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1 Multilevel analysis and multistage samples

There is an intimate relation between multilevel analysis and multistage sam-
ples, although this does not go as far as the two being inseparable. Multistage
samples, as described in textbooks on sampling theory (e.g., Cochran, 1977) are
useful when the population sampled is divided in subsets which may be consid-
ered exchangeable and which have a role of some administrative nature. Ex-
amples are the population of inhabitants of a country divided in municipalities,
or a population of patients divided in hospitals. The subsets are conventionally
called primary sampling units or psu’s. In a two-stage sample, first a sample
is drawn from the primary sampling units (the first-stage sample), and within
each psu included in the first-stage sample, a sample of population elements
is drawn (the second-stage sample). This can be extended to situations with
more than two levels, e.g., individuals within households within municipalities,
and then is called a multistage sample. In the boundary case that each sampled
psu is included entirely in the sample, i.e., the sampling fraction in the second
stage is unity, the sample is called a cluster sample.

Clearly, multistage samples are used for precisely those nested populations
where multilevel analysis also can be appropriate. The rationale, however, may
be different. The usual motive for using a multistage sample is cost efficiency:
if a sample is to be drawn of 100 appendicitis patients in some year in some
country, it is much cheaper to draw a two-stage sample with a first stage of, say,
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10 hospitals, than to draw a simple random sample of 100 patients – who might
be dispersed over 99 hospitals. On the other hand, the usual rationale for multi-
level analysis resides in the research question at hand: the phenomena under
study themselves have a multilevel structure, as is evident, e.g., when studying
contextual effects in a study of outcome measures for individuals nested in or-
ganisations (hospitals, schools, etc.), or in a longitudinal study where individual
development as well as individual differences are relevant.

When a multistage sample is drawn, it usually is likely that population el-
ements within psu’s will be more alike than elements of different psu’s. Some
kind of multilevel analysis therefore seems called for. On the other hand, multi-
level analysis can also be applied to data collected in different sampling designs.
The dependence structures represented by the random intercepts and random
slopes of multilevel modeling are brought about by the processes determining
the phenomena under study, with or without a multistage sampling design.
It can be concluded that a multistage sample will often lead to a multilevel
analysis, but multilevel analysis also can be important for other data collection
designs.

2 Model-based and design-based inference

Either of two types of mechanism is usually proposed as the basis for a prob-
ability model for statistical inference. When descriptive parameters of some
finite population are to be estimated from a probability sample, it is usual to
base inference on the sampling design. The investigator controls the sampling
process which is the foundation for this design-based inference. An important
advantage is that no extraneous assumptions are required for the unbiasedness
of estimators of population parameters and the associated variance estimators.

Much statistical inference is, however, not aimed at the estimation of means
or other parameters of well-defined finite populations, but rather at discovering
or ascertaining mechanisms and processes in our world, reflected by the obser-
vation of measurable variables. The assumed generality of such mechanisms
and processes implies that the population to which the results are supposed
to apply is not only quite general but also somewhat vaguely circumscribed.
Findings about the course of some disease, and the effects of relevant treat-
ments, may be generalisable to the population of all homines sapientes afflicted
with this disease in past, present, and future – a quite hypothetical popula-
tion. Results found with respect to the consequences for the course of this
disease of attitudes of the patient and his or her social environment, will be
culture-dependent and therefore restricted to the vaguely defined population
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of patients living in a given culture – hypothetical, circumscribed in an unsat-
isfactory way, but meaningful nevertheless. Procedures of statistical inference
for such investigations can be based on plausible probability models including
assertions about the distribution of random variables and their independence
or conditional independence, etc. Such models do not come for free, their plau-
sibility must be argued and their consequences checked, and if a model does not
stand such tests it must be replaced by a more plausible one. ‘Random terms’
or ‘error terms’ in such models can be regarded as resulting from influences not
included among the observed variables, or – less attractive – from deviations
between model and reality.

In such investigations, all or part of the sampling design often consists of
just a convenience sample. In the investigation of some rare disease, the re-
searcher will obtain collaboration from a number of clinics and include in his
data all patients in these clinics suffering from this disease. The results of the
investigation may be thought to apply to anyone suffering from this disease. To
argue that the patients included in the study can be considered a random sam-
ple from this population, the investigator has to consider carefully the selection
processes that lead to a patient being included in the study, and whether there
could be factors having to do with severity of the disease, comorbidity, general
health status, etc., which are related simultaneously to the selection of the pa-
tient in the study and to the measured variables. Only if it is plausible that no
such variables exist, it is reasonable to apply model-based procedures of statis-
tical inference. Often such considerations lead to circumscribing the population
to which the results can be generalised, e.g., patients who have been suffering
from the disease for a protracted period or those who are well-motivated to
comply with their therapy.

The multilevel statistical procedures treated in this book are examples of
model-based statistical inference. E.g., the usual two-level hierarchical linear
model implies assumptions of independence between level-two units; conditional
independence between level-one units within each level-two unit, given the ran-
dom effects associated to this level-two unit; and normal distributions for the
error terms. The investigator must check critically whether these assumptions
are plausible. If they are, the data can be analysed as if they are produced
by a two-stage sample with random selection in both stages, although it is not
necessary that the sampling procedure actually was carried out in this way.

If, on the other hand, one wishes to follow a design-based approach – e.g.,
because the study has a descriptive purpose – and the selection probabilities
are not constant, the sampling design must be taken into account to obtain un-
biased estimators. For the estimation of population means this is treated in the
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standard textbooks about sampling theory that include multistage sampling,
e.g., Cochran (1977). For more general statistical questions such as hypothesis
testing and regression analysis this is treated in specialized literature, e.g., Skin-
ner, Holt and Smith (1989). For the estimation of parameters in the hierarchical
linear model, however, it is much more complicated to take unequal selection
probabilities into account. Methods to do so are proposed in Pfefferman et al.
(1998). The remainder of this chapter is about design-based inference only.

3 Study design: Power and standard errors

The following sections of this chapter are mainly about the design of two-level
studies, in particular the determination of optimal or adequate sample sizes.
What complicates the choice of an adequate design for a multilevel study is
the fact that there are sample sizes to be chosen at each level of the nesting
hierarchy. E.g., when studying patients in hospitals, the researcher has to
decide whether a given number of hospitals and a given number of patients
within each hospital is adequate. In another example, when some outcome
variable is measured repeatedly for a sample of patients, it has to be decided how
many patients to include in the study and how often to measure the outcome
variable for each of them. Another important choice in multilevel experimental
design that does not occur in single level designs is the determination of the
level of randomization. E.g., when studying a new medical treatment, the
researcher may have to choose between randomizing within and randomizing
between between hospitals.

Since considerations for the choice of a design always are of an approximate
nature, only those designs are considered here where each level-two unit contains
the same number of level-one units. Level-two units will sometimes be referred
to as clusters. The number of level-two units is denoted N , the number of level-
one units within each level-two unit is denoted n. These numbers are called the
level-two sample size and the cluster size, respectively. The total sample size
is Nn. If in reality the number of level-one units fluctuates between level-two
units, it will almost always be a reasonable approximation to use for n the
average number of sampled level-one units per level-two unit.

Optimality or adequacy of the design is primarily a function of the power
of tests and the standard errors of estimators. This chapter concentrates on
parameters in the fixed part of the model for which the estimator is approx-
imately normally distributed. Denote this parameter by β and the standard
error of estimation by s.e.(β̂). Provided that sample sizes are not very small,
the test for β can be approximated by the standard normal test applied to the
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t-ratio β̂/s.e.(β̂). If the significance level is denoted by α and the power by γ,
the approximate relation between standard error and power is

β

s.e.(β̂)
≈ (z1−α + zγ) = (z1−α − z1−γ) , (1)

where z1−α , zγ and z1−γ are the values for which the standard normal distribu-
tion has the indicated cumulative probability values. E.g., if α = .05 and and a
power is desired of γ = .80 if the effect size is β = .20, then the standard error
should be no more than

standard error ≤ .20
1.64 + 0.84

= 0.081 .

It should be stressed that this approximation does not take into account the
degrees of freedom for variance estimation, and it might be relevant to modify
the conclusions of the following analysis for relatively low values of N and n. In
the following sections the discussion will be mainly in terms of standard errors.

4 The design effect for estimation of a mean

To discuss the estimation of fixed effect parameters, first three important spe-
cial cases are considered: the estimation of a grand mean, the estimation of
the regression coefficient of a level-two variable, and the estimation of such a
coefficient of a level-one variable without any level-two variance. This should
give the reader an understanding of some issues which are important for stan-
dard errors of estimators for such parameters. Then the general case will be
discussed.

The estimation of a population mean is a scientific question where model-
based and design-based inference meet. We approach it in a model-based way,
but a design-based approach for sampling from a finite population arrives at
basically the same answers, if the sample is a two-stage sample using random
sampling with replacement at either stage or if the sampling fractions are so low
that the difference between sampling with and sampling without replacement
is negligible.

Suppose that the mean is to be estimated of some variable Y in a population
which has a two-level structure. As an example, Y could be the duration of
hospital stay after a certain operation under the condition that there are no
complications or additional health problems. Suppose also that it is reasonable
to postulate the empty model of multilevel analysis,

yij = µ + uj + eij ,

with the usual assumptions. The variance of the random intercept is var(uj) =
τ2, the level-one variance is var(eij) = σ2. The parameter to be estimated is µ.
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The overall sample mean,

µ̂ =
1
Nn

N∑
j=1

n∑
i=1

yij ,

is the obvious estimator and its variance is

var(µ̂) =
nτ2 + σ2

Nn
.

The sample mean of a simple random sample of Nn elements from this popu-
lation has variance

τ2 + σ2

Nn
.

The relative efficiency of the simple random sample with respect to the two-
stage sample is the ratio of these variances,

nτ2 + σ2

τ2 + σ2
= 1 + (n− 1)ρI , (2)

where ρI is the intraclass correlation coefficient,

ρI =
τ2

τ2 + σ2
.

The quantity (2) is called the design effect of the two-stage sample (e.g., Cochran,
1977). It is the ratio of the variance obtained with the two-stage sample to the
variance obtained for a simple random sample with the same total sample size.
A large design effect means statistical inefficiency, but this disadvantage may
be offset by the cost reductions of the two-stage design. A two-stage sample
yields the same standard error as a simple random sample for which the total
sample size is divided by the factor (2).

5 Effect of a level-two variable

When a two-level regression is carried out and the objective is to estimate the
regression coefficient of a level-two variable X, then the estimated coefficient
is practically equivalent to the estimated regression coefficient in the single-
level regression analysis for data aggregated to the cluster means of all relevant
variables. If the variance of the random intercept is denoted again by τ2 and
the residual level-one variance by σ2, the residual variance for the aggregated
regression analysis is τ2 + (σ2/n). Assume that Y is distributed according to a
random intercept model,

yij = β0 + β1xj + uj + eij .

When the variable X has variance s2
X , the variance of the estimated regression

coefficient is

var(β̂1) =
nτ2 + σ2

Nns2
X

. (3)
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This implies that again the relative efficiency of the two-stage sampling design
is given by (2).

Thus it appears that for estimating a population mean or, more generally,
the effect of a level-two variable, and if the intraclass correlation is moderate
or high, a large cluster size leads to a large statistical inefficiency in estimating
the population mean.

6 Effect of a level-one variable

Now consider the opposite situation, where one wishes to estimate the regression
coefficient of an independent variable X which is a pure level-one variable, i.e.,
its mean is the same in each level-two unit. Note that this implies that the
intraclass correlation of X is negative, −1/(n− 1), which implies that X itself
is not distributed according to the hierarchical linear model (which allows only
nonnegative intraclass correlations). For simplicity, assume that the cluster
mean of X is 0 and its variance is the same within each cluster, denoted by s2

X .
An example is the effect of a treatment that is randomly allocated to a fixed
fraction of the level-one units within each level-two unit. Another example is
the linear effect of time in a balanced longitudinal design.

The estimator for the regression coefficient now is the average of the within-
cluster regression coefficients,

β̂ =
1

Nns2
X

N∑
j=1

n∑
i=1

xij yij . (4)

If Y is distributed according to a random intercept model,

yij = β0 + β1xij + uj + eij ,

then the assumptions about the variable X imply that the estimator (4) is equal
to

β̂1 = β1 +
1

Nns2
X

N∑
j=1

n∑
i=1

xij eij (5)

and its variance is

var(β̂1) =
σ2

Nns2
X

. (6)

A simple random sample of Nn elements from the same distribution yields an
OLS estimator for β with variance

σ2 + τ2

Nns2
X

(assuming that the variance of X in this sample also is precisely s2
X). This

shows that the two-stage sample here is more efficient than the simple random
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sample, with the design effect
σ2

τ2 + σ2
= 1 − ρI . (7)

The greater efficiency in this case of the two-stage sample is well known in
experimental design: the two-stage corresponds to blocking on the level-two
units. In psychology, e.g., this is the often used within-subject design. Blocking
is known to neutralize the main block effect as a variance component.

Since the design effect is less than 1 for level-one variables and larger than
1 for level-two variables, it may be concluded that if the study is a comparison
of randomly assigned treatments in a random intercept model and the study
costs are determined by the total sample size, Nn, then randomising within
clusters is more efficient than randomising between clusters. The optimal level
of randomization for two- and three-level designs is discussed extensively by
Moerbeek, van Breukelen, and Berger (2000).

Example
Suppose that a new training program (‘treatment’) for nurses is to be compared

with an existing training program (‘control’), while hospitals are believed to be
a major influence for the nurses’ work. This question can be phrased in terms
of the preceding sections as the estimation of the regression coefficient of the
dummy variable that distinguishes treatment from control. Denote this variable
by X, defined as 0 for the control and 1 for the treatment condition. When the
treatment fraction is p, its variance is var(X) = p(1− p); for p = 0.5 this yields
s2
X = 0.25. Assume that the dependent variable is standardized to have a unit

variance, and that it has an intraclass correlation of 0.10. Further assume that
the treatment is equally effective for all hospitals, i.e., the random intercept
model is adequate. Then σ2 = 0.9 and τ2

0 = 0.1. Then the estimation variance
for level-two randomization (3) is

0.4
N

+
3.6
nN

and for level-one randomization it is (6),
3.6
nN

.

If group sizes n are predetermined, the advantage of randomization at level one
is quite large.

6.1 A level-one variable with a random slope

The level-one variable X, however, may well have a random slope in addition
to the random intercept. The model for Y then reads

yij = β0 + β1xij + u0j + u1j xij + eij . (8)
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Denote the intercept variance by τ2
0 and the slope variance by τ2

1 . For the
random slope model, the variance of the estimated regression coefficient (4) is

var(β̂1) =
nτ2

1 s
2
X + σ2

Nns2
X

. (9)

The total residual variance of Y (where the level-two unit is random, i.e.,
marginalized) here is equal to

σ2 + τ2
0 + τ2

1 s
2
X

so that the design effect now is
nτ2

1 s
2
X + σ2

τ2
0 + τ2

1 s
2
X + σ2

. (10)

This shows that the two-stage sample with level-one randomization only ‘neu-
tralizes’ the random intercept and not the random slope of X as terms in the
variance of the estimated regression coefficient.

In practice, the presence of a random slope for variable X means that the
regression coefficient β1 does not tell all of the story, and it is important to
estimate the random slope variance τ2

1 besides. This underscores the fact that
design considerations should never focus narrowly on the estimation of just one
statistical parameter.

7 Optimal sample size for estimating a regression

coefficient

In studies leading to statistical models such as those treated in the preceding sec-
tions, the design is determined by the sample sizes N and n and the distribution
of the X values. This distribution has a within-cluster and a between-cluster
aspect. Like in OLS regression, if one has liberty to choose the X values, it is
optimal to maximize their dispersion. With respect to optimal sample sizes, the
multilevel, or two-stage design, requires the determination of the sample sizes
at the two levels. This section is about the optimal choice of these sample sizes
for the estimation of a regression coefficient under given budget constraints.

If the aim is to have a minimum variance for a given total sample size Nn
and a given value for s2

X , then it is clear from (6) that for a within-cluster
deviation variable without level-two slope variation it does not matter how
the total sample size is distributed over the level-two units, as long as one
succeeds in constructing an X variable with constant within-cluster mean and
within-cluster variance s2

X . This implies, of course, that n is at least 2. For a
level-two variable or a within-cluster deviation variable with positive random
slope variation, (3) and (9) imply that it is optimal to let N be as large as
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possible. This would imply n = 1, i.e., a simple random sample is optimal. If
this is not feasible, then still it is best to have the clusters as small as possible.

Usually, however, study costs are not a function of total sample size but
depend on total sample size as well as the number of level-two units. The costs
often are well approximated by a function of the type c1N + c2Nn. Thus, an
optimal design is obtained when the variance of the estimator is minimal, given
the constraint

c1N + c2Nn ≤ k , (11)

where k denotes the total budget. In the preceding sections, it was shown that
the variance to be minimised can be expressed as

σ2
1

N
+

σ2
2

Nn
for a suitable choice of σ2

1 and σ2
2, which can be found in equation (3), (6),

or (9), respectively. The minimisation of this expression under the constraint
c1N + c2Nn = k is treated by Cochran (1977, Section 10.6). The optimal value
for n is

nopt =

√
c1σ2

2

c2σ2
1

, (12)

rounded upward or downward to an integer value. This is also the optimal n if
the budget is to be minimised under the constraint that the estimation variance
has a preassigned value. It may be noted that the optimal cluster size does not
depend on the available budget or on the level-two sample size.

For explanatory variables defined at level one and having a constant mean
across level-two units, and for which the dependent variables follows a random
intercept model, it can be seen from (9) that σ2

1 = 0 so that nopt is infinite.
This means in practice that n should be as large as possible: a single-level
design, for which N = 1 and n is the total sample size, is preferable to a two-
level design for the estimation of a regression coefficient of a level-one variable
when the budget constraint is given by (11). If the explanatory variable X is
defined at level two, on the other hand, we have σ2

1 = τ2/s2
X and σ2

2 = σ2/s2
X

so that the optimal cluster size is

nopt =

√
c1σ2

c2τ2
.

This optimal sample size also is discussed by Raudenbush (1997, p. 177) and
Moerbeek, van Breukelen, and Berger (2000). The latter paper also treats
optimal allocation for three-level designs. Optimal allocation for two- and three-
level designs for binary responses are discussed by Moerbeek, van Breukelen,
and Berger (submitted).
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8 Use of covariates

It is well-known in experimental design that controlling for relevant covariates
can lead to important gains in efficiency. In a single-level design, a covariate
that has a residual correlation with the dependent variable equal to ρ will yield
a reduction of the unexplained variance by a factor 1 − ρ2. When the sample
size is large enough for the loss of a degree of freedom for the variance estimate
to be unimportant, this will allow the researcher to diminish the sample size by
this factor while retaining the same standard error and power.

For a two-level design, the situation is – of course – more complicated.
The reduction in standard error depends on the intraclass correlation of the
dependent variable and on the within-group and the between-groups residual
correlations between the dependent variable and the covariate. For more precise
calculations in small sample situations, the degrees of freedom also play a part,
but this is not considered in the following analysis.

Suppose that, as above, we wish to analyze the regression coefficient of some
variable X, and we are interested to see how much gain in precision is obtained
by controlling for some covariate denoted by Z. The model without control for
Z is supposed to be the random intercept model

yij = β0 + β1xij + uj + eij

while the model with control for Z is

yij = β̃0 + β1xij + β2zij + ũj + ẽij .

It is assumed that Z follows a random intercept model,

zij = γ0 + uZj + eZij .

Further assume that Z is, both within and between groups, uncorrelated with
X. Then the regression coefficient β1 remains the same when controlling for Z,
which is reflected in the notation used in the two preceding equations.

Denote the population residual within-group correlation between Y and Z

by ρW and their population residual between-group correlation by ρB. These
are defined by (cf. Snijders and Bosker, 1999, Section 3.6)

ρW = ρ(eij , eZij), ρB = ρ(uj , uZj) .

Some calculations show that the reduction in the variance parameters due to
the control for Z is given by

σ̃2 = (1− ρ2
W )σ2, τ̃2 = (1− ρ2

B) τ2 . (13)

In a large-sample approximation (valid when n and N are large), these reduc-
tions are applied to the estimation variances given in (3) and (6). Thus, if X
is a level-two variable, then formula (3) applies and the factor τ2 + (σ2/n) will
be replaced by (1− ρ2

B)τ2 + (1− ρ2
W )(σ2/n). If X is a level-one variable, then
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in (6) the factor σ2 is replaced by (1 − ρ2
W )σ2. This illustrates that for pure

level-one variables it is – naturally – only the within-group correlation which
counts, whereas for level-two variables not only the between-group correlation
but also the within-group correlation plays a role in the reduction of the esti-
mation variance of β1. If group sizes n are large, however, the influence of the
within-group correlation for level-two variables will be of minor importance.

When one investigates the effect of a level-two variable X controlling for a
level-one variable Z, one may be tempted to use the group means of Z rather
than their individual values. The preceding analysis demonstrates that this
leads to a loss in estimation efficiency. If n is large the loss will be negligible.
This point is made also by Raudenbush (1997), who gives a more extensive
discussion of the use of covariates, taking into account also the random nature
of the observed residual covariances between Z and Y (but not the loss in
degrees of freedom).

9 Standard errors for fixed effects in general

In practice, the assumptions made in Section 4 and 5 often are not an adequate
simplification of reality; moreover, many researcher wish to estimate several
regression coefficients from a single data set as precisely as possible. Exact
formula for estimation variances are not available for arbitrary multilevel de-
signs. Snijders and Bosker (1993) derived approximate formulae for estimation
variances in two-level designs, valid under the restriction that variables with
random slopes have a zero between-cluster variance and that n is not too small,
say, at least 8. These formulae are calculated by the computer program PinT
(‘Power in Two-level designs’) which can be dowloaded, with manual, from
http://stat.gamma.rug.nl/snijders/multilevel.htm .

The main difficulty in applying this program is the requirement to specify
plausible parameter values. This is, of course, a general difficulty in any power
analysis (cf. Kraemer and Thiemann, 1987, or Cohen, 1992), but it is more
pressing in the case of multilevel analysis because the random part parameters
also must be specified. The use of PinT will be illustrated here by means of an
example. The manual of PinT and Chapter 10 of Snijders and Bosker (1999)
contain various other examples.

As an example, suppose that one is investigating the effect of the training
of psychotherapists on therapy effectivity. Level-one units are patients, level-
two units are therapists. The dependent variable is a patient-level outcome
measure standardized to unit variance. The investigated training is a course
represented by a 0-1 variable. In addition, the level of professional training of
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the psychotherapists and a pretest measure of the seriousness of the patients’
complaints are relevant. The question is, how many patients and how many
therapists have to be investigated.

Assume that participation in the course will be randomized within groups of
equal professional training in such a way that the fraction following the course is
higher in the groups with lower professional training. Professional training and
pretest are represented by numerical variables also standardized to mean 0 and
unit variance. If a random intercept model applies with these three variables
having fixed effects, the model can be expressed as

yij = β0 + β1x1j + β2x2j + β3x3ij + uj + eij ,

where X1 indicates whether the therapist followed the course, X2 is therapists’
professional training, and X3 is the pretest. The primary research variable is
X1.

The required information for running PinT consists of the means, variances,
and covariances of the explanatory variables and all parameters of the random
part.

First consider the means. Variables X2 and X3 have means 0. Suppose that
the fraction of therapists who follow the course is thought to be 0.4. This is
the mean of X1.

Now consider the variances and covariances of the explanatory variables.
Suppose that the therapists are somewhat different in the pretest values of their
patients, this variable having an intraclass correlation of 0.19. The variance of
X1, being a 0-1 variable with mean 0.4, is 0.24. Suppose that the correlation
between the therapist mean of the pretest and the professional training X2 is
known to be 0.5. Assume that the randomization of the course participation,
which is conditional on X2, will give a correlation between X1 and X2 of −0.4.
The partial correlation between pretest mean and course participation, control-
ling for level of professional training, is expected to be nil, which leads to a total
correlation between pretest mean and course participation of 0.2. The within-
groups variance of X3 then is σ2

X(W ) = 1− 0.19 = 0.81 and the between-groups
covariance matrix of (X1, X2, X3) is

ΣX(B) =


0.24 −0.20 0.043
−0.20 1.0 0.22
0.043 0.22 0.19

 .

Finally consider the parameters of the random part of the multilevel model.
To get some insight in plausible values of the level-one and level-two variances
it may be helpful to note that the variance of the dependent variable can be
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decomposed as

var(Yij) = β2
1σ

2
X(W ) + β′ΣX(B)β + τ2

0 + σ2 ,

where β = (β1, β2, β3)′ (cf. Section 7.2 of Snijders and Bosker, 1999). This
corresponds, for the variance decomposition of Yij in the empty model, to a total
level-one variance of β2

1σ
2
X(W ) +σ2 and a total level-two variance of β′ΣX(B)β+

τ2
0 .

Assume that the total level-one and level-two variances of the outcome mea-
sure are 0.8 and 0.2, respectively, and that the available explanatory variables
together explain 0.25 of the level-one variance and 0.5 of the level-two variance.
Then σ2 = 0.6 and τ2

0 = 0.10. In terms of the decomposition of total variance
this corresponds to a raw explained level-one variance of β2

1σ
2
X(W ) = 0.2, and

therefore a regression coefficient β1 =
√

0.2/0.81 = 0.5, and β′ΣX(B)β = 0.1.
With respect to the cost structure, assume that the budget constraint can

be expressed as (11) with c1 = 20, c2 = 1, and k = 1000. In other words, an
extra therapist in the sample costs 20 times as much as an extra patient; and
there would be enough funds to include, e.g., 40 therapists with 5 patients each,
or 20 therapists with 30 patients each.

With this specification, PinT can be executed, and it produces the approx-
imate standard errors of the estimated fixed effects for sample sizes satisfying
the budget constraint 20N +Nn ≤ 1,000. The standard errors for β1 are plot-
ted as ∗ in Figure 1.
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Figure 1 Standard error for estimating β1, for 20N +Nn ≤ 1,000; ∗ for
σ2 = 0.6, τ2

0 = 0.1 and ◦ for σ2 = 0.5, τ2
0 = 0.2.

The plot is a bit irregular due to the inequality constraint for the integer
numbers N and n. The minimum is seen to be rather flat. The minimum
standard error is 0.156, achieved for n = 11. For cluster sizes between 7 and
18 the standard error is less than 0.162. It can be concluded that, for these
parameter values, average cluster sizes between 7 and 18 are fully acceptable.
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To investigate the sensitivity of this result to the assumed parameter values,
the calculations were carried out also for σ2 = 0.5, τ2

0 = 0.2, all other param-
eters remaining the same. The results are shown in Figure 1 by the symbol ◦.
The greater level-two variance leads to a bigger standard error for this level-two
variable. The minimum is 0.192 for n = 7. The minimum is less flat than for
the earlier parameter values; for n ≤ 13, the standard error is less than 0.200.
For these parameter values, the average cluster sizes would preferably be 13 or
less. Note, however, that in the second situation the intraclass correlation is
twice as big as in the first one, so the two situations are quite different.

The PinT program uses a rather rough large-sample approximation to ob-
tain the standard errors. This is often adequate, because design questions
usually are of a very approximate nature, but more precise approximations are
desiable when they are available. For the special case of testing the effect of a
level-two variable (representing the difference between a treatment and a control
condition in a cluster randomized trial), controlling for one level-one covariate,
a more precise approximation is given by Raudenbush (1997, p. 178–179). He
obtains a result which for larger sample sizes boils down to (12). The greater
precision can be important for small sample sizes.

10 Parameters of the random part

Usually the focus of the research questions is on the parameters of the fixed
part. Sometimes, however, the design should be adequate also in view of the
estimation of the random part parameters. The estimation of the intraclass
correlation coefficient is treated here. For some remarks about the design of
multilevel studies with respect to the estimation of other parameters of the
random part, see Mok (1995), Cohen (1998), and Snijders and Bosker (1999,
Section 10.5.2).

Donner (1986) proved that the standard error of the estimated intraclass
correlation coefficient in an empty two-level model (i.e., a two-level model with-
out any explanatory variables) with constant cluster size n is given by

S.E.(ρ̂I) = (1− ρI )(1 + (n− 1)ρI )

√
2

n(n− 1)(N − 1)
. (14)

This standard error depends on the parameter itself that is to be estimated.
To obtain optimal sample sizes for estimating the intraclass correlation given
the budget constraint (11), it is convenient to substitute N = k/(c1 + c2n)
which transforms (14) into a function of n so that it can be plotted. From the
graph, the optimum value for n can be deduced, as well as the sensitivity of
this minimum to sub-optimal values of n.
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As an example, suppose that it is desired to estimate the intraclass corre-
lation with a budget constraint 20N + Nn ≤ 1,000 and the intraclass corre-
lation is believed to be between 0.1 and 0.2. Figure 2 gives the graph of the
standard errors of the intraclass correlation coefficients, using the substitution
N = 1,000/(20 + n) (neglecting the integer nature of the sample sizes), for
ρI = 0.1 and 0.2.
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Figure 2 Standard error for estimating the intraclass correlation coefficient
for a budget constraint 20N +Nn ≤ 1,000 with ρI = 0.1 and 0.2.

For ρI = 0.1 the minimum standard error is 0.03835, achieved for n =
24, 25, and the standard error is less than 0.040 for n between 16 and 40. For
ρI = 0.2 the minimum standard error is 0.05645, achieved for n = 16, the
standard error being less than 0.59 for n between 10 and 27. In order to have a
relatively small standard error for ρI in the range between 0.1 and 0.2, cluster
sizes between 16 and 27 are fully acceptable.
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