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Abstract

This chapter treats statistical methods for network evolution. It
is argued that it is most fruitful to consider models where network
evolution is represented as the result of many (usually non-observed)
small changes occurring between the consecutively observed networks.
Accordingly, the focus is on models where a continuous-time network
evolution is assumed although the observations are made at discrete
time points (two or more).

Three models are considered in detail, all based on the assump-
tion that the observed networks are outcomes of a Markov process
evolving in continuous time. The independent arcs model is a trivial
baseline model. The reciprocity model expresses effects of reciprocity,
but lacks other structural effects. The actor-oriented model is based
on a model of actors changing their outgoing ties as a consequence of
myopic stochastic optimization of an objective function. This frame-
work offers the flexibility to represent a variety of network effects. An
estimation algorithm is treated, based on a Markov chain Monte Carlo
implementation of the method of moments.
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1 Some basic ideas about

longitudinal social network data

The statistical modeling of social networks is difficult because of the com-

plicated dependence structures of the processes underlying their genesis and

development. One might think that the statistical modeling of longitudinal

data on social networks is more difficult than modeling single observations

of social networks. It is plausible, however, that in many cases, the rules

defining the dynamics of network evolution are simpler than the rules re-

quired to describe a single network, because a network usually is the result

of a complex and untraceable history. This chapter on the statistical mod-

eling of network dynamics focuses on models assuming that the network is

observed at a number of discrete time points, but there is an unobserved

network evolution going on between these time points. The first observation

of the network is not modeled but regarded as given, so that the history

leading to this network is disregarded in the model construction. This will

give, hopefully, a better insight in the rules of network evolution than also

modeling the very first network observation. Further, it is not assumed that

the network process is in a steady state. Equilibrium assumptions mostly

are unwarranted for observations on network processes, and making such

assumptions could lead to biased conclusions.

The treatment of methods for analyzing longitudinal network data pre-

supposes that such data are available. It is evident that the collection of such

data requires even more effort than the collection of network data on a single

moment because, in most types of network data collection, the researcher

will have to retain the collaboration of the network members.

As data, we suppose that we have M repeated observations on a network

with the same set of g actors. The observed networks are represented as

digraphs with adjacency matrices X(tm) =
(
Xij(tm)

)
for m = 1, . . . ,M ,

where i and j range from 1 to g. The variable Xij(t) indicates whether at

time t there is a tie from i to j (value 1) or not (value 0). The diagonal of

the adjacency matrix is defined to be 0, Xii(t) = 0 for all i. The number M

of repeated observations must be at least 2.
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Various models have been proposed for the statistical analysis of longitu-

dinal social network data. Earlier reviews were given by Wasserman (1978),

Frank (1991), and Snijders (1995). This chapter does not give a general

review of this literature but focuses on models based on the assumption of

continuous-time network evolution. The motivation for this choice is the

following.

When thinking of how to construct a statistical model for the network

dynamics that lead to the change from X(t1) to X(t2), then on to X(t3),

etc., a first question is whether these changes are represented by one ‘jump’,

or as the result of a series of small changes. It is a natural idea to conceive

of network dynamics as not being bound in a special way to the observation

moments, but as a more or less continuous process which feeds back upon

itself because at each moment, the current network structure is an important

determinant of the likelihood of the changes that might occur next. The

idea of regarding the dynamics of social phenomena as being the result of a

continuous-time process, even though observations are made at discrete time

points, was proposed already by Coleman (1964). Several methods have been

proposed for analyzing repeated observations on social networks using models

where changes are made in discrete steps from one observation moment to the

next (Katz and Proctor, 1959, Wasserman, 1987, Wasserman and Iacobucci,

1988, Sanil, Banks, and Carley, 1994, Banks and Carley, 1996, and Robins

and Pattison, 2001). This chapter does not treat these models, but focuses on

models which assume that the network X(t) is evolving in continuous time,

although being observed only at the discrete moments tm, m = 1, . . . , M .

In this class of models, the ones most directly amenable to statistical anal-

ysis are those postulating that the network X(t) is a continuous-time Markov

chain. For categorical non-network data, such models were proposed by Cole-

man (1964) and the statistical treatment was elaborated by Kalbfleisch and

Lawless (1985). Modeling the evolution of network data using continuous-

time Markov chains was proposed by Holland and Leinhardt (1977a, 1977b)

and Wasserman (1977). The first authors proposed the principle but did

not work it out in practical detail. Wasserman (1977, 1979, 1980), followed

by Leenders (1995a), elaborated the so-called reciprocity model, which is a

continuous-time Markov model which represents only reciprocity as a network
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effect. Leenders (1995a, 1996) also included similarity effects (as a function

of covariates) in this model. Snijders and Van Duijn (1997) and Snijders

(2001) elaborated the so-called stochastic actor-oriented model which is a

model for network dynamics that can include arbitrary network effects. This

chapter treats some earlier models such as the reciprocity model, and focuses

on the actor-oriented model.

2 Descriptive statistics

Any empirical analysis of longitudinal network data should start by making

a basic data description in the form of making graphs of the networks or plot-

ting some basic network statistics over time. These can include the density or

average degree, degree variance, number of isolates, number of components

of given sizes, parameters for reciprocity, transitivity, segmentation, etc.

Next to sequences of statistics for the M observed networks, it is instruc-

tive to give a description of the number and types of changes that occurred.

This can be done in increasing stages of structural complexity. The sim-

plest stage is given by the change counts indicating how many tie variables

changed from h to k from observation moment tm to tm+1,

Nhk(m) = ]{(i, j) | Xij(tm) = h, Xij(tm+1) = k } (1)

for h, k = 0, 1, where ]A denotes the number of elements of the set A; and

the corresponding change rates

rh(m) =
Nh1(m)

Nh0(m) + Nh1(m)
. (2)

This idea can also be applied at the dyadic level; see Wasserman (1980),

Table 5. The added complication here is that there are two ways in which

a dyad can be asymmetric at two consecutive observation moments: it can

have remained the same, or the two tie variables can have interchanged their

values. Triadic extensions are also possible.
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3 Example

As an example, the network of 32 freshmen students is used that was studied

by van de Bunt (1999) and also by van de Bunt, van Duijn, and Snijders

(1999). These references give more detailed background information on this

data set. It was collected in 1994/95. The network consists of 32 freshmen

students in the same discipline at a university in The Netherlands, who an-

swered a questionnaire with sociometric (and other) questions at seven times

points during the academic year, coded t0 to t6 . Times t0 to t4 are spaced

three weeks apart, t4 to t6 six weeks. This data set is distributed with the

SIENA program (Snijders and Huisman, 2003). The set of all students ma-

joring in this discipline started with 56 persons. A number of them stopped

with the university studies during the freshmen year, and were deleted from

this data set. Of the remaining persons, there were 32 who responded to

most of the questionnaires; they form the network analysed here. The rela-

tion studied here is defined as a ‘friendly relation’; the precise definition can

be found in van de Bunt (1999).

Figures of the changing network are not presented, because these are not

very illuminating due to the large numbers of arcs. Table 1 presents some

descriptive statistics. Each statistic is calculated on the basis of all available

data required for calculating this statistic.

Time t0 t1 t2 t3 t4 t5 t6

Average degree 0.19 3.78 4.63 5.60 6.95 7.73 6.96

Mutuality index 0.67 0.66 0.67 0.64 0.66 0.74 0.71

Transitivity index – 0.44 0.51 0.44 0.45 0.56 0.46

Fraction missing 0.00 0.06 0.09 0.16 0.19 0.04 0.22

Table 1: Basic descriptives.

The average degree, starting at virtually nil, rises rapidly to a value about

7. The mutuality index (defined as the fraction of ties reciprocated) is re-

markably constant at almost 0.7. The transitivity index (defined as the

number of transitive triplets, divided by the number of potentially transitive

triplets) also is rather constant at almost 0.5.
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The change counts (1) are indicated in Table 2. The total number of

changes between consecutive observation moments is 104 in the first period,

and 51 to 80 in all further periods.

m

h, k 0 1 2 3 4 5

0 to 0 820 716 590 530 546 546

0 to 1 104 43 47 31 50 35

1 to 0 0 22 13 20 30 30

1 to 1 6 87 94 98 140 130

Table 2: Change frequencies Nhk(m) for the periods tm – tm+1 .

(Only for arc variables available at tm and tm+1.)

4 Continuous-time Markov chains

This section introduces the basics of continous-time Markov chains. These

stochastic processes are treated extensively in textbooks such as Taylor and

Karlin (1998) and Norris (1997). Introductions aiming specifically at social

networks are given by Leenders (1995b) and Wasserman (1979, 1980).

The present section is phrased in terms of an arbitrary finite outcome

space X , which in the case of network dynamics is the set of all directed

graphs – equivalently, all adjacency matrices. The observation times t1 to

tM are embedded in an interval of time points T = [t1, tM ] = {t ∈ IR | t1 ≤
t ≤ tM}. It is assumed that changes can take place unobserved between the

observation moments.

Consider a stochastic process {X(t) | t ∈ T } with a finite outcome space

X , where the time parameter t assumes values in a bounded or unbounded

interval T ⊂ IR. Such a stochastic process is a Markov process or Markov

chain if for any time ta ∈ T , the conditional distribution of the future,
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{X(t) | t > ta} given the present and the past, {X(t) | t ≤ ta}, is a function

only of the present, X(ta). This implies that for any possible outcome x̃ ∈ X ,

and for any pair of time points ta < tb,

P{X(tb) = x̃ | X(t) = x(t) for all t ≤ ta}

= P{X(tb) = x̃ | X(ta) = x(ta)} .
(3)

The Markov chain is said to have a stationary transition distribution if the

probability (3) depends on the time points ta and tb only as a function of the

time elapsed in between, tb − ta . It can be proven that if {X(t) | t ∈ T } is a

continuous-time Markov chain with stationary transition distribution, then

there exists a function q : X 2 → IR such that

q(x, x̃) = lim
dt↓0

P{X(t + dt) = x̃ | X(t) = x}
dt

for x̃ 6= x

q(x, x) = lim
dt↓0

1− P{X(t + dt) = x | X(t) = x}
dt

.
(4)

This function q is called the intensity matrix or the infinitesimal generator.

The interpretation is that for any given value x, if X(t) = x at some moment

t, then the probability that the process changes to the new value x̃ in the

short time interval from t to t + dt is approximately q(x, x̃) dt. The element

q(x, x̃) is referred to as the rate at which x tends to change into x̃ (for x 6= x̃).

More generally, an event is said to happen at a rate r, if the probability that

it happens in a very short time interval (t, t + dt) is approximately equal to

r dt. Note that the diagonal elements q(x, x) are negative and are defined

such that the rows sums of the matrix Q are 0.

Some more understanding of what the intensity matrix means for the

distribution of X(t) can be obtained by considering how the distribution

could be simulated. A process X(t) for t ≥ t0 with this distribution can be

simulated as follows, given the current value X(t0) = x:

1. Generate a random variable D with the exponential distribution with

parameter −q(x, x) (it may be noted that the expected value of this dis-

tribution is −1/q(x, x)).

2. Choose a random value Y ∈ X , with probabilities

P{Y = x̃} =
q(x, x̃)

−q(x, x)
for x̃ 6= x ; P{Y = x} = 0 .
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3. Define X(t) = x for t0 < t < t0 + D and X(t0 + D) = Y .

4. Set t0 := t0 + D and x := Y and continue with step 1.

The simultaneous distribution of the Markov chain {X(t) | t ≥ ta} with

stationary transition distribution is determined completely by the probability

distribution of the initial value X(ta) together with the intensity matrix. The

transition matrix

P (tb − ta) =
(

P{X(tb) = x̃ | X(ta) = x}
)

x,x̃∈X
(5)

must satisfy

d

dt
P (t) = QP (t) . (6)

The solution to this system of differential equations is given by

P (t) = et Q , (7)

where Q is the matrix with elements q(x, x̃) and the matrix exponential is

defined by

etQ =
∞∑

h=0

th Qh

h!
.

If the Markov chain has a stationary transition distribution, and starting

from each state x it is possible (with a positive probability) to reach each

other state x̃, then the random process X(t) has a unique limiting distribu-

tion. Representing this distribution by the probability vector π with elements

πx = P{X = x}, this means that

lim
t→∞

P{X(t) = x̃ | X(0) = x} = πx̃ for all x̃, x ∈ X .

This is also the stationary distribution in the sense that

π′ P (t) = π′ for all t,

i.e., if the initial probability distribution is π, then this is the distribution of

X(t) for all t. It can be shown that the stationary distribution also satisfies

π′ Q = 0 .
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It can be hard to find this limiting distribution for a given intensity ma-

trix. Sometimes, it can be found by checking a convenient sufficient condition

for stationarity, the so-called detailed balance condition. The probability vec-

tor π and the intensity matrix Q are said to be in detailed balance if

πx q(x, x̃) = πx̃ q(x̃, x) for all x̃ 6= x . (8)

This can be understood as follows: assume a mass distribution over the vertex

set X and a flow of this mass between the vertices; if there is a mass π(x)

at vertex x, then the rate of flow is π(x) q(x, x̃) from x to any x̃ 6= x. Then

(8) indicates that as much mass flows directly from x̃ to x as directly from

x to x̃, so the flow keeps the mass distribution unchanged. If each state x̃

is (directly or indirectly) reachable from each other state x and the detailed

balance equation holds, then indeed π is the unique stationary distribution.

In the present chapter, this theory is applied to stochastic processes where

X is the set of all digraphs, or adjacency matrices, with elements denoted by

x. The models discussed here have the property that at most one tie changes

at any time point (a model where several ties can change simultaneously is

the party model of Mayer, 1984). All transition rates q(x, x̃) for adjacency

matrices x and x̃ differing in two or more elements, then are 0. A more

convenient notation for such models is obtained by working with the rate at

which Xij(t) changes to its opposite (0 to 1, or 1 to 0), defined by

qij(x) = q(x, x̃) (9)

where

x̃hk =

{
xhk if (h, k) 6= (i, j)

1− xij if (h, k) = (i, j)
.

The value qij(x) can be interpreted as the propensity for the arc variable

Xij to change into its opposite (1−Xij), given that the current state of the

network is X = x.

5 A simple model: independent arcs

The simplest network model of this kind is the total independence model, in

which all arc variables Xij(t) follow independent Markov processes. This may
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be an uninteresting model for practical purposes, but it sometimes provides

a useful baseline because it allows explicit calculations. It also is a nice

and simple illustration of the theory of the preceding section. For each arc

variable separately, the model applies with X = {0, 1} and the rates at which

the two states change into each other are denoted λ0 and λ1 .

0 1
...............

................
...................

.......................
................................

.....................................................................................................................................................................................................
................................. .........
.......

λ0

......................................................................................................................................................................................................................
..........................

.....................
.................

................
......................

...................................

λ1

Figure 1: Transition rates in the independent arcs model.

The value Xij = 0 changes into 1 at a rate λ0, while the value 1 changes into

0 at a rate λ1. The intensity matrix for the tie variables is equal to

Q =

(
−λ0 λ0

λ1 −λ1

)
.

This means that the intensity matrix (9) for the entire adjacency matrix is

given by

qij(x) = λxij
. (10)

The transition probabilities can be derived from (6) as follows. (These results

also are given in Taylor and Karlin (1998), p. 362-364.)

Denote ξh(t) = P{Xij(t) = 1 | Xij(0) = h} for h = 0, 1. The transition

matrix (5) then is equal to

P (t) =

(
1− ξ0(t) ξ0(t)

1− ξ1(t) ξ1(t)

)
.

This implies that (6) can be written as

ξ′h(t) = λ0 − (λ0 + λ1) ξh(t) (h = 0, 1) .
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This differential equation has the solution

ξh(t) =
1

λ0 + λ1

{λ0 − exp(−λ0 + λ1(t + c))} ,

where c depends on the initial condition Xij(0). With the initial conditions

ξh(0) = h we obtain the solutions

ξ0(t) =
λ0

λ+

{1− exp(−λ+t)} ,

ξ1(t) =
1

λ+

{λ0 + λ1 exp(−λ+t)} ,

where λ+ = λ0 + λ1 . Note that this implies 0 < ξ0(t) < λ0/λ+ < ξ1(t) < 1.

These equations imply that, for all t,

P{Xij(t) = 1 | Xij(0) = 0}
P{Xij(t) = 0 | Xij(0) = 1}

=
ξ0(t)

1− ξ1(t)
=

λ0

λ1

. (11)

For t → ∞, the probability that Xij(t) = 1 approaches the limit λ0/λ+

irrespective of the initial condition. The stationary probability vector π =

(λ1/λ+, λ0/λ+) satisfies the detailed balance equations (8), given here by

π0 λ0 = π1 λ1 .

Maximum likelihood estimators for the parameters in this model are dis-

cussed by Snijders and van Duijn (1997).

6 The reciprocity model

The reciprocity model (Wasserman, 1977, 1979, 1980) is a continuous-time

Markov chain model for directed graphs where all dyads (Xij(t), Xji(t)) are

independent and have the same transition distribution, but the arc variables

within the dyad are dependent. This model can be regarded as a Markov

chain for the dyads, with outcome space X = {00, 01, 10, 11}. The transition

rates can be expressed by

qij(x) = λh + µh xji for h = xij . (12)

These transition rates are summarized in Figure 2.
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Figure 2: Transition rates between dyads.

The stationary distribution for the dyads can be derived by solving the

detailed balance equations. It is given by

π00 =
λ1(λ1 + µ1)

λ0(λ0 + µ0) + (λ1 + µ1)(2λ0 + λ1)
,

π11 =
λ0(λ0 + µ0)

λ0(λ0 + µ0) + (λ1 + µ1)(2λ0 + λ1)
, (13)

π01 = π10 = 1
2
(1− π00 − π11) (14)

=
λ0(λ1 + µ1)

λ0(λ0 + µ0) + (λ1 + µ1)(2λ0 + λ1)
,

cf. Wasserman (1979), Snijders (1999).

The transition matrix P (t) has a rather complicated form. It was derived

by Wasserman (1977) (whose result contains a minor error) and Leenders

(1995a) from (7) by an eigenvalue decomposition of Q, and by Snijders (1999)

by solving the differential equation system (6). The reader is referred to the

latter two publications for the precise expressions.

This model can be extended by making the change rates (12) dependent

on covariates. This was done by Leenders (1995a, 1996) who combined the

effects of reciprocity and covariate-dependent similarity. However, such ex-

tensions are limited by the fact that the reciprocity model postulates that

all dyads are independent, which is a severe restriction that runs counter to

many basic ideas of social network analysis.
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7 The popularity model

A model in which transition rates depend on in-degrees was proposed by

Wasserman (1977, 1980). He called this the popularity model because it

expresses that the popularity of actors, as measured by their in-degrees, is

determined endogenously by the network evolution. The transition rates of

this popularity model are given by

qij(x) = λh + πh x+j for h = xij . (15)

A mathematical equivalent model is the expansiveness model, in which the

transition rates depend on the out-degrees, see Wasserman (1997). Under the

popularity model, the columns of the adjacency matrix follow independent

stochastic processes. The in-degrees X+j(t) themselves follow so-called birth-

and-death processes, which property was exploited by Wasserman (1980) to

derive the stationary distribution.

8 Actor-oriented models

In models for network dynamics that represent the effects of current network

structure on the ongoing changes in the network, it must be allowed that the

probabilities of relational changes depend on the entire network structure.

This generalizes the models presented in the preceding two sections, where

only one effect (reciprocity and popularity, respectively) is considered, iso-

lated from other effects. This more encompassing approach may be regarded

as a kind of macro-to-micro modeling, where the entire network is the macro

level and the single tie, or the collection of ties of a single actor, is the micro

level. The model will be a stochastic process on the set of all digraphs, which

from now on shall be the set denoted by X .

An actor-oriented approach to this type of modeling was proposed by

Snijders (1995, 1996), Snijders and van Duijn (1997), and Snijders (2001).

The elements of the actor-oriented approach are listed in Snijders (1996,

Section 2). Some applications were presented by Van de Bunt et al. (1999),

de Nooy (2002), and van Duijn, Zeggelink, Huisman, Stokman, and Wasseur

(2003). This actor-orientation means that, for each change in the network,
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the perspective is taken of the actor ‘whose tie’ is changing. It is assumed that

actor i controls the set of outgoing tie variables (Xi1, . . . , Xig), collected in the

i’th row of the adjacency matrix. The network changes only by one tie at a

time. Such a change is called a ministep. The moment when actor i changes

one of his ties, and the particular change that he makes, can depend on

the network structure and on attributes represented by observed covariates.

The ‘moment when’ is stochastically determined in the model by the rate

function, ‘the particular change to make’ by the objective function and the

gratification function. First we discuss the roles of these three ingredients of

the model, later we discuss how they can be specified.

8.1 Rate function

The rate function indicates how frequently the actors make ministeps:

The Rate Function λi(x) for actor i is the rate

at which there occur changes in this actor’s outgoing ties.

The rate function can be formally defined by

λi(x) = (16)

lim
dt↓0

1

dt
P
{
Xij(t + dt) 6= Xij(t) for some j ∈ {1, . . . , g} | X(t) = x

}
.

The simplest specification of the rate of change of the network is that

all actors have the same rate of change ρ of their ties. This means that for

each actor, the probability that this actor makes a ministep in the short time

interval (t, t + dt) is approximately ρ dt, and in a short time interval there

is independence between the actors in whether they take a ministep. Then

λi(x) = ρ for all i. The waiting times D between successive ministeps of each

given actor then have the exponential distribution with probability density

function ρe−ρd for d > 0, and the expected total number of ministeps made

by all actors between time points ta and tb is gρ(tb − ta): as is intuitively

clear, this expected number is proportional to the total number of actors g,

proportional to the rate of change ρ, and proportional to the time length

tb − ta.
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Sometimes it can be theoretically or empirically plausible to let these

change rates differ between actors as a function of covariates, or to let them

depend dynamically on network structure. This is elaborated in Section 9.2.

8.2 Objective function

The basic idea of the actor-oriented model is that, when actor i has the

occasion to make a change in his outgoing tie variables (Xi1, . . . , Xig), this

actor selects the change which gives the greatest increase in the so-called

objective function plus a random term.

The Objective Function fi(x) of actor i is the value

attached by this actor to the network configuration x.

Thus, the objective function represents the preference distribution of the ac-

tor over the set X of all possible networks. It will be assumed that if there

are differences between actors in their objective functions, these can be iden-

tified on the basis of covariates; in other words, the objective function does

not contain unknown actor-specific parameters, but it can contain known

actor-specific covariates.

When actor i makes a change in (Xi1, . . . , Xig) (i.e., makes a ministep), he

changes how he is tied to exactly one of the g−1 other actors. From one of the

Xi+ =
∑

j Xij other actors to whom i is tied, he could withdraw the tie; or

to one of the g−1−Xi+ others to whom he is not tied, he could extend a tie.

Given that the present network is denoted by x = X(t), the new network that

would result by changing the single tie variable xij into its opposite 1−xij is

denoted x(i ; j) (to be interpreted as “the digraph obtained from x when

i changes the tie variable to j”). The choice is modeled as follows. Denote

by U(j) a random variable which indicates the unexplained, or residual, part

of the attraction for i to j. These Uj are assumed to be random variables

distributed symmetrically about 0 and independently generated for each new

ministep (this is left implicit in the notation). The actor chooses to change

his tie variable with that other actor j (j 6= i) for whom the value of

fi

(
x(i ; j)

)
+ U(j)
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is highest. This can be regarded as a myopic stochastic optimization rule:

myopic because only the situation obtained immediately after the ministep

is considered, stochastic because the unexplained part is modeled by means

of a random variable.

A convenient and traditional choice for the distribution of U(j) is the

type 1 extreme value distribution or Gumbel distribution with mean 0 and

scale parameter 1 (Maddala, 1983). Under this assumption, the probability

that i chooses to change xij for any particular j, given that i makes some

change, is given by

pij(x) =
exp

(
fi(x(i ; j))

)∑g
h=1,h 6=i exp

(
fi(x(i ; h))

) (j 6= i) , (17)

which can also be written as

pij(x) =
exp

(
fi(x(i ; j))− fi(x)

)∑g
h=1,h 6=i exp

(
fi(x(i ; h))− fi(x)

) . (18)

This probability is also used in multinomial logistic regression, cf. Maddala

(1983, p. 60).

8.3 Gratification function

Sometimes the order in which changes could occur, makes a difference for

the desirability of the states of the network. For example, if reciprocated

ties are generally preferred over non-reciprocated ties, it is possible that the

difference in attractiveness between a reciprocated and a non-reciprocated

tie is greater for canceling an existing tie than for extending a new tie: i.e.,

for actor i the existence of the tie from j to i will make it more attractive

to extend the reciprocating tie from i to j if it did not already exist; but if

the latter tie does exist, the reciprocation will have an even stronger effect

making it very unattractive to withdraw the reciprocated tie from i to j.

Such a difference between creating and canceling ties cannot be represented

by the objective function. For this purpose the gratification function can be

used as another model ingredient.
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The Gratification Function gi(x, j) of actor i

is the value attached by this actor

(in addition to what follows from the objective function)

to the act of changing the tie variable xij from i to j,

given the current network configuration x.

Thus, the gratification function represents the gratification to i obtained –

in addition to the change in objective function – when changing the current

network x into x(i ; j).

When a gratification function is included in the model, actor i chooses to

change xij for that other actor j for whom

fi

(
x(i ; j)

)
+ gi(x, j) + U(j)

is largest. Under the assumption of the Gumbel distribution for the residuals

U(j), this leads to the conditional choice probabilities

pij(x) =
exp

(
fi(x(i ; j)) + gi(x, j)

)∑g
h=1,h 6=i exp

(
fi(x(i ; h)) + gi(x, h)

) (j 6= i). (19)

Again it can be convenient to subtract fi(x) within the exponential function,

cf. the difference between (18) and (17).

The dissolution and creation of ties work in precisely opposite ways if

gi(x(i ; j), j) = −gi(x, j) ;

note that gi(x(i ; j), j) is the gratification obtained for changing

x(i ; j) back into x. If this condition holds there is no need for a gratifi-

cation function, because its effects could be represented equally well by the

objective function. The gratification function will usually be a sum of terms

some of which contain the factor (1−xij) while the others contain the factor

xij ; the first-mentioned terms are active for creating a tie (where initially

xij = 0), while the other are active for dissolution of a tie (where initially

xij = 1). Such effects cannot be represented by the objective function. The

further specification is discussed in Section 9.3.
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8.4 Intensity matrix

The ingredients of the actor-oriented model, described above, define a continuous-

time Markov chain on the space X of all digraphs on this set of g actors.

The intensity matrix in the representation (9) is given by

qij(x) = lim
dt↓0

1

dt
P{X(t + dt) = x(i ; j) | X(t) = x}

= λi(x) pij(x) (20)

where pij(x) is given by (19), or by (17) if there is no gratification function.

Expression (20) is the rate at which actor i makes ministeps, multiplied by

the probability that, if he makes a ministep, he changes the arc variable Xij .

This Markov chain can be simulated by repeating the following procedure.

Start at time t with digraph x.

1. Define

λ+(x) =

g∑
i=1

λi(x)

and let ∆t be a random variable with the exponential distribution with

parameter λ+(x).

2. The actor i who makes the ministep is chosen randomly with probabilities

λi(x)/λ+(x).

3. Given this i, choose actor j randomly with probabilities (19).

4. Now change t to t + ∆t and change xij to (1− xij).

9 Specification of the actor-oriented model

The principles explained above have to be filled in with a specific model

for the objective, rate, and gratification functions. These functions will de-

pend on unknown parameters like in any statistical model, which are to

be estimated from the data. When modeling longitudinal network data by

actor-oriented models it will often be useful first to fit models with only an

objective function (i.e., where the rate function is constant and the gratifi-

cation function is nil). In a later stage, non-constant rate and gratification

18



functions may be brought into play. At the end of section 9.2 some instances

are discussed where it may be advisable to specify a non-constant rate func-

tion right from the start of modeling. A wide range of specifications could be

given for the three functions. Below, specifications are given most of which

were proposed in Snijders (2001) and which are implemented in the SIENA

software (Snijders and Huisman, 2003).

9.1 Objective function

The objective function is represented as a weighted sum dependent on a

parameter β = (β1, . . . , βL),

fi(β,x) =
L∑

k=1

βk sik(x) . (21)

The functions sik(x) represent meaningful aspects of the network, as seen

from the viewpoint of actor i. Some potential functions sik(x) are the fol-

lowing.

1. Density effect, defined by the out-degree

si1(x) = xi+ =
∑

j xij ;

2. reciprocity effect, defined by the number of reciprocated ties

si2(x) = xi(r) =
∑

j xij xji ;

3. transitivity effect, defined by the number of transitive patterns in i’s ties

as indicated in Figure 3. A transitive triplet for actor i is an ordered

• •

•

i j

h
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Figure 3: Transitive triplet

pairs of actors (j, h) to both of whom i is tied, while also j is tied to
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h. The transitivity effect is given by

si3(x) =
∑

j,h xij xih xjh ;

4. balance, defined by the similarity between the outgoing ties of actor i

and the outgoing ties of the other actors j to whom i is tied,

si4(x) =

g∑
j=1

xij

g∑
h=1
h 6=i,j

(b0− | xih − xjh |) , (22)

where b0 is a constant included to reduce the correlation between this

effect and the density effect. Given that the density effect is included in

the model, the value of b0 only amounts to a reparametrization of the

model (viz., a different value for the parameter of the density effect).

The proposed value is such that it yields a zero average for (22) over

the first M − 1 observed networks x(tm) (m = 1, . . . , M − 1) and over

all actors, and is given by

b0 =
1

(M − 1)g(g − 1)(g − 2)

M−1∑
m=1

g∑
i,j=1

g∑
h=1
h 6=i,j

| xih(tm)− xjh(tm) | ;

5. number of geodesic distances two effect, or indirect relations effect, de-

fined by the number of actors to whom i is indirectly tied (through one

intermediary, i.e., at geodesic distance 2),

si5(x) = ]{j | xij = 0, maxh(xih xhj) > 0} ;

6. popularity effect, defined by the sum of the in-degrees of the others to

whom i is tied,

si6(x) =
∑

j xij x+j =
∑

j xij

∑
h xhj ;

7. activity effect, defined by the sum of the out-degrees of the others to

whom i is tied, which is equal to the number of actors h who can be

reached from i by a path i → j → h of length two,

si7(x) =
∑

j xij xj+ =
∑

j xij

∑
h xjh .

The conceptual interpretations of the effects 3–5 are closely related, and

some further discussion may be helpful for their explanation. The formula for
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balance is motivated by writing it as the sum of centered similarities between

i and those to whom he his tied. The similarity between the ties of actors i

and j to the same third actor h can be expressed as (1− | xih − xjh |),which

is 1 if xih = xjh and 0 otherwise. Formula (22) can be written as
g∑

j=1

xij (rij(x)− r̄)

where rij is the number of equal outgoing tie variables of i and j,

rij(x) =

g∑
h=1
h 6=i,j

(1− | xih − xjh |) (23)

r̄ =
1

(M − 1)g(g − 1)(g − 2)

M−1∑
m=1

g∑
i,j=1

g∑
h=1
h 6=i,j

rij(x(tm)) .

(Note that the average r̄ is calculated not for the current network x but

over all M − 1 networks that figure as initial observations for time periods

(tm, tm+1).)

It is more customary in network analysis to base balance on a similarity

measure defined by the correlation or Euclidean distance between rows and

columns of the adjacency matrix, cf. Wasserman and Faust (1994). This

would be possible here, too, but the number of matches is used here because

correlations or Euclidean distances are not very appropriate measures for

vectors with only 0 and 1 entries.

Positive transitivity and balance effects, and negative number-of-distances-

two effects, all represent some form of network closure. This can be seen from

the fact that local maxima for these effects are achieved by networks consist-

ing of several disconnected complete subgraphs, which are maximally closed

networks; where a local maximum is defined as a digraph for which the said

function decreases whenever one arc is shifted to another location (which

keeps the density constant). These three effects differ in the precise repre-

sentation of network closure. To get some more insight in their differences,

it may be instructive to write them in ways that exhibit their similarities.

The number of transitive triplets can be written as

si3(x) =
∑

j

xij

∑
h

xih xhj ,
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and the number of distances two as

si5(x) =
∑

j

(1− xij) max
h

(xih xhj) .

The structure of these two functions is similar, a sum over other actors j of

a variable involving third actors h, with the following differences. First, the

factor xij in the definition of si3(x) implies that the summation over other

actors j is made only over those to whom i has a tie, whereas the factor

(1− xij) in the definition of si5(x) means that values are summed over those

j to whom i does not have a tie – this accounts for the fact that si3(x)

indicates a positive and si5(x) a negative network closure effect. Second, for

the third actors h in si3(x) the number of actors h is counted through whom

there is a two-path {i → h, h → j} whereas in si5(x) only the existence of

at least one such two-path counts.

The basic component of the balance function is∑
j

xij rij(x) =

g∑
j,h=1
j 6=h

xij (1 + 2xih xjh − xih − xjh) ;

some calculations show that this is equal to

2si3(x) + si1(x)
(
g − 1− si1(x)

)
− si7(x) .

This demonstrates that the balance effect includes the number of transitive

triplets and, in addition, a quadratic function of the out-degree si1(x) which

is maximal if the out-degree is equal to (g − 1)/2, and the negative activity

effect.

Non-linear functions of the effects sik(x) could also be included. For

example, in order to represent more complicated effects of the out-degrees,

one or more of the following could be used in addition to the density effect.

8. Out-degree truncated at c, where c is some constant, defined by

si8(x) = max(xi+ , c);

9. square root out-degree − c × out-degree, defined by

si9(x) =
√

xi+ − cxi+,

where c is a constant chosen by convenience to diminish the collinearity

between this and the density effect;
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10. squared (out-degree − c), defined by

si10(x) = (xi+ − c)2,

where again c is a constant chosen to diminish the collinearity between

this and the density effect.

The squared out-degree has a graph-theoretic interpretation, which can be

seen as follows. The number of two-stars outgoing from vertex i is

1
2

g∑
j,h=1
j 6=h

xij xih =

(
xi+

2

)
,

a quadratic function of the out-degree xi+. Therefore, including as effects the

out-degree and the squared out-degree of actor i is equivalent to including as

effects the out-degree and the number of outgoing two-stars of this actor.

When covariates are available, the functions sik(x) can be dependent on

them. For network data, a distinction should be made between actor-bound

covariates vi and dyadic covariates wij . The main effect for a dyadic covariate

wij is defined as follows.

11. Main effect of W (centered), defined by the sum of the values of wij

for all others to whom i is tied,

si11(x) =
∑

j xij (wij − w̄)

where w̄ is the mean value of wij .

For each actor-dependent covariate V the following three effects can be con-

sidered:

12. V -related popularity, defined by the sum of the covariate over all actors

to whom i is tied,

si12(x) =
∑

j xij vj ;

13. V -related activity, defined by i’s out-degree weighted by his covariate

value,

si13(x) = vi xi+ ;

14. V -related dissimilarity, defined by the sum of absolute covariate differ-

ences between i and the others to whom he is tied,

si14(x) =
∑

j xij | vi − vj | .
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Of course actor-dependent covariates can be represented by dyadic covariates,

e.g., the three preceding effects can be represented, respectively, by main

effects of the dyadic covariates wij = vi , wij = vj , and wij =|vi − vj |.

9.2 Rate function

The time scale at which networks change may well be quite different from

the physical time scale of clocks. Therefore physical time elapsed between

observations will usually have a tenuous relation with the amount of change

between observed networks. If there are more than two observation moments,

a natural first specification is to treat the rate of change within each period

(tm, tm+1) as a free parameter ρm , without an a priori relation to the time

difference (tm+1 − tm).

When actor-bound covariates are available, they could have an effect on

the rate of change. An important class of examples is the following. In

some cases there are size differences between actors that are associated with

differences in change rate of their networks. For example, in studies of rela-

tions between companies, big companies may have more ties but also change

ties more quickly than small companies. Another example is that individu-

als who are socially very active may have many outgoing ties and may also

change these more quickly than those who are less active. Therefore, if some

measure of size or activity is available, this could be used as an explanatory

variable both in the objective function (as an activity effect) and in the rate

function.

Since the rate of change is necessarily positive, a covariate must be related

to the rate function in such a way that the rate function will always stay

positive. Often it will be suitable for this purpose to use an exponential link

function (where this term is used as in generalized non-linear modeling, cf.

McCullagh and Nelder, 1989). The rate function then can be defined as

ρi(α, x) = ρm exp
(∑

h

αh vhi

)
,

where the sum extends over one or more covariates Vh .

The rate of change can also depend on positional characteristics of the

actors. A primary positional characteristic is the degree, which can be dis-
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tinguished in the out-degree, the in-degree, and the number of reciprocated

ties

xi(r) =
∑

j

xij xji .

The latter statistic is called the reciprocated degree of actor i. The dependence

of the rate function on the degrees can be defined in such a way that the

reciprocity model is obtained as a special case of the actor-oriented model.

As the simplest case, consider the independent arcs model, where the

intensity matrix is defined by

qij(x) = λxij
.

It will be shown now that this model can be obtained as an actor-oriented

model with the objective function defined by only the density effect,

fi(β, x) = β1 xi+

for which

fi(β, x(i ; j)) − fi(β, x) = β1 (1− 2xij) .

When the rate function is defined by

ρ
{
(g − 1− xi+) eβ1 + xi+ e−β1

}
, (24)

formulae (18) and (20) show that the intensity matrix is given by

qij(x) = ρ eβ1 (1−2xij) ,

which can be reformulated to expression (10) by defining λ0 = ρeβ1 , λ1 =

ρe−β1 . This shows that this simple actor-oriented model is the same as the

independent arcs model.

More generally, Snijders and van Duijn (1997) demonstrated that the

reciprocity model is obtained as a special case of the actor-oriented model

when the rate function is a linear combination of the in-degree, out-degree,

and reciprocated degree. This is a motivation for letting the rate function

depend on the degrees by a function of the form (24) if only one of the three
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degree types is implicated, and by averages of such functions in the case of

dependence on two or three of the degree types. An alternative would be, of

course, to use the exponential link function also for the degrees.

Summarizing, it is proposed to define the rate function as a product of

three factors

λi(ρ, α,x, m) = ρm

{
exp

(∑
h

αh vhi

)}
λi3 (25)

where the first factor represents the effect of the period, the second the effect

of actor-bound covariates, and the third the effect of actor position, this effect

having the form

λi3 =

{
xi+

g − 1
eα1 +

g − 1− xi+

g − 1
e−α1

}
(26)

if the rate depends on the out-degrees, which can be replaced by the same

function of the in-degrees or reciprocated degrees. If the rate function de-

pends on two or all three types of degree, λi3 is defined as an average of such

functions (cf. Snijders and van Duijn, 1997).

The discussion motivating formula (24) implies that the actor-oriented

model specified by the rate function (26) – a reparametrization of (24) – and

an objective function (21) including the density effect β1 xi+ , subsumes as

a special case the independent arcs model (viz., for α1 = −β1 , and βk = 0

for all k ≥ 2). Since the independent arcs model is suitable as an ‘empty’

reference model, this gives a special theoretical role to the rate function (26).

A model with a constant rate function (i.e., a rate function not depend-

ing on covariates or positional characteristics) is usually easier to explain and

can be simulated in a simpler and therefore quicker way. The latter is an

advantage given the time-consuming algorithm for estimation (see below).

Therefore, in many cases it is advisable to start modeling using a constant

rate function, and add the complexity of a non-constant rate function only

at a later stage. However, exceptions can occur, e.g., if there are important

size differences between the actors in the network – which can be reflected

by exogenously given covariates but also by, e.g., the out-degrees as an en-

dogenous network characteristic. The effect of such a size measure on the

rate of change can be so predominant that modeling can be biased, and even
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the convergence of the estimation algorithm can be jeopardized, if such an

indicator of size is not included as an effect on the rate function.

9.3 Gratification function

The gratification function can also be defined conveniently as a weighted sum

gi(γ,x, j) =
H∑

h=1

γh rijh(x) . (27)

Some possible functions rijh(x) are the following. Recall that when rijh(x)

includes a factor xij it refers to the gratification experienced for breaking

a tie, whereas the inclusion of a factor (1 − xij) refers to gratification for

creating a tie.

1. Breaking off a reciprocated tie:

rij1(x) = xij xji ;

2. number of indirect links for creating a new tie, representing the fact that

indirect links (at geodesic distance 2) to another actor may facilitate

the creation of a new tie:

rij2(x) = (1− xij)
∑

h xihxhj ;

3. effect of dyadic covariate W on breaking off a tie:

rij3(x) = xij wij .

10 MCMC Estimation

The network evolution model is too complicated for explicit calculation of

probabilities or expected values, but it can be simulated in a rather straigh-

forward way. This is exploited in the method for parameter estimation which

was first proposed in Snijders (1996) and elaborated for the present model

in Snijders (2001). Here we sketch only the estimation method for the actor-

oriented model with a constant rate function ρm between tm and tm+1 , and

without a gratification function. This sketch is restricted to the so-called
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conditional estimation method. A more precise and general treatment, back-

ground references, and a motivation of the estimation method are presented

in Snijders (2001).

10.1 Method of moments

The observed networks are denoted xobs(tm), m = 1, . . . ,M . Suppose that

the objective function is given by (21),

fi(β,x) =
L∑

k=1

βk sik(x) .

Then greater values of βk are expected to lead for all actors i to higher values

of the statistics sik(X(tm+1)), when starting from a given preceding network

xobs(tm). The principle of estimation now is to determine the parameters

βk in such a way that, summed over i and m, the expected values of these

statistics are equal to the observed values. These observed target values are

denoted

sobs
k =

M−1∑
m=1

g∑
i=1

sik(x
obs(tm+1)) (k = 1, . . . , L) (28)

and collected in the vector sobs. For historical reasons this approach to esti-

mation by fitting ‘observed’ to ‘expected’ has in statistical theory the name

of method of moments (Bowman and Shenton, 1985). Since in our case the

expected values cannot be calculated explicitly, they are estimated from sim-

ulations.

The simulations in the conditional estimation method run as follows.

1. For two digraphs x and y define their distance by

‖x − y‖ =
∑
i,j

|xij − yij| , (29)

and for m = 1, . . . ,M − 1 let cm be the observed distances

cm = ‖xobs(tm+1)− xobs(tm)‖ . (30)

This method of estimation is called ‘conditional’ because it conditions

on these values cm .
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2. Use the given parameter vector β = (β1, . . . , βL) and the fixed rate of

change λi(x) = 1.

3. Make the following steps independently for m = 1, . . . ,M − 1.

(a) Define the time (arbitrarily) as 0 and start with the initial network

Xm(0) = xobs(tm) . (31)

(b) Simulate, as described in Section 8.4, the actor-oriented model

Xm(t) until the first time point, denoted Rm , where

‖Xm(Rm)− xobs(tm)‖ = cm .

4. Calculate for k = 1, . . . , L the generated statistics

Sk =
M−1∑
m=1

g∑
i=1

sik(Xm(Rm)) . (32)

This simulation yields, for the input parameter vector β, as output the ran-

dom variables (S, R) = (S1, . . . , SL, R1, . . . , RM−1). Note that the time

parameter within the m’th simulation runs from 0 to Rm .

For the estimation procedure, it is desired to find the vector β̂ for which

the expected and observed vectors are the same,

E β̂S = sobs . (33)

This is called the moment equation.

10.2 Robbins-Monro procedure

The procedure of Snijders (2001) for approximating the solution to the mo-

ment equation is a variation of the Robbins-Monro (1951) algorithm. Text-

books on stochastic approximation contain further explanations and partic-

ulars about such algorithms, e.g., Pflug (1996) and Chen (2002). It is a

stochastic iteration method. Denote the initial value by β(0) . (This could be

a value obtained from fitting an earlier, possibly simpler, model, or the initial

estimate mentioned in Section 13.2.) This procedure consists of three phases.
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The first phase is of a preliminary nature, with the purpose of roughly esti-

mating the sensitivity of the expected value of Sk to variations in βk ; in the

second phase the estimate is determined; and the third phase is for checking

the resulting estimate and calculating the standard errors.

1. From a relatively small number (we use n1 = 7 + 3L) of simulations

estimate the derivatives

∂

∂βk

EβSk

in β = β(0) by the averages of the corresponding difference quotients,

using common random numbers. Denote by D0 the diagonal matrix

with these estimates as diagonal elements.

2. Set β(1) = β(0), a = 0.5, n2 = L + 207.

Repeat a few times (advice: 4 times) the following procedure.

(a) Repeat for n = 1, . . . , n2 :

for the current β(n) simulate the model in the way indicated above,

and denote the resulting value of S by S(n). Update β by

β(n+1) = β(n) − a D−1
0

(
S(n) − sobs

)
.

(b) Update β by

β(1) =
1

n2

n2∑
n=1

β(n) .

(c) Redefine a = a/2, n2 = 24/3(n2 − 200) + 200.

3. Define the estimate β̂ as the last calculated value β(1) . From a rather

large (e.g., n3 = 500 or 1000) number of simulations with β = β̂ esti-

mate the covariance matrix Σ̂ of S and, using common random num-

bers, the partial derivative matrix D with elements

dhk =
∂

∂βk

Eβ Sh .

Finally calculate the estimation covariance matrix by

cov(β̂) = D̂−1 Σ̂ (D̂−1)′ . (34)
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Step 2(a) is called a subphase of Phase 2. Note that from one subphase to

the next the initial value β(1) changes, the updating factor a decreases, and

the number of simulations n2 increases.

The standard errors of the elements of β̂ are the square roots of the

diagonal elements of cov(β̂) in (34). The simulations of Phase 3 can also

be used to check if, for this value β̂, the moment equation (33) is indeed

approximately satisfied. The procedure is an instance of MCMC (Markov

chain Monte Carlo) estimation because it is based on Monte Carlo simulations

and the provisional estimates β(n) in each subphase are a Markov chain.

The parameter a is called the gain parameter and can initially have any

value between 0 and 1. Values closer to 0 will lead to a less mobile value

for β(n) and consequently may require more steps for going from the starting

value to a good final estimate, but will lead to a more stable procedure.

When the algorithm has come close to the solution of the moment equation

(which often happens rather quickly), the provisional values β(n) during the

steps in 2(a) carry out a random dance about this solution. The reason for

taking the average in step 2(b) is that the average of such a collection of

random positions is a better estimate than the last value.

The parameters ρm are usually of minor substantive importance. They

can be estimated by

ρ̂m =
R̄m

tm+1 − tm
(35)

where R̄m is the average of the simulated time lengths for period m during

Phase 3.

10.3 Missing data

It is hard to collect complete network data at multiple repeated occasions,

and therefore it is of practical importance to have a reasonable procedure

for dealing with missing data. There can be several reasons why data are

missing.

If the composition of the set of actors in the network has changed during

the observation period, with some actors joining and/or some actors leaving

the group, this can be dealt with by reflecting this changing composition in
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an appropriate specification of the network evolution model, where only the

actors present at the given moment can be involved in tie changes. This is

elaborated by Huisman and Snijders (2003).

For other cases, when the composition of the network is constant and it is

reasonable to assume that the missing data is due to random non-response,

the following procedure is proposed. The procedure is designed to be simple

and to minimize the influence of the missing data on the results.

(1.) For the initial networks (31) used in the simulations, missing arc vari-

ables xobs
ij (tm) are replaced by the value 0.

(2.) For the observed statistics sobs in (28) as well as the simulated statistics

S in (32) used in the estimation algorithm, an arc variable xij is replaced by

0 if it is missing for at least one of the observations xobs(tm) or xobs(tm+1).

This procedure is implemented in SIENA (Snijders and Huisman, 2003) and

used in the example of Section 12.

11 Testing

Standard statistical theory about estimation by the method of moments (e.g.,

Bowman and Shenton, 1985) yields the expression given in (34) for the esti-

mation covariance matrix,

cov(β̂) = D̂−1 Σ̂ (D̂−1)′ .

If the parameter estimates β̂k are approximately normally distributed, the

null hypothesis that a single element of the parameter vector is zero,

H0 : βk = 0 ,

can be tested by the t-statistic

tk =
β̂k

s.e. (β̂k)
(36)

in the standard normal distribution. The same procedure can be followed for

the parameters αk of the rate function and γk of the gratification function.

It is plausible that the parameter estimates are indeed approximately

normally distributed, but at this moment a proof is not available. It would

be useful to conduct simulation studies supporting the validity of this t-test.
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12 Actor-oriented model results

for the example

The example introduced in Section 3 was analysed using SIENA version 1.92

(Snijders and Huisman, 2003).

In addition to the structural effects, effects of three covariates were con-

sidered: gender, programme, and smoking. Gender and smoking are dummy

variables coded 1 for female and 2 for male and, respectively, 1 for smoking

and 2 for non-smoking. Programme is a numerical variable coded 2, 3, 4

for the length in years of the programme followed by the students. Greater

similarity on this variable indicates a greater opportunity for interaction. All

covariates are centered by SIENA (i.e., the mean is subtracted), including

the dissimilarity variables defined as (| vi − vj | − c), where c is the average

of all | vi − vj | values.

First several models were fitted provisionally to explore which are the

most important effects. Next to the reciprocity effect, the distance-two effect

appeared to be the main structural effect. Of the covariate effects, all three

similarity effects as well as the gender activity effect seemed important. In

order to avoid misspecifying the gender effect in the objective function, the

gender popularity effect also was retained. The rate function seemed depen-

dent on the out-degrees. There seemed to be no strong gratification function

effects. Therefore, Table 3 presents the results for a model including these

effects; for the sake of simplicity, this model further assumes that – except

for the constant factors in the rate function – all parameters are constant

throughout the period from t0 to t6 . For the definition of the rate param-

eters, the numerical values of the time lengths tm+1 − tm are arbitrarily set

equal to 1.0.

As a check on the assumption of constant parameters, Figure 4 gives the

parameter estimates obtained for each period separately, with approximate

confidence intervals extending two standard errors to either side of the pa-

rameter estimate. For the period t0–t1–t2 a common vector of parameters

was estimated because the period t0–t1 , due to the very sparse network at

t0 (average degree 0.2), led to unstable results. In view of the widths of the

error bars, the graphs in this figure show that there is no strong evidence for
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Figure 4: Parameter estimates (with bars extending two standard errors to

either side) separately for periods t0–t2, t2–t3, t3–t4, t4–t5, t5–t6. The dotted

lines indicate the corresponding parameter estimates from Table 3. The

upper left figure does not show bars because these would all extend outside

the figure.
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Effect Estimate Standard error

Rate function
ρ0 Rate parameter t0–t1 24.84 4.57
ρ1 Rate parameter t1–t2 5.43 0.93
ρ2 Rate parameter t2–t3 5.82 0.99
ρ3 Rate parameter t3–t4 4.01 0.67
ρ4 Rate parameter t4–t5 4.62 0.59
ρ5 Rate parameter t5–t6 3.77 0.53
α1 Out-degree effect on rate 1.15 0.44

Objective function
β1 Density −1.26 0.09
β2 Reciprocity 2.42 0.25
β3 Number of distances 2 −0.85 0.08
β4 Gender popularity 0.45 0.13
β5 Gender activity −0.02 0.15
β6 Gender dissimilarity −0.36 0.14
β7 Program dissimilarity −0.35 0.07
β8 Smoking dissimilarity −0.33 0.09

Table 3: Parameter estimates for model with (except rate parameters) con-

stant parameters throughout period t1 – t6 .

parameter differences. Adding to the model of Table 3 the other two network

closure effects, transitivity and balance, led to non-significant t-tests for these

parameters, while this did not make disappear the number-of-distances-two

effect. Also the other effects mentioned in Section 9 were not significant. It

can be concluded that Table 3 may be regarded as a reasonable representation

of the network evolution in the whole observation period.

The table shows, judging by the t-ratios of parameter estimate divided by

standard error, that there is strong evidence for the reciprocity effect and the

network closure effect expressed by a relatively low number of distances two.

The fact that the latter effect is significant and not the transitive triplets

effect (see Figure 3) indicates that what drives the network closure is not an

extra attraction for individual i to other individuals j based on the number
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of indirect connections i → h → j, but rather the attraction to others j to

whom i has at least one such indirect tie. The covariate effects show that

male students tend to attract more choices than females, and similarity on

gender, program, and smoking behavior leads to a higher likelihood of a tie;

male and female students do not differ in the propensity to make choices. An

interpretation of the numerical values of the parameter estimates is given in

Section 13.3.

13 Parameter interpretation

in the actor-oriented model

The interpretation of the quantitative values of the parameters in the actor-

oriented model is given here with the help of some rough approximations.

This section only treats the model where the change rates are constant.

13.1 Rate of change parameter

The expected number of changes per time unit during the period (tm, tm+1)

is ρm for each of the actors. However, two subsequent changes in the same

arc variable Xij will cancel each other. In the unobserved interval between

tm and tm+1 , some of the changes therefore will be reversals to the situation

observed at tm . This implies that for each actor, the expected number of

observed tie differences between the two observations will be a bit less than

ρm(tm+1 − tm). The extent to which it falls below the latter value will be

considerable when ρm is so large that the stochastic process is getting near

to the equilibrium distribution. Therefore if ρm(tm+1−tm) is small compared

to g − 1, the expected value of the average number of changes observed per

actor per unit of time,

1

g (tm+1 − tm)
‖X(tm+1)−X(tm)‖ , (37)

where ‖.‖ is defined in (29), will be close to ρm . As ρm(tm+1− tm) increases,

this expected value will increase less than proportionately. The consequence

is that ρ̂m will be close to (37) if this results in a small value of ρm(tm+1−tm),
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and the ratio of ρ̂m to (37) will increase as a function of the observed number

of changes.

13.2 Density parameter

As a prologue to the interpretation of the other parameters, note that if all

parameters of the objective and gratification functions are zero and the rate

of change is ρ, then the variables Xij(t) follow independent arc processes and

(20) implies that the parameters are λ0 = λ1 = ρ/(g − 1). The limiting

digraph distribution of this process is the random graph with density 0.5.

This is the ‘null process’ of the actor-oriented model.

For the interpretation of the parameter β1 for the density effect si1(x) =∑
j xij , consider the actor-oriented model that contains just this effect, with

constant change rate ρ and without a gratification function. In this model

the rows (Xi1(t), . . . , Xig(t)) follow independent stochastic processes. The

intensity matrix (20) is given by

qij(x) =
ρ eβ1 (1−2xij)

(g − 1− xi+) eβ1 + xi+ e−β1
.

If the number g of actors is large and the out-degrees are small relative to

the number of actors, this can be roughly approximated by

qij(x) ≈ ρ e−2 β1 xij

g − 1
,

which is the intensity matrix of the independent arcs model for

λ0 =
ρ

g − 1
, λ1 =

ρ e−2 β1

g − 1
.

Using the results of Section 5, this implies that, for each actor i, the log-

odds will tend to 2β1 and the out-degree will for t →∞ fluctuate about the

asymptotic value

(g − 1) λ0

λ0 + λ1

=
(g − 1) e2β1

1 + e2β1
. (38)

For example, if β1 = 0, the out-degrees will tend to be (g − 1)/2 on average.

(Symmetry considerations imply that the latter result is true even though in
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this case the out-degrees are not small relative to g.) An exact analysis (not

further discussed here) shows that for t → ∞ and fixed g, the asymptotic

expected value of Xi+ is

(2g − 3) e2β1 + 1

2 + 2e2β1
, (39)

which is quite close to (38). All this suggests that, for the usual cases where

network densities are much lower than 0.5, a negative density parameter is

expected.

Now suppose that this process is observed at times t1 and t2 . Then (2)

and (11) imply that

r1

1− r0

, (40)

the fraction of Xij = 0 which turned into 1, divided by the fraction of Xij = 1

which turned into 0, is expected to be λ0/λ1 = e2β1 . Therefore an estimate

for β1 is half the corresponding log odds,

1
2
log

(
N01

(N01 + N00)

(N10 + N11)

N10

)
,

where Nhk is defined as in (1).

This can be used for an initial estimate for the estimation method of

Section 10.2 in the case where M observations are available, even when more

effects than just the density are included. This initial estimate is given by

β̂1 = 1
2
log

( ∑M−1
m=1 N01(m)∑M−1

m=1 (N01(m) + N00(m))

∑M−1
m=1 (N10(m) + N11(m))∑M−1

m=1 N10(m)

)
(41)

for the density effect and β̂k = 0 for all k ≥ 2 (the other effects).

The interpretation of β1 as approximately half the log-odds for the set of

arc variables Xij in an equilibrium situation, and the interpretation based on

(40), do not hold any more for models that include other effects in addition

to the density effect. The difference in interpretation will depend on the

extent to which the parameters for the other included effects lead to lower or

higher overall densities of the network. But in many practical applications

we still observe negative estimates for β1 as a reflection of the fact that the

network density in a hypothetical equilibrium situation would be clearly less

than 0.5.
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13.2.1 Network boundary effects

What happens with these models if they are applied to networks for which

the network boundary has been defined in a rather generous way – so that the

number g of actors is large and only a small fraction of the network members

would be candidate relational partners for any actor? Such a situation can be

modeled by letting g tend to infinity while keeping the out-degrees Xi+ finite.

This is just the assumption made above for the approximation of the actor-

oriented model by the independent arcs model. In the approximating limiting

distribution the log-odds was found to tend to 2β1 , which corresponds for

the out-degrees to a binomial distribution with a mean of

(g − 1) e2β1

1 + e2β1
,

which tends to infinity with g. This is at odds with the assumption that the

out-degrees Xi+ remain finite. However, if we let

β1 = η − 1

2
log(g − 1) ,

for some fixed number η, the limiting distribution tends to the Poisson dis-

tribution with mean e2η, which does remain finite and is independent of g.

This suggests that if we first consider a certain network with g0 actors,

and then add further actors most of which are not relevant to the actors

present earlier, so the number of ties from the earlier present actors to the

new actors is quite small, we should expect the density parameter slowly to

decrease, by a term slightly less than 1
2

log
(
(g − 1)/(g0 − 1)

)
.

13.3 Other parameters

Section 13.2 shows that, already for an objective function consisting only of

the density effect, quite crude approximations are required to make descrip-

tive statements about the probability distributions corresponding to certain

parameter values, and these descriptions do not take us very far.

Another way to obtain insight into the parameter values is to consider

the implied objective function, which indicates the preferences of the actors.
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For the example as presented in Table 3, this function is

fi(x) =
∑

j

{
− 1.26 + 2.42 xji + 0.45 v1j − 0.36 | v1i − v1j |

− 0.35 | v2i − v2j | − 0.33 | v3i − v3j |
}

xij

− 0.85
∑

j

(1− xij) max
h

(xih xhj)

where (due to the centering applied) v1i = −0.25 for female and 0.75 for

male students; the program variable v2i has values −1.3, −0.3, and 0.7; and

v3i = −0.6 for smokers and 0.4 for non-smokers. The contribution of the

gender activity effect was set to 0.

This expression can be brought into clearer shape by some recoding. De-

note z1i = 1 for male and 0 for female students, s1ij = 1 if students i and

j have the same gender and 0 otherwise, the program similarity variable

s2ij = 2− | v2i−v2j |, and s3ij = 1 if students i and j have the same smoking

behavior and 0 otherwise. Then the shij are similarity variables, equal to 0

in the case of the greatest dissimilarity. The objective function then is

fi(x) =
∑

j

{
− 2.78 + 2.42 xji + 0.85 max

h
(xih xhj) + 0.45 z1j

+ 0.36 s1ij + 0.35 s2ij + 0.33 s3ij

}
xij

− 0.85
∑

j

max
h

(xih xhj) .

The first two lines show that, e.g., for a male actor i in program v2i = 2,

creating a new tie to a female student who did not already choose i as a friend,

of different smoking behavior and in program v2j = 4, to whom no length-two

path exists, leads to an objective function loss of 2.78. The third line implies

that for each student h chosen by j who was not already chosen by any of i’s

present friends, creating the new tie from i to j leads to an additional loss

for i of 0.85. Such students h would point to a lack of embeddedness of j

in i’s current network. On the other hand, if j already chose i as a friend,

while the other characteristics are as mentioned, the first two lines imply a

loss of only 2.78 − 2.42 = 0.36. This loss is approximately nullified if the
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potential friend j has the same smoking behavior or is in program v2j = 3.

A very crude summary of the preceding is that a tie to another student is

worthwhile only if the tie is reciprocated and there also is similarity at least

on one variable.

The total contribution of gender for male students is nil for choosing a

female friend, and 0.45 + 0.36 = 0.81 for choosing a male friend; for female

students it is 0.36 for choosing a female and 0.45 for choosing a male friend.

Thus for female students the value of a friendship with a male or a female

other student is about the same, while male students have a clear preference

for friendships to other males.

The value of already being chosen by the other (equal to 2.42) is about

thrice as large as the value of already having at least one indirect tie to the

other (0.85); the latter value is about the same as the advantage, for males,

that males have over females (0.81) and slightly larger than the advantage

of following the same program compared to following the most different pro-

grams (2× 0.35 = 0.70); and about two and a half times the value of having

the same smoking behavior (0.33).

14 Discussion

Longitudinal network data can yield important insights into social processes,

but these insights can be obtained only when using adequate models for

data analysis. There exist many models for network evolution that are not

accompanied by methods for statistical data analysis, and recently there

has been quite a surge in publications about such models stimulated, e.g.,

by applications to the growth of the world wide web. However, in order

to know how strong and how uncertain are the conclusions we may draw

from empirical data, and in order to know the extent to which our mod-

els are, or are not, supported by the empirical data – which will steer the

development of extended or new models in directions that are empirically

fruitful, it is desirable to have indeed a statistical component in models for

network evolution. The requirement of statistical evaluation leads to parsi-

mony and modesty in model building. The complexity of network dynamics,

in which everything seems to depend on everything else, implies that even
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modest models are mathematically quite complex, as is demonstrated by

the models of this chapter. These models are (as far as I know) the first

statistical models for network evolution that allow a variety of endogenous

network effects, of which the various types of network closure effects (tran-

sitive triplets, number of pairs at a geodesic distance equal to 2, balance, as

presented in Section 9.1) are primary examples. I hope that the availability

of these models and of the software to analyse data according to these models

(the SIENA program that is included in the StOCNET system which can be

downloaded from http://stat.gamma.rug.nl/stocnet/, see Snijders and

Huisman, 2003, and see also Chapter 13 in this volume) will be a stimulus

for the collection and statistical evaluation of longitudinal network data.

One of the assumptions in the actor-oriented model is that actors optimize

myopically, considering only the situation to be obtained immediately after

the next change they are going to make. It would be theoretically interesting

to elaborate models with more farsighted actors, but the risk is that such

models would be less robust and more limited to specific applications than

the simpler myopic models. The interpretation of the myopic models is that

the effects in the objective and gratification functions represent what the

actors try to achieve in the short run, and do not directly reflect their goals

in the long run.

The further application of these models should also indicate the points

where they must be further extended and modified to provide a better fit

to empirical data and to be better aligned with the theoretical questions

that researchers may have. The actor-oriented approach explained here, and

its implementation using the rate, objective, and gratification functions, is

quite flexible and open for extension by a variety of effects in addition to

those mentioned here; but other models can also be proposed. One exam-

ple is the alternative actor-oriented model of Snijders (2003) in which the

focus is on giving a good fit to the observed out-degrees. Another example

would be a tie-oriented or dyad-oriented model, driven not by changes made

by optimizing actors but by changes in tie variables, which would be closely

compatible with the exponential random graph models proposed by Frank

and Strauss (1986) and Wasserman and Pattison (1996) and treated in Chap-

ters 8–10 of this volume; these tie changes could be according to Gibbs or
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Metropolis-Hastings steps as described in Snijders (2002). Testing goodness

of fit of network evolution models, which will give empirical indications for

model modifications and extensions, is the topic of Schweinberger (2003).

The approach presented here can be extended also by considering more

complex data sets. A multilevel approach to network evolution, in which the

data is composed of multiple parallel networks that evolve according to a

similar model but with different parameters, was initiated by Snijders and

Baerveldt (2003), and may be further extended. As the mutual influence

between networks and behavior is theoretically as well as practically impor-

tant, research also is under way about modeling the simultaneous evolution

of networks and individual behavior. The models presented in this chapter

have a rich potential for applications but perhaps an even richer potential

for further extensions.
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