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3.1 Specification of the Two-Level Model

This chapter focuses on diagnostics for the two-level Hierarchical Linear Model

(HLM). This model, as defined in chapter 1, is given by

y
j

= Xjβ + Zjδj + ǫj , j = 1, . . . ,m, (3.1a)

with (
ǫj

δj

)
∼ N

((
∅

∅

)
,

(
Σj(θ) ∅

∅ Ω(ξ)

))
(3.1b)

and

(ǫj , δj) ⊥ (ǫℓ, δℓ) (3.1c)

for all j 6= ℓ. The lengths of the vectors yj , β, and δj , respectively, are nj , r,

and s. Like in all regression-type models, the explanatory variables X and Z

are regarded as fixed variables, which can also be expressed by saying that the

distributions of the random variables ǫ and δ are conditional on X and Z.

The random variables ǫ and δ are also called the vectors of residuals at levels

1 and 2, respectively. The variables δ are also called random slopes. Level-two

units are also called clusters.

The standard and most frequently used specification of the covariance

matrices is that level-one residuals are i.i.d., i.e.,

Σj(θ) = σ2Inj
, (3.1d)

where Inj
is the nj-dimensional identity matrix; and that either all elements of

the level-two covariance matrix Ω are free parameters (so one could identify

Ω with ξ), or some of them are constrained to 0 and the others are free

parameters.
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Questioning this model specification can be aimed at various aspects: the

choice of variables included in X, the choice of variables for Z, the residuals

having expected value 0, the homogeneity of the covariance matrices across

clusters, the specification of the covariance matrices, and the multivariate

normal distributions. Note that in our treatment the explanatory variables X

and Z are regarded as being deterministic; the assumption that the expected

values of the residuals (for fixed explanatory variables!) are zero is analogous

to the assumption, in a model with random explanatory variables, that the

residuals are uncorrelated with the explanatory variables.

The various different aspects of the model specification are entwined, how-

ever: problems with one may be solved by tinkering with one of the other

aspects, and model misspecification in one respect may lead to consequences

in other respects. E.g., unrecognized level-one heteroscedasticity may lead to

fitting a model with a significant random slope variance, which then disap-

pears if the heteroscedasticity is taken into account; non-linear effects of some

variables in X, when unrecognized, may show up as heteroscedasticity at level

one or as a random slope; and non-zero expected residuals sometimes can be

dealt with by transformations of variables in X.

This presentation of diagnostic techniques starts with techniques that can

be represented as model checks remaining within the framework of the HLM.

This is followed by a section on model checking based on various types of

residuals. An important type of misspecification can reside in non-linearity

of the effects of explanatory variables. The last part of the chapter presents

methods to identify such misspecifications and estimate the non-linear rela-

tionships that may obtain.

3.2 Model Checks within the Framework of the

Hierarchical Linear Model

The HLM is itself already a quite general model, a generalization of the

General Linear Model, the latter often being used as a point of departure

in modeling or conceptualizing effects of explanatory on dependent variables.

Accordingly, checking and improving the specification of a multilevel model

in many cases can be carried out while staying within the framework of the

multilevel model. This holds to a much smaller extent for the General Linear

Model. This section treats some examples of model specification checks which

do not have direct parallels in the General Linear Model.

3.2.1 Heteroscedasticity

The comprehensive nature of most algorithms for estimating the HLM makes

it relatively straightforward to include some possibilities for modeling het-
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eroscedasticity, i.e., non-constant variances of the random effects. (This is

sometimes indicated by the term “complex variation”, which however does

not imply any thought of the imaginary number i =
√
−1.)

As an example, the iterated generalized least squares (IGLS) algorithm

implemented in MLwiN [18, 19] accommodates variances depending as linear

or quadratic functions of variables. For level-one heteroscedasticity, this is

carried out formally by writing

ǫij = vijǫ
0
ij

where vij is a 1 × t variable and ǫ0
ij is a t × 1 random vector with

ǫ0
ij ∼ N

(
∅,Σ0(θ)

)
.

This implies

Var(ǫij) = vijΣ
0(θ)v′

ij . (3.3)

The standard homoscedastic specification is obtained by letting t = 1 and

vij ≡ 1.

The IGLS algorithm works only with the expected values and covariance

matrices of y
j

implied by the model specification, see Goldstein [18, pp. 49–

51]. A sufficient condition for model (3.1a)–(3.1c) to be a meaningful repre-

sentation is that (3.3) is nonnegative for all i, j — clearly less restrictive than

Σ0 being positive definite. Therefore it is not required that Σ0 be positive

definite, but it is sufficient that (3.3) is positive for all observed vij . E.g., a

level-one variance function depending linearly on v is obtained by defining

Σ0(θ) =
(
σhk(θ)

)
1≤h,k≤t

with

σh1(θ) = σ1h(θ) = θh, h = 1, . . . , t

σhk(θ) = 0, min{h, k} ≥ 2

where θ is a t× 1 vector. Quadratic variance functions can be represented by

letting Σ0 be a symmetric matrix, subject only to a positivity restriction for

(3.3).

In exactly the same way, variance functions for the level-two random effects

depending linearly or quadratically on level-two variables are obtained by

including these level-two variables in the matrix Z. The usual interpretation

of a “random slope” then is lost, although this term continues to be used in

this type of model specification.

Given that among multilevel modelers random slopes tend to be more

popular than heteroscedasticity, unrecognized heteroscedasticity may show

up in the form of a fitted model with a random slope of the same or a corre-

lated variable, which then may disappear if the heteroscedasticity is modeled.
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Therefore, when a researcher is interested in a random slope of some variable

Zk and thinks to have found a significant slope variance, it is advisable to

test for the following two kinds of heteroscedasticity: the level-one residual

variance may depend (e.g., linearly or quadratically) on the variable Zk, or

the level-two intercept variance may depend on the cluster mean of Zk, i.e.,

on the variable defined by

z̄.jk =
1

nj

nj∑

i=1

zijk .

Given that one uses software that can implement models with these types of

heteroscedasticity, this is an easy (and sometimes disconcerting) model check.

Some examples of checking for heteroscedasticity can be found in Goldstein

[18, Chapter 3] and Snijders and Bosker [51, Chapter 8].

3.2.2 Random or Fixed Coefficients

A basic question in applying the HLM is whether a random coefficient model is

appropriate at all for representing the differences between the level-two units.

In other words, is it appropriate indeed to treat the variables δj in (3.1) as

random variables, or should they rather be treated as fixed parameters δj?

On a conceptual level, this depends on the purpose of the statistical infer-

ence. If the level-two units j may be regarded as a sample from some popu-

lation (which in some cases will be hypothetical or hard to circumscribe, but

nevertheless conceptually meaningful) and the statistical inference is directed

at this population, then a random coefficient model is in principle appropriate;

cf. Hsiao [30]. This is the case, e.g., when one wishes to test the effect of an

explanatory variable that is defined at level two, i.e., it is a function of the

level-two units only. Then testing this variable has to be based on some way

of comparing the variation accounted for by this variable to the total residual

variation between level-two units, and it is hard to see how this could be done

meaningfully without assuming that the level-two units are a sample from a

population.

If, on the other hand, the statistical inference aims only at the particular

set of units j included in the data set at hand, then a fixed effects model is ap-

propriate. Note that in the fixed effects model the only random effects are the

level-one residuals ǫj ; under the usual assumption (3.1d) of homoscedasticity,

this model can be analysed by ordinary least squares (OLS) regression, so

that the analysis is very straightforward except perhaps for the large number

of dummy variables. When the cluster sizes are very large, there is hardly a

difference between the fixed effects and the random effects specification for

the estimation of parameters that they have in common.

If the differences between the level-two units are a nuisance factor rather

than a point of independent interest, so that there is interest only in the
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within-cluster effects, the analysis could in principle be done either way. Then

the fixed effects estimates of the within-cluster regression coefficients, obtain-

able by OLS regression, achieve a better control for unexplained differences

between the level-two units, because they do not need the assumption that the

explanatory variables X are uncorrelated with the level-two random effects

δ. More generally, the fixed effects estimates have the attractive robustness

property that they are not influenced at all by the specification of the level-two

model. This can of course be generalized to models with more than two levels.

This robustness property is elaborated with a lot of detailed matrix calculus

in Kim and Frees [32].

On a practical level, the choice between random and fixed effects depends

strongly on the tenability of the model assumptions made for the random

coefficients and the properties of the statistical procedures available under

the two approaches. Such practical considerations will be especially impor-

tant if the differences between level-two units are a nuisance factor only. The

assumptions in model (3.1) for the random effects δj are their zero expecta-

tions, homogeneous variances, and normal distributions. The normality of the

distributions can be checked to some extent by plots of residuals (see below).

If normality seems untenable, one could use models with other distributions

for the random effects such as t-distributions (e.g., Seltzer, Wong, and Bryk

[48]) or mixtures of normal distributions (the heterogeneity model of Verbeke

and Lesaffre [54], also see Verbeke and Molenberghs [55]). Homogeneity of the

variances is very close to the assumption that the level-two units are indeed a

random sample from a population; in the preceding section it was discussed

how to model variances depending on level-two variables, which can occur,

e.g., if the level-two units are a sample from a stratified population and the

variances depend on the stratum-defining variables.

To understand the requirement that the expected values of the level-two

residuals are zero, we first focus on the simplest case of a random intercept

model, where Zj contains only the constant vector with all its nj entries

equal to 1, expressed as Zj = 1nj
. Subsequently we shall give a more formal

treatment of a more general case.

The level-two random effects δj consist of only one variable, the random

intercept δj . Suppose that the expected value of δj is given by

E δj = z2jγ

for 1× u vectors z2j and a regression coefficient γ. Accordingly, δj is written

as δj = z2jγ + δ̃j . Note that a term in 1nj
E δj which is a linear combination

of Xj will be absorbed into the model term Xjβ, so this misspecification is

non-trivial only if 1nj
z2j cannot be written as a linear combination XjA for

some weight matrix A independent of j.

The question now is in the first place, how the parameter estimates are

affected by the incorrectness of the assumption that δj has a zero expected
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value, corresponding to the omission of the term z2jγ from the model equa-

tion.

It is useful to split the variable Xj into its cluster mean X̄j and the

within-cluster deviation variable X̃j = Xj − X̄j :

Xj = X̄j + X̃j

where

X̄j = 1nj
(1′

nj
1nj

)−11′
nj

Xj .

Then the data-generating model can be written as

y
j

= X̄jβ + X̃jβ + 1nj
z2jγ + 1nj

δ̃j + ǫj ,

for random effects δ̃j which do satisfy the condition that they have zero

expected values.

A bias in the estimation of β will be caused by lack of orthogonality of

the matrices Xj = X̄j + X̃j and 1nj
z2j . Since the definition of X̃j implies

that X̃j is orthogonal to 1nj
z2j , it is clear that X̄j is the villain of the piece:

analogous to the situation of a misspecified General Linear Model, there will

be a bias if the cluster mean of X is non-zero, X̄ ′
j1nj

6= 0. If it is non-zero,

there is an obvious solution: extend the fixed part by giving separate fixed

parameters β1 to the cluster means X̄ and β2 to the deviation variables X̃,

so that the working model reads

y
j

= X̄jβ1 + X̃jβ2 + 1nj
δj + ǫj

(taking out the zero columns from X̄j and X̃j , which are generated by columns

in Xj which themselves are within-cluster deviation variables or level-two

variables, respectively). An equivalent working model is obtained by adding

to (3.1) the fixed effects of the non-constant cluster means X̄j . In this way,

the bias in the fixed effect estimates due to ignoring the term z2jγ is absorbed

completely by the parameter estimate for β1, and this misspecification does

not affect the unbiasedness of the estimate for β2. The estimate for the level-2

variance Var(δj) will be affected, which is inescapable if there is no knowledge

about z2j , but the estimate for the level-1 variance σ2 will be consistent.

In the practice of multilevel analysis, it is known that the cluster means

often have a substantively meaningful interpretation, different from the level-

one variables from which they are calculated (cf. the discussion in sections 3.6

and 4.5 of Snijders and Bosker [51] about within- and between-group regres-

sions). This often leads to a substance-matter related rationale for including

the cluster means among the variables with fixed effects.
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It can be concluded that in a two-level random intercept model, the sen-

sitive part of the assumption that the level-two random effects have a zero

expected value, is the orthogonality of these expected values to the cluster

means of the variables X with fixed effects. This orthogonality can be tested

simply by testing the effects of these cluster means included as additional

variables in the fixed part of the model. This can be interpreted as testing

the equality between the within-cluster regression coefficient and the between-

cluster coefficient. This test — or at least a test with the same purpose —

is often referred to as the Hausman test. (Hausman [26] proposed a general

procedure for tests of model specification, of which the test for equality of the

within-cluster and between-cluster coefficients is an important special case.

Also see Baltagi [3], who shows on p. 69 that this case of the Hausman test is

equivalent to testing the effect of the cluster means X̄.)

In econometrics, the Hausman test for the difference between the within-

cluster and between-cluster regression coefficients is often seen as a test for

deciding whether to use a random or fixed coefficient model for the level-

two residuals δj . The preceding discussion shows that this is slightly beside

the point. If there is a difference between the within-cluster and between-

cluster regression coefficients, which is what this Hausman test intends to

detect, then unbiased estimates for the fixed within-cluster effects can be

obtained also with random coefficient models, provided that the cluster means

of the explanatory variables are included among the fixed effect variables X.

Including the cluster means will lead to an increase of the number of fixed

effects by at most r, which normally is much less than the m− 1 fixed effects

required for including fixed main effects of the clusters. Whether or not to

use a random coefficient model depends on other considerations, as discussed

earlier in this section. Fielding [16] gives an extensive discussion of this issue,

and warns against the oversimplification of using this Hausman test without

further thought to decide between random effects and fixed effects models.

Now consider the general case that Z has some arbitrary positive di-

mension s. Let the expected value of the level-two random effects δj in the

data-generating model be given by

E δj = Z2jγ,

instead of the assumed value of ∅. It may be assumed that ZjZ2j cannot be

expressed as a linear combination XjA for some matrix A independent of

j, because otherwise the contribution caused by E δj could be absorbed into

Xjβ.

Both Xj and yj are split in two terms, the within-cluster projections ~Xj

and ~yj on the linear space spanned by the variables Zj ,

~Xj = Zj(Z
′
jZj)

−1Z ′
jXj and ~yj = Zj(Z

′
jZj)

−1Z ′
jyj ,
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and the difference variables

X̃j = Xj − ~Xj and ỹj = yj − ~yj .

The projection ~Xj can be regarded as the prediction of Xj , produced by the

ordinary least squares (OLS) regression of Xj on Zj for cluster j separately,

and the same for ~yj . The data-generating model now is written as

y
j

= Xjβ + ZjZ2jγ + Zj δ̃j + ǫj ,

where again the δ̃j do have zero expected values.

The distribution of y
j

is the multivariate normal

y
j
∼ N (Xjβ + ZjZ2jγ,Vj),

where

Vj = σ2Inj
+ ZjΩ(ξ)Z ′

j . (3.4)

Hence the log-likelihood function of the data-generating model is given by

− 1
2

∑

j

(
log det(Vj) + (yj − Xjβ − ZjZ2jγ)′V −1

j (yj − Xjβ − ZjZ2jγ)
)
.

The inverse of Vj can be written as [41, 44]

V −1
j = σ−2Inj

− ZjAjZ
′
j , (3.5)

for a matrix

Aj = σ−2(Z ′
jZj)

−1 − (Z ′
jZj)

−1
(
σ2(Z ′

jZj)
−1 + Ω(ξ)

)−1
(Z ′

jZj)
−1.

This implies that

(yj − Xjβ − ZjZ2jγ)′V −1
j (yj − Xjβ − ZjZ2jγ)

=
(
~yj − ~Xjβ − ZjZ2jγ

)′
V −1

j

(
~yj − ~Xjβ − ZjZ2jγ

)

+ σ−2‖ỹj − X̃jβ‖2,

where ‖ · ‖ denotes the usual Euclidean norm. The log-likelihood is

− 1
2

∑

j

(
log det(Vj)

+
(
~yj − ~Xjβ − ZjZ2jγ

)′
V −1

j

(
~yj − ~Xjβ − ZjZ2jγ

)

+ σ−2‖ỹj − X̃jβ‖2
)
. (3.6)

This shows that the omission from the model of ZjZ2jγ will affect the esti-

mates only through the term ~Xjβ. If now separate fixed parameters are given

to ~X and X̃ so that the working model is



3 Diagnostic Checks for Multilevel Models 147

y
j

= ~Xjβ1 + X̃jβ2 + Zjδj + ǫj ,

the bias due to neglecting the term Z2jγ in the expected value of δj will be

absorbed into the estimate of β1, and β2 will be an unbiased estimate for

the fixed effect of X. The log-likelihood (3.6) shows that the ML and REML

estimates of β2 are equal to the OLS estimate based on the deviation variables
~yj , and also equal to the OLS estimate in the model obtained by replacing

the random effects δj by fixed effects.

This discussion shows that in the general case, if one is uncertain about the

validity of the condition that the level-two random effects have zero expected

values, and one wishes to retain a random effects model rather than work with

a model with a large number (viz., ms) of fixed effects, it is advisable to add

to the model the fixed effects of the variables

~Xj = Zj(Z
′
jZj)

−1Z ′
jXj , (3.7)

i.e., the predictions of the variables in X by within-cluster OLS regression of

Xj on Zj . The model term Zj E δj will be entirely absorbed into the fixed

effects of ~Xj , and the estimates of β2 will be unbiased for the corresponding

elements of β in (3.1). Depending on the substantive context, there may well

be a meaningful interpretation of the constructed level-two variables (3.7).

3.3 Residuals

Like in other regression-type models, residuals (which term now is used also

to refer to estimates of the residuals ǫ and δ in (3.1)) play an important

exploratory role for model checking in multilevel models. For each level there

is a set of residuals and a residual analysis can be executed. One of the

practical questions is, whether residual checking should be carried out upward

— starting with level one, then continuing with level two, etc. — or downward

— starting from the highest level and continuing with each subsequent lower

level. The literature contains different kinds of advice. For example, Rau-

denbush and Bryk [45] suggest an upward approach for model construction,

whereas Langford and Lewis [35] propose a downward approach for the pur-

pose of outlier inspection. In our view, the argument given by Hilden-Minton

[27] is convincing: level-one residuals can be studied unconfounded by the

higher-level residuals, but the reverse is impossible. Therefore, the upward

approach is preferable for the careful checking of model assumptions. However,

if one wishes to carry out a quick check for outliers, a downward approach

may be very efficient.

This section first treats the ‘internal’ standardization of the residuals.

Externally standardized residuals, also called deletion residuals, are treated

in section 3.3.5.
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3.3.1 Level-One Residuals

In this section we assume that level-one residuals are i.i.d. Residuals at level

one which are unconfounded by the higher-level residuals can be obtained,

as remarked by Hilden-Minton [27], as the OLS residuals calculated sepa-

rately within each level-two cluster. These are just the same as the estimated

residuals in the OLS analysis of the fixed effects model, where all level-two (or

higher-level, if there are any higher levels) residuals are treated as fixed rather

than random. These will be called here the OLS within-cluster residuals.

Consider again model (3.1) with the further specification (3.1d). When X̌j is

the matrix containing all non-redundant columns in (Xj Zj) and Pj is the

corresponding projection matrix (the “hat matrix”)

Pj = X̌j

(
X̌ ′

jX̌j

)−1
X̌ ′

j ,

the OLS within-cluster residuals are given by

ǫ̂j =
(
Inj

− Pj

)
y

j
.

The model definition implies that

ǫ̂j =
(
Inj

− Pj

)
ǫj , (3.8)

which shows that indeed these residuals depend only on the level-one residuals

ǫj without confounding by the level-two residuals δj .

These level-one residuals can be used for two main purposes. In the first

place, for investigating the specification of the within-cluster model, i.e., the

choice of the explanatory variables contained in X and Z. Linearity of the

dependence on these variables can be checked by plotting the residuals ǫ̂j

against the variables in X and Z. The presence of outliers and potential

effects of omitted but available variables can be studied analogously.

In the second place, the homoscedasticity assumption (3.1d) can be

checked. Equation (3.8) implies that, if the model assumptions are correct,

ǫ̂ij ∼ N
(
0, σ2(1 − hij)

)
(3.9)

where hij is the i-th diagonal element of the hat matrix Pj . This implies that

the “semi-standardized residuals”

ǫ̌ij =
ǫ̂ij√

1 − hij

have a normal distribution with mean 0 and variance σ2. For checking ho-

moscedasticity, the squared semi-standardized residuals can be plotted against

explanatory variables or in a meaningful order. This is informative only under
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the assumption that the expected value of the residuals is indeed 0. Therefore

these heteroscedasticity checks should be performed only after having ascer-

tained the linear dependence of the fixed part on the explanatory variables.

To check linearity and homoscedasticity as a function of explanatory vari-

ables, if the plot of the residuals just shows a seemingly chaotic mass of scatter,

it often is helpful to smooth the plots of residuals against explanatory vari-

ables, e.g., by moving averages or by spline smoothers. We find it particularly

helpful to use smoothing splines [cf. 21], choosing the smoothing parameter

so as to minimize the cross-validatory estimated prediction error.

If there is evidence of inhomogeneity of level-one variances, the level-one

model is in doubt and attempts to improve it are in order. The analysis of level-

one residuals might suggest non-linear transformations of the explanatory

variables, as discussed in the second half of this chapter, or a heteroscedastic

level-one model. Another possibility is to apply a non-linear transformation

to the dependent variable. Atkinson [2] has an illuminating discussion of

non-linear transformations of the dependent variable in single-level regression

models. Hodges [28, p. 506] discusses Box-Cox transformations for multilevel

models.

As an example, consider the data set provided with the MLwiN software

[19] in the worksheet tutorial.ws. This includes data for 4059 students in 65

schools; we use the normalized exam score (normexam) (mean 0, variance 1)

as the dependent variable and only the standardized reading test (standlrt)

as an explanatory variable. The two mentioned uses of the OLS level-one

residuals will be illustrated.

Table 3.1. Parameter estimates for models fitted to normalized exam scores.

Model 1 Model 2 Model 3

Fixed part

constant term 0.002 (.040) −0.017 (.041) −0.017 (.041)

standlrt 0.563 (.012) 0.604 (.021) 0.605 (.021)

standlrt
2 0.017 (.009) 0.017 (.008)

standlrt
3 −0.013 (.005) −0.013 (.005)

Random part

Level 2: ω11 0.092 (.018) 0.093 (.018) 0.095 (.019)

Level 1: σ2 0.566 (.013) 0.564 (.013) 0.564 (.013)

Level 1: θ2 −0.007 (.003)

deviance 9357.2 9346.2 9341.4

When the OLS within-cluster residuals are plotted against the explanatory

variable standlrt, an unilluminating cloud of points is produced. Therefore

only the smoothed residuals are plotted in Figure 3.1.



150 Snijders and Berkhof

ǫ̂

standlrt

−0.20

0.00

0.20

−2.50 0.00 2.50

Fig. 3.1. Smoothing spline approximation for OLS within-cluster residuals (ǫ̂) under

Model 1 against standardized reading test (standlrt).

This figure shows a smooth curve suggestive of a cubic polynomial. The

shape of the curve suggests to include the square and cube of standlrt as

extra explanatory variables. The resulting model estimates are presented as

Model 2 in Table 3.1. Indeed the model improvement is significant (χ2 = 11.0,

d.f. = 2, p < .005).

As a check of the level-one homoscedasticity, the semi-standardized residu-

als (3.9) are calculated for Model 2. The smoothed squared semi-standardized

residuals are plotted against standlrt in Figure 3.2.

This figure suggests that the level-one variance decreases linearly with the

explanatory variable. A model with this specification (cf. section 3.2.1),

Var(ǫij) = σ2 + θ2 standlrtij ,

is presented as Model 3 in Table 3.1. The heteroscedasticity is a significant

model improvement (χ2 = 4.8, d.f. = 1, p < .05).

3.3.2 Homogeneity of Variance across Clusters

The OLS within-cluster residuals can also be used in a test of the assumption

that the level-one variance is the same in all level-two units against the specific

alternative hypothesis that the level-one variance varies across the level-two

units. Formally, this means that the null hypothesis (3.1d) is tested against

the alternative
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ǫ̌2

standlrt

0.45

0.55

0.65

−2.50 0.00 2.50

Fig. 3.2. Smoothing spline approximation for the squared semi-standardized OLS

within-cluster residuals (ǫ̌2) under Model 2 against the standardized reading test

(standlrt).

Σj(θ) = σ2
j Inj

,

where the σ2
j are unspecified and not identical.

Indicating the rank of X̌j defined in section 3.3.1 by rj , the within-cluster

residual variance is

s2
j =

1

nj − rj

ǫ̂′j ǫ̂j .

If model (3.1d) is correct, (nj − rj)s
2
j/σ2 has a chi-squared distribution with

(nj −rj) degrees of freedom. The homogeneity test of Bartlett and Kendall [4]

can be applied here (it is also proposed in Raudenbush and Bryk [45, p. 264]

and Snijders and Bosker [51, p. 127]). Denoting
∑

nj = n+,
∑

rj = r+ and

lspooled =
1

n+ − r+

∑

j

(nj − rj) log(s2
j ), (3.10)

the test statistic is given by

H =
∑

j

nj − rj

2

(
log(s2

j ) − lspooled

)2
. (3.11)

Under the null hypothesis this statistic has approximately a chi-squared dis-

tribution with m̃ − 1 degrees of freedom, where m̃ is the number of clusters
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included in the summation (this could be less than m because some small

clusters might be skipped).

This chi-squared approximation is valid if the degrees of freedom nj − rj

are large enough. If this approximation is in doubt, a Monte Carlo test can be

used. This test is based on the property that, under the null hypothesis, (nj −
rj)s

2
j/σ2 has an exact chi-squared distribution, and the unknown parameter

σ2 does not affect the distribution of H because its contribution in (3.11)

cancels out. This implies that under the null hypothesis the distribution of H

does not depend on any unknown parameters, and a random sample from its

distribution can be generated by randomly drawing random variables c2
j from

chi-squared distributions with (nj − rj) d.f. and applying formulae (3.10) and

(3.11) to s2
j = c2

j/(nj − rj). By simulating a sufficiently large sample from the

null distribution of H, the p-value of an observed value can be approximated

to any desired precision.

3.3.3 Level-Two Residuals

There are two main ways for predicting4 the level-two residuals δj : the OLS

method (based on treating them as fixed effects δj) and the empirical Bayes

(EB) method. The empirical Bayes ‘estimate’ of δj can be defined as its

conditional expected value given the observations y
1
, . . . ,y

m
, plugging in

the parameter estimates for β, θ, and ξ. (In the name, ‘Bayes’ refers to the

conditional expectation and ‘empirical’ to plugging in the estimates.)

The advantage of the EB method is that it is more precise, but the dis-

advantage is its stronger dependence on the model assumptions. The two

approaches were compared by Waternaux et al. [59] and Hilden-Minton [27].

Their conclusion was that, provided the level-one model (i.e., the assumptions

about the level-one predictors included in X and about the level-one residuals

ǫj) is adequate, it is advisable to use the EB estimates.

Basic properties of the multivariate normal distribution imply that the EB

level-two residuals are given by

δ̂j = E
{
δj | y

1
, . . . ,y

m

}
(using parameter estimates β̂, θ̂, ξ̂)

= Ω̂Z ′
jV̂

−1
j (y

j
− Xjβ̂)

= Ω̂Z ′
jV̂

−1
j

(
Zjδj + ǫj − Xj(β̂ − β)

)

where

4 Traditional statistical terminology is to reserve the word ‘estimation’ for empirical

ways to obtain reasonable values for parameters, and use ‘prediction’ for ways

to empirically approximate unobserved outcomes of random variables. We shall

not consistently respect this terminology, since almost everybody writes about

estimation of residuals.
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Vj = Cov(y
j
) = ZjΩZ ′

j + Σj , (3.12a)

V̂ j = ZjΩ̂Z ′
j + Σ̂j , (3.12b)

with Ω̂ = Ω(ξ̂) and Σ̂j = Σj(θ̂).

Some more insight into the properties of these estimated residuals may be

obtained by defining the estimated reliability matrix

R̂j = Ω̂Z ′
jV̂

−1
j Zj .

This matrix is the multivariate generalization of the reliability of estimation

of δjq, the ratio of the true variance of δjq to the variance of its OLS estimator

based on cluster j (not taking into account the component of variability due

to the estimation of β), as defined by Raudenbush and Bryk [45, p. 49].

The EB residuals can be expressed as

δ̂j = R̂jδj + Ω̂Z ′
jV̂

−1
j ǫj − Ω̂Z ′

jV̂
−1
j Xj(β̂ − β). (3.13)

The first term can be regarded as a shrinkage transform of δj , the second

term is the confounding due to the level-one residuals ǫj , and the third term

is the contribution due to the estimation of the fixed parameters β.

Ignoring the contribution to the variances and covariances due to the

estimation of ξ and θ, the covariance matrix of the EB residuals is

Cov
(
δ̂j

)
= ΩZ ′

jV
−1

j

(
Vj − Xj

( m∑

ℓ=1

X ′
ℓV

−1
ℓ Xℓ

)−1

X ′
j

)
V −1

j ZjΩ. (3.14)

The second term in the large parentheses is due to the third term in (3.13) and

will be negligible if the number m of clusters is large. The resulting simpler

expression is

Cov
(
δ̂j

)
≈ ΩZ ′

jV
−1

j ZjΩ. (3.15)

Another relevant covariance matrix contains the variances and covariances of

the prediction errors. The same approximation leading to (3.15) yields

Cov
(
δ̂j − δj

)
≈ Ω − ΩZ ′

jV
−1

j ZjΩ. (3.16)

If all nj become very large, (3.16) tends to ∅. Expression (3.15) is the asymp-

totic covariance matrix for fixed nj , which tends to Ω if nj tends to infinity.

The variances in (3.14) and (3.15) are relevant for diagnosing properties of

the residuals δj and are called diagnostic variances by Goldstein [18]. The

variances in (3.16) are relevant for comparing residuals δj and are called

comparative (or conditional) variances.

It may be noted that the predictions δ̂j are necessarily uncorrelated with

the errors (δ̂j − δj), because otherwise a better prediction could be made.

This implies
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Cov
(
δj

)
= Cov

(
δj − δ̂j

)
+ Cov

(
δ̂j

)
,

which indeed is evident from the formulae.

For each of the s level-two random effects separately, various diagnostic

plots can be made. The explanation of the level-two random effects by level-

two variables, as reflected by the fixed main effects of level-two variables and

their cross-level interaction effects with the variables contained in Z, can be

diagnosed for linearity by plots of the raw residuals δ̂j against the level-two

explanatory variables. The normality and homoscedasticity assumptions for

δj can be checked by normal probability plots for the s residuals separately,

standardized by dividing them by the diagnostic standard deviations obtained

as the square roots of the diagonal elements of (3.14) or (3.15), and by plotting

the squares of these standardized residuals against the level-two variables.

Such plots were proposed and discussed by Lange and Ryan [34]. Examples

of these plots are given in Goldstein [18], Snijders and Bosker [51], and Lewis

and Langford [37].

Eberly and Thackeray [13] showed that it is very well possible that, when

such a plot shows deviations from normality, the cause is a misspecification of

the fixed effects model rather than of the distribution of the random effects.

This is in accordance with the general caveat that different aspects of the

specification of statistical models are entwined, and the particular importance

of this issue for assessing fit of multilevel models. It also supports the principle

to first try achieve a good specification of the level-one model, and assess the

level-two specification only after this has been done.

A diagnostic for the entire vector of level-two residuals for cluster j can

be based on the standardized value

δ̂
′

j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.17)

If one neglects the fact that the estimated rather than the true covariance

matrix is used, this statistic has a chi-squared distribution with s degrees of

freedom.

With some calculations, using formula (3.5) and the approximate covari-

ance matrix (3.15), the standardized value (3.17) is seen to be given by

δ̂
′

j

{
Ĉov(δ̂j)

}−1

δ̂j ≈ δ̂
(OLS)′

j

(
σ̂2(Z ′

jZj)
−1 + Ω̂

)−1

δ̂
(OLS)

j (3.18)

where

δ̂
(OLS)

j = (Z ′
jZj)

−1Z ′
j(yj

− Xjβ̂j
)

is the OLS estimate of δj , estimated from the OLS within-cluster residuals

y
j
− Xjβ̂j

. This illustrates that the standardized value can be based on the

OLS residuals as well as the EB residuals, if one uses for standardization the

covariance matrix σ̂2(Z ′
jZj)

−1 + Ω̂ of which the first part is the sampling
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variance (level-one variance) and the second part the true variance (level-two

variance) of the OLS residuals. The name of standardized level-two residual

therefore is more appropriate for (3.18) than the name of standardized EB or

OLS residual, since the latter terminology suggests a non-existing distinction.

The ordered standardized level-two residuals can be plotted against the

corresponding quantiles of the chi-squared distribution with s d.f., as a check

for outliers and for the multivariate normality of the level-two random effects.

3.3.4 Multivariate Residuals

The fit of the model for level-two cluster j is expressed by the multivariate

residual

y
j
− Xjβ̂ . (3.19)

The covariance matrix of this residual, if we neglect the use of the estimated

parameter β̂ instead of the unknown true β, is given by Vj in (3.12a). Ac-

cordingly, the standardized multivariate residual is defined by

M2
j = (y

j
− Xjβ̂)′V̂ −1

j (y
j
− Xjβ̂).

This residual has, when the model is correct, approximately a chi-squared

distribution with nj degrees of freedom.

If all variables with fixed effects also have random effects, then Xj = Zj =

X̌j as defined in section 3.3.1, and rj = r = s. Using (3.5), it can be proved

that in this case

M2
j = (nj − r)

s2
j

σ̂2 + δ̂
′

j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.20)

In words, the standardized multivariate residual (with nj d.f.) is the sum of

the scaled within-cluster residual sum of squares (with nj − r d.f.) and the

standardized level-two residual (with r = s d.f.). If some of the variables with

fixed effects do not have a random effect, then the difference between the

left-hand side and the right-hand side of (3.20) is a test statistic for the null

hypothesis that the variables in Xj indeed have the effect expressed by the

overall parameter estimate β̂, i.e., the hypothesis that the variables in X and

not in Z have only fixed (and not random) effects. This then approximately

is a chi-squared variate with rj − s d.f.

This split implies that if the standardized multivariate residual for some

cluster j is unexpectedly large, it will be informative to consider its two (or

three) components and investigate whether the high value can be traced to

one of these components separately.
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3.3.5 Deletion Residuals

To assess the fit of the model and the possibility of outliers, it is better to

calculate and standardize residuals for cluster j using parameter estimates of

β and Vj calculated on the basis of the data set from which cluster j has

been omitted. Such measures are called externally studentized residuals [11]

or deletion residuals [2]. This means using the fixed parameter estimate β̂(-j)
obtained by estimating β from the data set from which cluster j has been

omitted and estimating (3.12a) by

V̂ (-j) = ZjΩ̂(-j)Z
′
j + Σ̂(-j), (3.21)

where Ω̂(-j) = Ω(ξ̂(-j)) and Σ̂(-j) = Σj(θ̂(-j)), while ξ̂(-j) and θ̂(-j) are the

estimates of ξ and θ based on the data set from which cluster j has been

omitted.

Using these ingredients, the deletion standardized multivariate residual is

defined by

M2
(-j) =

(
y

j
− Xjβ̂(-j)

)′
V̂ −1

(-j)

(
y

j
− Xjβ̂(-j)

)
. (3.22)

The deletion standardized level-two residual (for a model where Σj(θ) =

σ2Inj
) is defined by

δ̂
(OLS)′

(-j)

(
σ̂2

(-j)(Z
′
jZj)

−1 + Ω̂(-j)

)−1

δ̂
(OLS)

(-j) (3.23)

where

δ̂
(OLS)

(-j) = (Z ′
jZj)

−1Z ′
j

(
y

j
− Xjβ̂(-j)

)

and σ̂2
(-j) is the estimate for σ2 calculated from the data set from which cluster

j was omitted.

The general idea of model diagnostics is that they should be easy, or at

least quick, to compute. Elegant computational formulae have been derived

for deletion residuals in the General Linear Model (see Atkinson [2]), and

recently by Zewotir and Galpin [63] and Haslett and Dillane [23] also for

random coefficient models with uncorrelated random coefficients. This yields

the possibility of quick calculations of level-two deletion residuals. In the HLM

the assumption of uncorrelated higher-level residuals is trivially satisfied for

the random intercept model where δj is a column vector, but not if there

are random slopes. Therefore these formulae are not generally applicable for

random slope models.

Re-estimation of a multilevel model for a lot of different data sets, as

implied by the definition of deletion residuals, is not very attractive from the

point of view of quick computations. Two alternatives to full computation

have been proposed in the literature: Lesaffre and Verbeke [36] proposed
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influence statistics using an analytic approximation based on second-order

Taylor expansions, and Snijders and Bosker [51] proposed a computational

approximation based on a one-step estimator. The latter approximation will

be followed here because of its simple generalizability to other situations. This

approximation is defined as follows.

An iterative estimation algorithm is used, viz., Fisher scoring or (R)IGLS.

The initial value for the estimation algorithm is the estimate obtained from

the full data set. The one-step estimate is the result of a single step of the

algorithm, using the data set reduced by omitting all data for cluster j. It is

known from general statistical theory that such one-step estimates are asymp-

totically efficient. They can be quickly estimated by software that implements

Fisher scoring or (R)IGLS. Therefore, all estimates denoted here with the

suffix (-j) can be implemented as such one-step estimates obtained with the

full-data estimate as the initial value.

3.4 Influence Diagnostics of Higher-Level Units

Next to the direct study of residuals as proposed in the previous section,

another approach to model checking is to investigate the influence of individual

data points, or sets of data points, on the parameter estimates. In OLS regres-

sion, the most widely known technique in this approach is Cook’s distance,

explained, e.g., in Cook and Weisberg [11], Atkinson [2], and Weisberg [60]. A

natural way of performing such checks in multilevel models is to investigate

the separate influence of each higher-level unit. This means that the estimates

obtained from the total data set are compared to the estimates obtained from

the data set from which a particular higher-level unit is omitted.

An influence measure of level-two unit j on the estimation of the pa-

rameters should reflect the importance of the influence of the data for this

unit on the parameter estimates. First consider the regression coefficients β.

Recall that β̂ is the estimate obtained from the full data set, and β̂(-j) the

estimate obtained from the data set from which unit j has been omitted, or an

approximation to this estimate. The difference between these two estimates

should be standardized on the basis of the inherent imprecision expressed by

the covariance matrix of these estimates. In Lesaffre and Verbeke [36] and

Snijders and Bosker [51] it was proposed to use the estimated covariance

matrix of the estimators obtained from the full data set. Since the diagnostic

measure has the aim to detect unduly influential units, it should be taken

into account, however, that the unit under scrutiny also might have an undue

influence on this estimated covariance matrix. Therefore it is more appropriate

to use the estimated covariance matrix of the estimator obtained from the

reduced data set. It may be noted that the computation of this matrix is
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straightforward in the computational approach of Snijders and Bosker [51],

but does not fit well in the analytic approach of Lesaffre and Verbeke [36].

Denote by ŜF (-j) the estimated covariance matrix of β̂(-j) as calculated

from the data set from which level-two unit j has been omitted. Then a

standardized measure of the influence of this unit on the fixed parameter

estimates is

CF
j =

1

r

(
β̂ − β̂(-j)

)′
Ŝ

−1

F (-j)

(
β̂ − β̂(-j)

)
. (3.24)

This formula is analogous to Cook’s distance for the General Linear Model.

For the parameters θ and ξ of the random part of the model, the same

procedure can be followed. Indicating these parameters jointly by η = (θ, ξ),

this leads to the influence measure

CR
j =

1

p

(
η̂ − η̂(-j)

)′
Ŝ

−1

R(-j)
(
η̂ − η̂(-j)

)
, (3.25)

where the analogous definitions are used for η̂(-j) and ŜR(-j), and p is the total

number of parameters in η. Since the parameters of the fixed and random

parts are asymptotically uncorrelated [40], these two influence measures can

be combined in the overall influence measure

Cj =
1

r + p

(
rCF

j + pCR
j

)
. (3.26)

Comparisons with alternative definitions for diagnostics of the type of Cook’s

distance are given in Verbeke and Molenberghs [55] and Skrondal and Rabe-

Hesketh [49].

The influence of a part of the data set on the parameter estimates depends

on the fit of the model to this part of the data together with the leverage of

this part, i.e., its potential to influence the parameters as determined from

the amount of data and the distribution of the explanatory variables X

and Z. For a level-two unit, its size nj and the distribution of Xj and Zj

determine the leverage. The fit can be measured by the deletion standard-

ized multivariate residual (3.22). A poorly fitting cluster with small leverage

will not do much damage to the results of the data analysis. If the model

fits well, while there are no systematic differences between the clusters in

the distribution of Xj and Zj , and the nj are small compared to
∑

j nj ,

the diagnostics (3.24) – (3.26) will have expected values which are roughly

proportional to the cluster sizes nj . A plot of these diagnostics against nj

may draw the attention toward clusters that have an undue influence on the

parameter estimates. This information can be combined with the p-values

for the deletion standardized multivariate residuals (3.22) obtained from the

chi-squared distribution with nj degrees of freedom, which give information

on the fit of the clusters independently of their leverage.
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3.5 Simulation-Based Assessment of Model Specification

It was shown above that the specification of the level-one model can be inves-

tigated by considering within-cluster relations between variables or, equiv-

alently, by fixed effect models. These are analyses that effectively reduce

the HLM to the General Linear Model, for which distributional properties

of many statistics have been derived. These properties can be found in the

ample literature of model diagnostics in such models. Properties of higher-level

diagnostics cannot be derived by going back to the General Linear Model, and

tend to be approximate or unknown. Longford [42] elaborates how simulations

can be used to assess p-values of arbitrary statistics based e.g. on residuals or

influence measures. This is done by repeatedly simulating the data under the

tested model assumptions and considering the resulting distribution of the

statistic under consideration; such a procedure is also called the parametric

bootstrap, cf. Van der Leeden et al. [53].

Among such simulation-based procedures, the Monte Carlo test proposed

at the end of section 3.3.2 illustrates the relative simplicity of checking the

level-one model by the fact that the distribution of the statistic considered is

independent of any unknown parameters (it is said to be pivotal), contrasting

to the general case for higher-level diagnostics.

3.6 Non-linear Transformations in the Fixed Part

One of the purposes for which one can use the residuals discussed in the

preceding sections, is to give guidance of an informal kind when investigating

possible non-linear effects of explanatory variables. The remainder of this

chapter presents methods to examine non-linear fixed effects of explanatory

variables by incorporating them formally into the model.

We consider multilevel models for analyzing the effect of a predictor x on

a response variable y under the assumption that this effect is a non-linear

function f(x) with an unknown functional form. The latter situation is com-

mon, e.g., when x refers to time in longitudinal studies, since the effect of time

on the response is usually complex and not well understood. Then it seems

sensible to approximate f(x) by a flexible function that requires only minimal

prior knowledge about f(x) and still provides insight into the dependence

between y and x.

In the following sections, we will consecutively discuss multilevel mod-

els in which the non-linear function f(x) is approximated by a polynomial

function, a regression spline, and a smoothing spline. As a guiding model

in the discussion, we will use a two-level model for normal responses. Since

longitudinal data offer the main (but not only) applications of this approach,

clusters will be regarded as individual subjects, and level-one units as repeated
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measurements of the subjects. We assume that the responses of subject j are

generated by

y
j

= f(xj) + X2jβ + Zjδj + ǫj . (3.27)

The difference with respect to model (3.1) is that the fixed part is split into,

first, a real-valued variable x with a non-linear effect, and second, variables

X2 with linear effects.

3.7 Polynomial Model

The polynomial model for multilevel data was put forward by many authors

including Goldstein [17], Bryk and Raudenbush [8], and Snijders [50]. The use

of a polynomial approximation seems quite natural since it can be regarded as

a Taylor expansion of the true unknown function. The Q-th degree polynomial

equals

fpol(x) = α0 + α1x + · · · + αQxQ .

The smoothness of fpol(x) is controlled by the degree Q. The function fpol(x)

is a linear combination of polynomial terms x, x2, . . . , xQ and therefore this

model remains within the confines of the Hierarchical Linear Model, and

can be estimated straighforwardly like any other such model. The number

of parameters only depends on the degree Q so that the polynomial model

is easy to estimate also when xj differs among subjects. However, estimation

problems may arise when xj is badly scaled. In that case, a simple solution

that works for many data sets is to subtract the subject mean from xj . A

slightly more elaborate solution is to orthogonalize the polynomial terms using

the Gram-Schmidt method.

An attractive feature of the polynomial model is that the regression coeffi-

cients can be interpreted as growth parameters which often are of substantive

interest. The effect α1, for instance, can be interpreted as the rate of change

in the response at x = 0 which may be a useful parameter of a growth process.

The function f(x) is not always well approximated by a low-degree poly-

nomial, however. In human growth studies, for example, polynomials may fail

to produce a smooth and accurate fit because of strong growth during the

first year of age and early adolescence [5]. The underlying problem is that a

polynomial exhibits non-local behavior which means that a change in one of

the regression coefficients αq leads to a change in the estimated fpol(x) for

(nearly) all values of x. A consequence of non-local behaviour is that when

the fit at a certain value of x is improved by increasing Q, the fit may become

poorer at other values of x. In general, a polynomial with a high value of Q

tends to fit accurately in intervals of x with many observations but this may

be achieved at the cost of a poor fit at other values of x.
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3.8 Regression Spline Model

A regression spline [61] consists of piecewise polynomials that are joined at

locations on the x-axis named knots. At each knot, two Q-th degree polynomi-

als are connected such that the (Q− 1)-th derivative of the resulting function

exists and is itself a continuous function of x. A popular regression spline

in practical data analysis is the cubic or third-degree regression spline, the

second derivative of which is continuous at the knots. Regression splines are

more flexible than polynomials and often provide a better fit in the presence

of strong local non-linearity. However, regression splines are more difficult to

specify than polynomials because the number of knots and the positions of

the knots need to be determined. For selection of the number of knots, an ad

hoc approach can be adopted in which the number of knots is increased until

an accurate fit is obtained. This approach may lead to overfitting because

there is no penalty for model complexity. To limit the number of knots, a

possible approach is to optimize a model summary such as Akaike’s Infor-

mation Criterion (AIC ) or the cross-validated log-likelihood [47]. Regarding

the positions of the knots on the x-axis, common choices are equally spaced

points or quantile points of the empirical distribution of x.

A Q-th degree regression spline with L knots at a1, . . . , aL can be con-

structed by extending a Q-th degree polynomial with L truncated polynomial

terms (x− al)
Q
+ (l = 1, . . . , L), where the truncated term (x− al)

Q
+ is equal to

(x − al)
Q if x > al and zero otherwise. The resulting function freg(x) can be

written as

freg(x) =

Q∑

q=0

αqx
q +

L∑

l=1

αQ+l(x − al)
Q
+ . (3.28)

This representation is easy to understand and the αq’s have a clear interpre-

tation. It shows that the regression spline is a linear function of polynomial

terms and therefore easy to handle, as it remains within a finite-dimensional

linear function space. For numerical reasons, however, the use of truncated

polynomials is not recommendable especially not when the knots are chosen

close together. It often is better to work with a different set of basis functions.

If freg(x) is a cubic regression spline, it is recommendable to write freg(x) as a

linear combination of so-called B-splines, which are a specific set of piecewise

cubic splines. Computation is stable because B-splines take nonzero values

over an interval with at most five knots [12]. If freg(x) contains one knot at

position a only (i.e., L = 1 in (3.28)), a simple method to improve scaling

of the design matrix is to replace the term xq in the truncated polynomial

formulation of freg(x) by the term (x − a)q
− which equals (x − a)q if x < a

and 0 otherwise [51, p. 189]. Because the data columns of values of (x − a)q
−

and (x − a)q
+ are orthogonal, estimation is stable.
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The regression spline is more flexible than the polynomial and tends to

exhibit less non-local behavior. The knots are determined outside the model

and good placement on the x-axis may require some trial and error. Further-

more, if only a small number of knots is used, the regression spline will not

be free from non-local behavior while using too many knots is undesirable

since it induces non-smooth behavior. To prevent the spline from being either

non-smooth or insufficiently flexible, a possible strategy is to include a large

number of knots and at the same time penalize the regression coefficients so

that a smooth fit is obtained [14]. A limiting case is a function in which a

knot is placed at each distinct value of x in the data set. Splines of the latter

type are discussed in the next section.

3.9 Smoothing Spline Model

Suppose that the data set contains T ordered distinct values x1, . . . , xT . The

cubic smoothing spline, denoted by fcss(x), then is a cubic regression spline

with knots at x1, . . . , xT and it is a linear function outside the interval [x1, xT ].

The degree of smoothness is regulated by extending the log-likelihood function

with a roughness penalty that penalizes functions for having strong curvature,

that is, a large absolute second derivative |f ′′
css(x)|. The definition of the

roughness penalty is

− 1
2λ

∫ xT+1

x0

{
f ′′(x)

}2
dx, (3.29)

where λ is a nonnegative smoothing parameter determining the degree of

smoothing, and x0 < x1 and xT+1 > xT .

The following basic properties of smoothing splines can be found in the

literature on this topic, such as Green and Silverman [21]. The fitted cubic

smoothing spline is obtained by maximizing the penalized log-likelihood, that

is, the sum of the log-likelihood and the roughness penalty. An additional

constraint to ensure that fcss(x) is a cubic smoothing spline does not have

to be included because among all functions fcss(x) with continuous second

derivatives, the unique minimizer of the penalized log-likelihood is the cubic

smoothing spline. If we substitute the cubic smoothing spline fcss(x) with

knots at x1, . . . , xT in (3.29), we can evaluate the roughness penalty as

− 1
2λf ′

cssKfcss ,

where fcss is the vector of values of fcss(x) at x1, . . . , xT . The T × T matrix

K equals

K = QR−1Q′,

where Q is a T × (T − 2) matrix having entries qi,i = 1/(xi+1 − xi), qi+2,i =

1/(xi+2−xi+1), qi+1,i = −(qi,i+qi+2,i) for i = 1, . . . , T−2, and zero otherwise.
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The (T −2)× (T −2) matrix R is symmetric tridiagonal with diagonal entries

ri,i = 1
3 (xi+2 − xi) for i = 1, . . . , T − 2. The non-zero off-diagonal entries are

ri,i+1 = ri+1,i = 1
6 (xi+2 − xi+1) for i = 1, . . . , T − 3.

3.9.1 Estimation

The model for the responses of subject j is obtained by substituting Njfcss

for f(xj) in (3.27), where Nj is an nj ×T matrix of zeros and ones. Each row

of Nj contains a single one at the entry t for which xij = xt. The resulting

equation is

y
j

= Njfcss + X2jβ + Zjδj + ǫj , j = 1, . . . ,m. (3.30)

The model parameters to be estimated are the vector of spline values fcss,

the fixed regression coefficients β, the level-one variance σ2, and the level-

two variance parameters ξ. Given σ2 and ξ, the penalized log-likelihood is

maximized by

f̂ css =

(
m∑

j=1

N ′
jUX2,jNj + λK

)−1 m∑

j=1

N ′
jUX2,j y

j
, (3.31)

and

β̂ =

(
m∑

j=1

X ′
2jUN,jX2,j

)−1 m∑

j=1

X ′
2jUN,jyj

, (3.32)

where

UN,j = V −1
j − V −1

j Nj

(∑

j

N ′
jV

−1
j Nj + λK

)−1

N ′
jV

−1
j ,

and

UX2,j = V −1
j − V −1

j X2j

(∑

j

X ′
2jV

−1
j X2j

)−1

X ′
2jV

−1
j ,

with Vj given in (3.4).

The parameters f and β can also be estimated by the Expectation Max-

imization (EM) algorithm. The EM algorithm is an iterative procedure for

locating the mode of the likelihood, or in Bayesian modeling for determining

the posterior mode, see section 1.D. In our case, we need to maximize the

penalized likelihood rather than the likelihood itself. From a Bayesian view-

point, this does not substantially alter the problem but is merely a choice of the

prior. Note that the modes of the log posterior and the penalized log-likelihood

coincide if a flat prior is taken for β, and the log-prior of fcss is, except for a

constant, equal to − 1
2λf ′

cssKfcss.
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The EM algorithm consists of an E-step and an M-step. To carry out

the E-step, we define the complete-data log-likelihood of y and the random

coefficients δ (treated in this algorithm as missing data) given the model

parameters, i.e. log p(y, δ | fcss,β, σ2, ξ). We penalize the complete-data

log-likelihood with roughness penalty (3.29) and we further define the condi-

tional distribution of missing data δ given y and the model parameters, i.e.,

p(δ | y, f̃ css, β̃, σ2, ξ). Here, fcss and β have been replaced by their current

estimates f̃ css and β̃. The variance components σ2 and ξ are assumed to

be known. The E-step consists of taking the expectation of the penalized

complete-data log-likelihood with respect to the conditional distribution of

the missing data. This involves computing the conditional expectations of δ

and δ δ′, where the former expectation is the empirical Bayes estimator of the

random effects.

In the M-step, we maximize the expected penalized complete-data log-

likelihood (retrieved from the E-step) with respect to the model parameters

fcss and β. The M-step is computationally expensive if the number of distinct

time points T is large because it involves inverting a T × T matrix. In that

case, it is better to update the estimates of fcss and β sequentially. First, we

maximize with respect to fcss and obtain the updated estimate

f̃ css =
(∑

j

(N ′
jNj) + σ2λK

)−1 ∑

j

(y
j
− X2jβ̃ − Zj δ̃j),

where δ̃j is the empirical Bayes estimate of δj at the current estimates of fcss

and β. Second, we maximize with respect to β only and obtain the update

β̃ =
(∑

j

X ′
2jX2j

)−1 ∑

j

(y
j
− Nj f̃ css − Zj δ̃j).

These two steps are computationally cheap: the number of numerical op-

erations to update the estimates of fcss and β is of order T . Although the

expression for f̃ css contains the inverse of a T×T matrix, efficient computation

is possible using the Cholesky factorization method as described for example

in Green and Silverman [21]. This algorithm where the M-step is replaced by

two sequential steps is known as the EC(onditional)M algorithm [43]. The two

sequential steps can also be viewed as steps of the backfitting algorithm as

described by Hastie and Tibshirani [24, p. 91].

An EM algorithm can also be constructed after having reparametrized the

model according to Green [20]. Using features of cubic splines, we can write

fcss in (3.30) via a one-to-one transformation as

fcss = γ01T + γ1x
∗ + Q(Q′Q)−1Lη, (3.33)

where γ0 and γ1 are scalars, x∗ = (x1, . . . , xT )′, η is a (T − 2) × 1 parameter

vector, and L satisfies LL′ = R. For the definition of Q and R, see section 3.9.
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Because the columns of Q are orthogonal to 1T and x∗, it follows that η′η is

equal to f ′
cssKfcss. Hence, the penalized log-likelihood of model (3.30) with

fcss replaced by (3.33) is equal to the sum of the log-likelihood and the term

− 1
2λη′η. The E-step and M-step can be derived as before. When T is large,

the computational burden can again be lowered by replacing the M-step by

sequential steps.

So far, we have regarded the variance components σ2 and ξ as known.

Simple estimators of σ2 and ξ are obtained by fitting an overelaborated model

with in the fixed part T dummy predictors, one for each distinct time point

[55, p. 123]. If the model with dummy effects is estimated by restricted IGLS,

unbiased estimates are obtained for σ2 and ξ also when y in the true model is

associated to x by a smooth function f(x). For reasons of efficiency, it may be

preferable to use estimators that depend on the external smoothing parameter

λ. Several authors have suggested to consider η as a vector of random effects

η and to fit a crossed random effects model with model parameters γ0, γ1,

β, σ2, and ξ and random effects δ and η [52, 58, 64]. The formulation of the

crossed random effects model is attractive because it allows us to estimate

fcss using existing software. Estimates can be obtained with the restricted

IGLS algorithm implemented in MLwiN [19] and SAS [39]. Here, the variance

of η is set equal to the inverse of the roughness penalty λ. The restricted

IGLS estimator of σ2 performs well in simulation studies [64]. Besides, in a

single level situation (e.g., longitudinal data of one subject), this estimator

is equal to the classical estimate of σ2 described for example by Green and

Silverman [21, p. 39]. The estimation of the crossed random effects model via

restricted IGLS is computationally demanding if the number of distinct values

x1, . . . , xT is large because the number of crossed random effects is equal to

T − 2.

3.9.2 Inferences

A common approach to drawing inferences about fcss is to construct pointwise

correct confidence intervals at x1, . . . , xT . This requires an estimate of the

variance of f̂ css. Two common estimates will be discussed. The first estimate

is obtained by assuming that f̂ css is an estimate of the fixed, unknown fcss.

From (3.31) where f̂ css is written as a linear function of y, it follows that the

covariance matrix is given by

CovF(f̂ css) = W−1

(
m∑

j=1

N ′
jUX2,jNj

)
W−1 (3.34)

where

W =

m∑

j=1

N ′
jUX2,jNj + λK.
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The second estimate of the variance is the posterior variance obtained from

a Bayesian model where the logarithm of the prior of fcss is equal to

− 1
2λf ′

cssKfcss except for a constant. The posterior covariance matrix has

a simple form

CovB(f̂ css) = W−1. (3.35)

Zhang et al. [64] and Lin and Zhang [38] compare the frequentist and Bayesian

estimator in a simulation study in which a fixed nonparametric function f(x)

is postulated. The main conclusion in these studies is that both estimators are

accurate but that the Bayesian estimator sometimes performs slightly better

because it accounts for the bias in f̂ css. The Bayesian variances can also be

obtained from the model with crossed random effects. Software packages such

as MLwiN yield estimates of the variances of γ̂
0

and γ̂
1

and the comparative

variance of the empirical Bayes estimator η̂. The covariance between η̂ and

(γ̂
0
, γ̂

1
) is not always produced. However, the design matrices of (γ0, γ1) and η

are orthogonal if the points at which the measurements are taken are common

to all subjects. Therefore, the precision of the estimator of CovB

(
f̂ css

)
is in

general not substantially affected by the omission of the covariance between

(γ̂
0
, γ̂

1
) and η̂.

Besides the Bayesian model with a finite-dimensional prior for fcss, a model

with an infinite-dimensional prior for the continuous spline fcss(x) exists as

well [58, 64]. This model was put forward by Wahba [56] and is appealing

because a smoothing spline fcss(x) is defined for all x and not only for the

observed values. The finite- and infinite-dimensional formulation lead to the

same posterior variance of f̂ css.

3.9.3 Smoothing Parameter Selection

Several methods exist for selecting the smoothing parameter λ. In this section,

three are discussed. The first method is to maximize the cross-validated log-

likelihood as a function of λ. The cross-validated log-likelihood is an approxi-

mation to the expectation of the predictive log-likelihood which is the expected

log-likelihood of a new vector of observations y∗ at the penalized likelihood

estimators of the model parameters fcss, β, σ2, and ξ. The prediction process

is imitated by leaving out one subject at a time and predicting the omitted

subject on the basis of the other subjects’ data [46].

A drawback of cross-validation is that it is computationally expensive.

An alternative strategy is to estimate the expected predictive log-likelihood

by the sum of the log-likelihood and the trace of the matrix A that maps

y on the estimator f̂ css = Ay [24, p. 52; 21, p. 37]. This estimator, named

Mallows’ Cp, is cheap and unbiased if the (co)variance parameters σ2 and

ξ are known. For uncorrelated data, the unbiasedness proof is provided by

Hastie and Tibshirani [24, p. 48]. The proof in the case of multilevel data
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is analogous. In practice, σ2 and ξ are unknown and can be estimated by

the restricted IGLS estimators in the overelaborated model with dummy time

predictors (see section 3.9.1).

A limitation of applying criteria like the cross-validated log-likelihood

or Mallows’ Cp is that λ is not treated as a model parameter but as an

external variable. The smoothing parameter becomes a model parameter if

we adopt the crossed random effects model and estimate the variance of η

freely instead of constraining the variance to be equal to the inverse of λ.

It can be shown that if the crossed random effects model is estimated by

restricted IGLS implemented in MLwiN [19], then the estimate of λ is the

generalized maximum likelihood (GML) estimate [57, 64] which has good

performance in simulation studies [33]. It may also be sensible to examine

whether a model with smoothing spline fcss(x) fits better than a model with a

linear effect for x. Hastie and Tibshirani [25, p. 65] provide some approximate

F -tests based on residual sums of squares and Cantoni and Hastie [9] and

Guo [22] present likelihood ratio tests for H0 : λ−1 = 0 which is equivalent

to H0 : η = 0 (3.33). Instead of the likelihood ratio test, the score test may

also be considered. The score test is computationally cheap because estimates

of the model with crossed random effects are not required. The test is based

on the one-step estimator that is obtained when we start from the estimate

of the null model. The ratio of the one-step estimator to its standard error

has an asymptotic standard normal null distribution. The score test also has

good power properties in a small sample setting [6]. For testing against an

unspecified but monotonic effect of x, this test against a linear effect may be

expected to have good power against most non-linear effects.

3.10 Example: Effect of IQ on a Language Test

We fitted the three different functions that were discussed so far, i.e., the

polynomial function, the regression spline function, and the cubic smoothing

spline function, to a real data set. The estimations were done using MLwiN 1.1

[19] and Gauss 3.2 [1]. The data set is described in Snijders and Bosker [51]. It

contains language test scores of 2287 pupils within 131 elementary schools. We

modeled the test score (Y ) as a function of the grand-mean centered IQ of the

pupil (IQ), the gender of the pupil (SEX), the school average of IQ (IQ), and the

socio-economic status (SES) of the pupil. We assumed a non-linear effect for

IQ and linear effects for the other predictors. Note that in most applications

of models with functional non-linear effects, time is the ordering principle

but an ordering according to any other unidimensional variable is possible as

well. Between-school differences were modeled by including a random intercept

and a random slope of IQ at level two. Finally, we assumed that the level-one

measurement errors are homoscedastic and uncorrelated. The model can be
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written as

y
ij

= f(IQij) + β1 SESij + β2 SEXij + β3 IQj + δ0j + δ1jIQij + ǫij .

The estimated polynomial function, regression spline function, and cubic

smoothing spline function are presented in Figure 3.3. The chosen polynomial

function is of order three. We also considered a fourth-degree polynomial but

this did not yield a further improvement in fit. The chosen regression spline

is a quadratic spline with a knot at zero. This function was considered by

Snijders and Bosker [51, p. 113] as a flexible and parsimonious alternative

for the polynomial function. We determined the smoothness of the cubic

smoothing spline by maximizing GML. We also considered optimization of

the cross-validated log-likelihood and Mallows’ Cp but the three methods

rendered similar values for the smoothing parameter: λGML = 1.6, λCp
= 1.6,

λCV = 2.0.

The three fitted functions lead to similar predictions: the effect of IQ on Y

is larger in the middle than in the tails of the distribution of IQ. The smooth-

ing spline performs slightly better than the other two functions since it is

monotonically increasing whereas the polynomial function and the regression

spline have a negative slope at low and high values of IQ.

10

30

50

−5 0 5

y

IQ

Fig. 3.3. Language test score (y) against centered IQ score: raw data, cubic polyno-

mial estimate (thin), quadratic regression spline estimate (dashed), and smoothing

spline estimate (bold).
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We also estimated the pointwise standard errors of the fitted functions.

These are presented in Figure 3.4. We see that the standard errors of the

fitted functions are very similar. Data are sparse at the left and right end of

the window (Figure 3.4) and the standard errors are large there compared to

the middle part. We further see that the Bayesian standard error of the cubic

smoothing spline estimate is slightly larger than its frequentist counterpart,

as it should be according to (3.34) and (3.35) [cf. 64].
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Fig. 3.4. Standard errors of the cubic polynomial estimate (open circle) and the

quadratic regression spline estimate (closed circle), and Bayesian (bold line) and

frequentist (thin line) standard errors of the smoothing spline estimate.

3.11 Extensions

The model can be extended to a model with more than two levels or a model

with non-normal responses in the same way as multilevel models without a

functional effect can be extended. Another direction is to specify a model with

two functional effects, f(x) and g(v). This model is called an additive model

and is put forward by Hastie and Tibshirani [24]. Algorithms for estimating

additive multilevel models with cubic smoothing splines are provided by Lin

and Zhang [38]. A related model is a model in which the effect of predictor

w on y is described by function h(x) × w. This model is known as the vary-

ing coefficient model and has been used to describe time-varying effects of



170 Snijders and Berkhof

predictors in longitudinal studies [25]. A multilevel extension of the model is

presented by Hoover et al. [29]. The additive and varying coefficient models

can be formulated as random effects models with a separate random effect for

each functional effect. The estimation can be done in MLwiN but becomes

demanding if we have many functional effects. For varying coefficient models,

less demanding estimators are available [10, 15].

We have discussed functional effects to describe the mean pattern. Func-

tional effects for the random part of the model have been proposed as well.

In multilevel modeling, a common, simple choice is to include polynomial

functions in the random part of the model [cf. 8, 17, 50]. When adding spline

functions instead of polynomial functions to the random part, a possible ap-

proach is to define a separate smoothing spline for each level-two unit and to

use the mixed effects formulation to define a nested sample of curves [7, 22].

The mixed effects approach is appealing, but it is computationally demanding

when the number of distinct points is large. A somewhat different approach is

to explore the covariance structure by a principal components analysis yielding

functions that describe the main sources of variation among the individual

curves. These methods are particularly attractive when studying variability

between individual curves. Rice and Silverman [46] propose a principal compo-

nents model where the differences among individuals are described by cubic

smoothing splines. The model is applicable only when the points at which

measurements are taken are common to all level-two units. Rice and Wu [47]

and James et al. [31] use B-spline functions to allow for irregular spacing of

the data. Yao et al. [62] present a model for irregular data with functions

retrieved from a smooth estimate of the (continuous) covariance surface. For

the underlying functions, they also provide asymptotic confidence bounds.
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