij(x, β)

∂βk

=
1− pij(x, β)

pij(x, β)

(
p0ij(x, β)sijk + p0ji(x, β)sjik

)
;

(106c)

4. xij = 1, no change:

∂ log (1− pij(x, β))

∂βk

= −p0ij(x, β) sijk − p0ji(x, β) sjik . (106d)

Here also a further decomposition would be possible, following the two
consecutive choices by i and j, However, in this case this leads to more
variability but not much more simplicity, so this is not elaborated now.
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15.7 Compensatory C (alias B-3 alias BJOINT)

The probability of change is

pij(x, β) =
exp

(
(∆ fi)(x

(±ij); β) + (∆ fj)(x
(±ij); β)

)
1 + exp

(
(∆ fi)(x(±ij); β) + (∆ fj)(x(±ij); β)

) . (107)

(Note that x(±ij) = x(±ji), so indeed this is symmetric in i and j.)
Here it is convenient to define

p2ij(x, β) =
exp

(
(∆f)ij(x, β) + (∆f)ji(x, β)

)
1 + exp

(
(∆f)ij)(x, β) + (∆f)ji(x, β)

) . (108)

Well-known calculus leads to the score function:
for change:

∂ log pij(x, β)

∂βk

=
∂ log p2ij(x, β)

∂βk

=
(
1− p2ij(x, β)

) ∂(∆f)ij(x, β) + (∆f)ji(x, β)

∂βk

=
(
1− p2ij(x, β)

)
(sijk + sjik) ; (109a)

for no change:

∂ log
(
1− pij(x, β)

)
∂βk

= −p2ij(x, β) (sijk + sjik) . (109b)

15.8 Coding the score calculations

The easiest way is to code the calculation of the scores in one routine
together with the probabilistic choices; and decompose all choices into
their components (sub-choices). For all five procedures this can be done
using the following three basic procedures. Here A− is the set of actors
who are candidate alters for a given ministep (varies between ministeps),
A is A− to which an option ‘no change’ has been added (represented by
i = the actor making the ministep, or 0), while K is the set indexing the
parameters (always the same).

MultipleChoice (input: π, s; output: j; in/output: c).
Interpretation:
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π = probability vector for outcomes h ∈ A;
s = array of change contributions shk for h ∈ A, k ∈ K;
j = choice made;
c = vector of scores to which something will be added.
Body:
Define j as outcome of probabilistic choice according to π.
For all k ∈ K do ck ← ck + sjk −

∑
h∈A πhshk.

EndBody.

BinaryChoice (input: π0, s0; output: r; in/output: c).
Interpretation:
π0 = probability (number between 0 and 1);
s0 = vector of change contributions sk for k ∈ K;
r = result ∈ {T, F}, where T denotes True = Accept and F denotes False
= Reject;
c = vector of scores to which something will be added.
Body:
Define r as outcome of probabilistic choice according to π0.
For all k ∈ K do:

(
if r then ck ← ck + (1− π)sk, else ck ← ck − π sk

)
.

EndBody.

Change (input: i, j).
Interpretation:
Toggle tie i↔ j .
Body:
If j ∈ A− then

(
set xij ← 1− xij, xji ← 1− xji

)
.

EndBody.

The models can can be coded as follows. We use p0ij, p1ij, sijk as defined
in (92, 91, 94).

D.1 = A-1 Given i, use π = p1i., s = si...
Apply MultipleChoice (π, s, j, c).
If j ̸= i, apply Change(i, j).

D.2 = B-1 Given i and j in this order, use π0 = p0ij, s0 = sijk.
Apply BinaryChoice (π0, s0, r, c).
If r, apply Change(i, j).
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M.1 = A-2 Given i, use π = p1i., s = si...
Apply MultipleChoice (π, s, j, c).
If xij = 1, apply Change(i, j);
else

Use π0 = p0ji, s0 = sjik;
Apply BinaryChoice (π0, s0, r, c);
If r, apply Change(i, j).

M2 = B-2 One implementation is as follows:
Given i and j in arbitrary order:
Use π0 = p0ij, s0 = sijk.
Apply BinaryChoice (π0, s0, rA, c).
Use π0 = p0ji, s0 = sjik.
Apply BinaryChoice (π0, s0, rB, c).
If (xij = 0 and rA and rB) or (xij = 1 and

(
rA or rB)

)
, apply Change(i, j).

Another implementation, which integrates out over the double choice
and therefore has a less variable score function and is preferable:
If xij = 0:

Use π0 = p0ij p0ji,

s0 =

(
1− p0ij(x, β)

)
sijk +

(
1− p0ji(x, β)

)
sjik

1− p0ij(x, β) p0ji(x, β)
;

Apply BinaryChoice (π0, s0, r, c);
If r, apply Change(i, j).

If xij = 1:

Use π0 = 1−
(
1−p0ij

)(
1−p0ji

)
= p0ij+p0ji−

p0ijp0ji,

s0 =
p0ij(x, β) sijk + p0ji(x, β) sjik

p0ij(x, β) + p0ji(x, β)− p0ij(x, β)p0ji(x, β)
;

Apply BinaryChoice (π0, s0, r, c);
If r, apply Change(i, j).

C = B-3 Given i and j in arbitrary order, use π0 = p2ij as in (108), s0 = sijk +
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sjik.
Apply BinaryChoice (π0, s0, r, c).
If r, apply Change(i, j).

16 Score function: rate function

We consider here two types of rate function, for the one-sided and two-
sided opportunity.

16.1 One-sided opportunity

For the one-sided opportunity (D.1 and M.1) the rate of change is

λi = ρ exp
(∑

k

αkzik

)
(110)

where zik is a vector which is allowed to depend on the network x. A mini-
step by actor i, when associated with an elapsed waiting time t, contributes
to the probability density of the entire process a factor

λie
−t λ+

where λ+ =
∑

i λi is the total rate of change.

Calculus shows that the score function with respect to any parameter θk
(αk as well as ρ) is given by

∂

∂θk
log
(
λie

−t λ+

)
=

1

λi

∂λi

∂θk
− t

∂λ+

∂θk
.

This yields the following contributions to the overall score function.

Since ∂λi/∂ρ = λi/ρ, we get

∂

∂ρ
log
(
λie

−t λ+

)
=

1− tλ+

ρ
. (111)

Since ∂λi/∂αk = zik λi, we get

∂

∂αk

log
(
λie

−t λ+

)
= zik − t

∑
j

zjkλj , (112)
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where the
∑

j is taken over the set of all active actors.

For variables zjk that are not changing during the simulations, i.e., actor co-
variates that are not dependent behavior variables, the term

∑
j zjkλj does

not change during the simulations, unless there is composition change
and the set of active actors changes. For such variables, it is efficient to
calculate

∑
j zjkλj at the start of each period, and at each composition

change, but not at each ministep.

16.2 Two-sided opportunity

For the two-sided opportunity (D.2, M.1 and C) the pairwise rate of change
is the product of two actor-dependent rates,

λij = λ0iλ0j = ρ2 exp
(∑

k

αk(zik + zjk)
)
. (113)

(This may be extended later – this is how it was implemented in Siena 3.)

To avoid double summations over actors in the case where some variables
Xij are not allowed to change because of structurally missing values or
having reached an absorbing state, we assume that the pairwise meetings
take place according to (113) between all pairs (i, j) of actors subject to
the conditions that i and j are active, and i ̸= j. If a pair (i, j) meets which
is not allowed to change anything, then time will advance, so there will be
a contribution to the score function for the parameters of the rate function,
but further nothing happens.

Ministep are made by all pairs of active actors i and j (i ̸= j). When the
elapsed waiting time for a ministep is t, the meeting event contributes to
the probability density of the entire process a factor

λije
−t λ++

where

λ++ =
∑
i,j

λij =
∑

active i

∑
active j,j ̸=i

λ0iλ0j (114)

is the total rate of change, the summation being over all pairs (i, j) of active
actors, i ̸= j.

The pairwise meeting process accordingly proceeds as follows.
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1. Define

λ0+ =
∑

active i

λ0i . (115)

2. Repeat

(a) Choose i among the active i with probabilities

λ0i

λ0+

,

(b) choose j among the active j with probabilities

λ0j

λ0+

,

until i ̸= j.

3. Increase time by a value drawn from an exponential distribution with
parameter (114).

4. If Xij is allowed to change, then determine the new value according
to its distribution; if Xij is not allowed to change, continue (one could
say that i and j meet but do not change how they are related).

The variable Xij is not allowed to change if:

(Xij is structurally fixed)
or (Xij has reached an absorbing state because of a ∗only condition).

Here ∗only stands for any of uponly , downonly , higher , disjoint , or atleast-
one .
(The last three conditions depend on other networks, and for those con-
ditions the word ‘absorbing’ is perhaps not appropriate because when the
other network changes the variable Xij also might be allowed to change
again.)
(Variable Xij also cannot change if i or j is inactive, but this already is
excluded in the choice of i and j.)

See below for a remark about the calculation of λ++.
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The rates λij may depend on variables changing during the simulations,
like in- or outdegrees or behavioral dependent variables. Then also λ++

will change as a consequence. In addition, λ++ can change during the
simulations even if the λij remain constant, namely, by a composition
change.

The development further is analogous to the case of one-sided opportu-
nity. The score function with respect to any parameter θk (αk as well as ρ)
is given by

∂

∂θk
log
(
λije

−t λ++

)
=

1

λij

∂λij

∂θk
− t

∂λ++

∂θk
.

This yields the following contributions to the overall score function.

Since ∂λij/∂ρ = 2λij/ρ, we get

∂

∂ρ
log
(
λije

−t λ++

)
= 2

1− tλ++

ρ
. (116)

Since ∂λij/∂αk = (zik + zjk)λij, we get

∂

∂αk

log
(
λije

−t λ++

)
= (zik + zjk) − t

∑
g,h

(zgk + zhk)λgh , (117)

where the
∑

g,h is taken over all pairs (g, h) where g as well as h are active
and g ̸= h. This can change because of a composition change, but also
because of a change in zgk + zhk or in λgh, which is possible if and only if
λgh depends on endogenously changing variables.

16.2.1 Remark about calculation of the double summations

Some attention is needed for the terms λ++ and
∑

g,h(zgk + zhk)λgh, as
these are defined as summations over n(n − 1) terms, where n is the
number of active actors. We have

λ++ =
∑

active i

∑
active j,j ̸=i

λ0iλ0j

=
∑

active i

λ0i

∑
active j,j ̸=i

λ0j =
∑

active i

λ0i

(( ∑
active j

λ0j

)
− λ0i

)

=
( ∑

active i

λ0i

)2
−
( ∑

active i

λ2
0i

)
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and ∑
g,h

(zgk + zhk)λgh =
∑

active i

∑
active j,j ̸=i

(zik + zjk)λ0iλ0j

=
( ∑

active i,j

(zik + zjk)λ0iλ0j

)
−
( ∑

active i

2 zikλ
2
0i

)
= 2

( ∑
active i

λ0i

)( ∑
active i

zikλ0i

)
− 2

( ∑
active i

zikλ
2
0i

)
.

Thus, everything can be expressed as a combination of single summa-
tions.

The remark at the end of Section 16.1 applies here, too: if the functions
λ0i are not changing during the simulations, i.e., either they do not depend
on i or only through actor covariates that are not dependent behavior
variables, these sums do not change during the simulations, unless there
is composition change and the set of active actors changes. For such
model specifications, it is efficient to calculate the sums at the start of each
period, and at each composition change, but not again at each ministep
because they do not change.

For model specifications where the rate function depends on endoge-
nously changing variables, the sums will need to be calculated repeatedly.

17 Modeltype for behavior

This section describes the option BehaviorModelType, introduced in
RSiena version 1.1-306.

The enumerated types NetworkModelType and BehaviorModelType

are defined in DependentVariable.h as

enum NetworkModelType { NOTUSED, NORMAL, AFORCE, AAGREE,

BFORCE, BAGREE, BJOINT };
enum BehaviorModelType { OUTOFUSE, RESTRICT, ABSORB };

Functions modelType() and modelType(type) are defined in
NetworkLongitudinalData.h, which is a class covering one depen-
dent network.
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Functions behaviorModelType() and behaviorModelType(type)

are defined in BehaviorLongitudinalData.h, which is a class cover-
ing one dependent behavioral variable.

The model types are transferred from these classes to NetworkVariable.h
and BehaviorVariable.h where they have the accessor functions
networkModelType and behaviorModelType. This makes it possible
to specify different model types for each dependent network or behavioral
variable. The network model type then is used further in NetworkVariable.cpp.
In BehaviorVariable.cpp, the behavioral model type then is used fur-
ther through the function behaviorModelTypeABSORB.

17.1 Behavior micro-step

Whenever actor i may make a change in variable Z, she changes zi to the
new value v (changes can be –1, 0, +1).
Denote the new vector by z(i⇝ v). Change probabilities are given by

pi(v; β, z, x) =
exp(f(i, v))∑

u∈C

exp(f(i, u))

where

f(i, v) = fZ
i (β, z(i⇝ v), x) ,

fZ
i is the objective function of actor i for behavior Z, and C is the set of

allowed changes:
{−1, 0, 1}, {0, 1}, {−1, 0},
depending on whether zi currently is at a boundary of its range.

Thus, the range is restricted to the permissible values, and the objective
function is evaluated accordingly. Therefore, this model option is called
RESTRICT.

The new model option is called behavioral model type ABSORB.
It calculates, when zi currently is at the boundary of the range, hypothet-
ically, the objective function for changing to the next value outside the
range; but if this value is chosen, then it is absorbed into the range of
Z.
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The choice between these options is specified by parameter behModelType
in sienaAlgorithmCreate. This parameter can be given as an integer
(1 or 2); or, for several dependent networks requiring different model types,
as a named integer vector.

In the earlier only available option, which is the case RESTRICT, if
zi = z− = min{range(Z)}, the probabilities are

pi(z
−; β, z−, x) =

exp
(
f(i, z−)

)
exp

(
f(i, z−)

)
+ exp

(
f(i, z− + 1)

)
and

p(z− + 1; β, z−, x) =
exp

(
f(i, z− + 1)

)
exp

(
f(i, z−)

)
+ exp

(
f(i, z− + 1)

) .

Similarly, if zi = z+ = max{range(Z)}, the probabilities are

pi(z
+; β, z+, x) =

exp
(
f(i, z+)

)
exp

(
f(i, z+ − 1)

)
+ exp

(
f(i, z+)

)
and

p(z+ − 1; β, z+, x) =
exp

(
f(i, z+ − 1)

)
exp

(
f(i, z+ − 1)

)
+ exp

(
f(i, z+ + 1)

) .

For the new option, the case ABSORB, if zi = z− = min{range(Z)}, the
probabilities are

pi(z
−; β, z−, x) =

2 exp
(
f(i, z−)

)
2 exp

(
f(i, z−)

)
+ exp

(
f(i, z− + 1)

)
and

p(z− + 1; β, z−, x) =
exp

(
f(i, z− + 1)

)
2 exp

(
f(i, z−)

)
+ exp

(
f(i, z− + 1)

) .

Similarly, if zi = z+ = max{range(Z)}, the probabilities are

pi(z
+; β, z+, x) =

2 exp
(
f(i, z+)

)
exp

(
f(i, z+ − 1)

)
+ 2 exp

(
f(i, z+)

)
and

p(z+ − 1; β, z+, x) =
exp

(
f(i, z+ − 1)

)
exp

(
f(i, z+ − 1)

)
+ 2 exp

(
f(i, z+)

) .
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17.2 Score function

To implement this requires more than changing the probabilities; also the
score function Jθ needs to be changed. This is used for calculating

∂EθZ

∂θ
= Eθ

{
Jθ Z

}
.

For a change in the behavior variable, define by ∆ik(d, z) the change
statistic for effect k, actor i, current state z, difference d.

Define the change in the objective function by

∆fi(d) =
∑
k

βZ
k ∆ik(d, z) .

Note that ∆fi(0) = 0, which will be used repeatedly in the sequel.

If there are no boundary effects, change probabilities are defined by

pi(d) =
exp

(
∆fi(d)

)∑1
d=−1 exp

(
∆fi(d)

) . (118)

The scores for changes in behavioral variables are

Jk(d) =
∂

∂βk

log pZi (d; z, β) = ∆ik(d, z) − ∆ik(., z) (119a)

where

∆ik(., z) =
1∑

d=−1

pi(d)∆ik(d, z) . (119b)

In the standard model (‘RESTRICT’), for the boundary cases:
if the current state is at the minimum, we have

πi(−1) = 0 , πi(0) =
1

1 + exp
(
∆fi(1)

) , (120a)

πi(1) =
exp

(
∆fi(1)

)
1 + exp

(
∆fi(1)

) ; (120b)
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if the current state is at the maximum, we have

πi(−1) =
exp

(
∆fi(−1)

)
1 + exp

(
∆fi(−1)

) , (120c)

πi(0) =
1

1 + exp
(
∆fi(−1)

) , πi(1) = 0 . (120d)

The scores in the boundary cases still are given by (119) but with pi(d) =

πi(d) given in (120).

In the new model (‘ABSORB’), the probabilities are:

if the current state is at the minimum,

πi(−1) = 0 , πi(0) = pi(−1) + pi(0) , πi(1) = pi(1) ; (121a)

and if the current state is at the maximum,

πi(−1) = pi(−1) , πi(0) = pi(0) + pi(1) , πi(1) = 0 . (121b)

To calculate the scores in the second model type (‘ABSORB’), for the bound-
ary cases, we may note that this is based on a multinomial regression
model with three options {−1, 0, 1}, of which the first two outcomes are
combined. Consider the case for the right boundary. The first two out-
comes have the same value ∆ik(−1, z) = ∆ik(0, z) = 0; the value is
0 because this option means no change. A score function is a func-
tion of the sufficient statistic, and for this 3-option statistical model the
sufficient statistic corresponds to the partition of the outcome space into{
{−1, 0}, {1}

}
. Therefore the score function that we need is again (119),

for the original probabilities pi. However, since ∆ik(−1, z) = ∆ik(0, z) = 0

and πi(1) = pi(1), it does not matter whether we calculate (119) for pi or
for πi.

121



18 sienaBayes

This is the start of work on documenting sienaBayes .
Incomplete, to be expanded.

18.1 Initialization

If a prevBayes object is supplied, this initialization phase is skipped.

1. Unless prevAns=NULL :
Estimate using MoM with multigroup option, i.e., under assumption
of common parameter values, using only 2 subphases. This yields
the sienaFit object startupGlobal .
Defaults can be changed by parameters initgainGlobal , initgainGroup-
wise , and initML .
Stop if some of the estimated non-rate parameters are larger than
40.

2. If priorPrecFactor > 0, use a weighted mean of the parameter esti-
mate in startupGlobal and the prior mean. This weighted mean is
called the Kelley estimator1.
The weights are the inverses of the covariance matrices of the es-
timate in startupGlobal and of {the prior for the global parameters,
multiplied by priorPrecFactor }. Names of variables related to this
include the string prec .

3. For all groups seperately, if initgainGroupwise > 0, one subphase of
the Robbins-Monro algorithm for MoM is executed, starting from the
overall estimate, with step size initgain , to estimate the group-varying
parameters.
This provides get initial values initialEstimates per group, and covari-
ance matrices proposalCov for proposal distributions per group.
Stop if some of the estimated non-rate parameters are larger than
40.

1After the psychometrician Truman Lee Kelley
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4. The scale of basic rate parameters can be easily modified, e.g., to
the sqrt scale, by changing functions trafo , antitrafo , devtrafo .

19 Main algorithm

What follows is very incomplete.
It is an older text by Ruth Ripley.

1. Set up data in C as usual

2. Create minimal chain and do burnin

3. improveMH : Get scalefactors such that about 25 out of 100 Bayesian
proposals after single MH steps are accepted. See below for details
of generation and probabilities for Bayesian proposals. Keep theta
unchanged throughout this step.

4. Do a warming phase of nwarm iterations of some number of MH
steps.

5. Repeat step 3.

6. Do requested number of Bayesian iterations. The length of the ML
ones are determined by the multiplication factor and the observed
distance.

Bayesian proposals
for all groups do

Create a mask to exclude basic rate effects for other periods than this
group.
Get a multivariate normal with mean 0 and proposalCov × scale factor
for this group
Calculate the proposal probability:

prior Multivariate normal density for the parameters with mean 0 and
covariance as supplied in the input argument.
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chain Add

1. sum of log probabilities of choice of variable/actor

2. sum of log choice probabilities

3. minus the sum of basic rate parameters times the relevant
number of actors

4. sum of log(basic rate) parameter times the number of real
steps in the chain for the corresponding variable.

(If not constant rates, use mu and sigma from the normal ap-
proximation instead.) Since chain does not change size, ignore
the log factorial of chain length.

The log probability of acceptance is then new - old of log prior + log
chain

end for
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A The contribution of the number of ministeps to
the likelihood

In Snijders et al. (2010), a special role is played by the quantity

κ
(
θ, x(0), (i1, j1), . . . , (iT , jT )

)
= Pθ{timeT ≤ t2 < timeT+1 | x(0), (i1, j1), . . . , (iT , jT )} . (122)

defined there with equation number (15), and given here with some nota-
tional changes to make it correspond better with the current paper. T =

TotNumber− 1 is the total number of ‘real’ ministeps;
and (it, jt) indicates the option of the t′th network ministep. This was
already used above in the acceptance probabilities for the Metropolis Hast-
ings steps. We now elaborate its role for the score function.

The case is rather simple if the aggregate rate function

∑
active i

( RN∑
r=1

λN(θ, r, i, y) +

RB∑
r=1

λB(θ, r, i, y)

)
(123)

is constant: i.e., independent of the state y and of time; the time must be
mentioned because even if this aggregate rate does not depend on y, a
changing number of actors (changing composition) could make the sum
time-dependent.

Let us denote the number of active actors, when assumed constant, by
nact, and

λave =
1

nact

∑
active i

( RN∑
r=1

λN(θ, r, i, y) +

RB∑
r=1

λB(θ, r, i, y)

)
. (124)

Note that formally we assume that all time durations are unity, tm+1− tm =

1. Then the total number of ‘real’ ministeps T has a Poisson distribution
with parameter nactλave.

The latter also holds with changing composition, provided that

λ+(θ,+, i, y) = λave

is independent of i as well as y, and that we let nact denote the average
number of active actors over the time period from tm to tm+1.
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In this case (constant aggregate rate function), κ is equal to

κ
(
θ, x(0), (i1, j1), . . . , (iT , jT )

)
= exp(−nactλave)

(nactλave)
T

T !
, (125)

cf. (16) in Snijders et al. (2010).

A.1 Score functions for rate parameters

If there is only a single dependent variable (RN + RB = 1) and ρ is the
basic and only rate parameter, then λave = ρ and the score function for ρ is

∂ log(κ)

∂ρ
= −nact +

T

ρ
. (126)

More generally, now suppose that RN and RB are arbitrary and the rate
function is given by

λw(θ, r, i, y) = ρwr exp(αw
r sri) (127)

(where αw
r sri is the inner product of these two vectors). Thus, there is a

basic rate parameter ρwr for each given dependent variable labeled (w, r);
in addition there may be actor-dependent variables sri that affect the rate
for dependent variable (w, r), but the parameters αw

r are distinct for distinct
dependent variables.

Then for the ‘complete data’ situation, the information is equivalent to
the information in the variables Tw

ri , indicating the number of ministeps
made of OptionSet (w, i, r). Denote Tw

r =
∑

i T
w
ri . The variables Tw

ri have
independent Poisson distributions with parameter (127). Therefore the
score functions can be derived from the Poisson distribution. The score
functions are given for the basic rate parameters by

∂ complete data log-likelihood
∂ρwr

=
Tw
r

ρwr
−
∑
i

exp(αw
r sri) , (128)

which for cases with only a basic rate parameter λw(θ, r, i, y) = ρwr reduces
to

∂ complete data log-likelihood
∂ρwr

=
Tw
r

ρwr
− nact ; (129)
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and the score functions for the other rate parameters are

∂ complete data log-likelihood
∂αw

rh

=
∑
i

srih
(
Tw
ri − ρwr exp(αw

r sri)
)

(130)

=
∑
i

srih
(
Tw
ri − λw(θ, r, i, y))

)
. (131)
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