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1 INTRODUCTION

Social phenomena are increasingly viewed from a network perspective, and so-

cial networks accordingly receive more and more attention in various domains

of science. Graphs and their dynamics have been studied in probability theory

since more than half a century (Erdős and Rényi, 1960; Bollobas̀, 1985). Net-

work analysis has since long been an interdisciplinary empirical field rooted in

sociology, anthropology, discrete mathematics, and visualization for which one

date in its early development may be given as the creation of its own journal in

1978 (Freeman, 2004). From about the turn of the millennium there has been a

growing interest in networks also from physicists and computer scientists (Watts

and Strogatz, 1998). This widened interdisciplinary field since 2013 was further

institutionalized with the journal Network Science (Brandes et al., 2013).

Statistical modeling of networks has played an important role in these devel-

opments, and has grown in scope as networks received more and more scientific

attention (Goldenberg et al., 2009; Kolaczyk, 2009). This chapter presents a

statistical methodology for the analysis of longitudinal network data collected

in a panel design, in which repeated observations are made of a network on a

constant node set. Development of this model was inspired by applications in

sociology and other social sciences (e.g., Snijders and Doreian, 2010, 2012), and

therefore the terminology will have a social science flavor. E.g., the nodes of the

network will be referred to as social actors – which could be humans, but also

organisations, etc.
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2 MODEL DEFINITION

We assume that repeated observations x(t1), . . . , x(tM ) on a directed graph (di-

graph), referred to as a network, are available for some M ≥ 2. The node set

N = {1, . . . , n} is constant, while the ties are variable. The network x is iden-

tified with its n × n adjacency matrix x = (xij) of which the elements denote

whether there is a tie from node i to node j (xij = 1) or not (xij = 0). Self-ties

are not allowed, so that the diagonal is structurally zero. Random variables are

denoted by capitals.

Various models have been proposed for network dynamics, most of them be-

ing Markov processes of some kind. The basic heuristic idea of actor-oriented

models (Snijders, 2001) is that the nodes of the graph are social actors having

the potential to change their outgoing ties, and the observed network dynamics

is the result of the sequences of choices by these actors. The digraph develops

as a continuous-time Markov process X(t) even though being observed only at

M discrete time points. The stochastic process X(t) is modeled as being right-

continuous. The constraints are that ties may change only one by one, and actors

do not coordinate their changes of ties. Thus, at any given moment, at most one

tie variable Xij can be changed. This constraint was proposed by Holland and

Leinhardt (1977), and it has the virtue of splitting the change process in its

smallest possible constituents, reducing the model definition to the specification

of rates of creating and terminating single ties.

The actor-oriented model is specified as follows; further discussion and moti-

vation is given in Snijders (2001).
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A. Opportunities for change. Each actor i gets at stochastically determined

moments the opportunity to change one of the outgoing tie variables Xij(t) (j ∈

N , j 6= i). Since the process is assumed to be Markovian, waiting times between

opportunities have exponential distributions. Each of the actors i has a rate

function λi(α, x) which defines how quickly this actor gets an opportunity to

change a tie variable, when the current value of the digraph is x, where α is a

parameter. At any time point t with X(t) = x, the waiting time until the next

opportunity for change by any actor is exponentially distributed with parameter

λ(α, x) =
∑
i

λi(α, x) . (1)

Given that an opportunity for change occurs, the probability that it is actor i

who gets the opportunity is given by

πi(α, x) =
λi(α, x)

λ(α, x)
. (2)

The rate functions can be constant between observation moments, or they can

depend on functions uik(x) which may be covariates or positional characteristics

of the actors, such as outdegrees
∑

j xij . The time moments of observation are

arbitrary, not necessarily equidistant, and observation is assumed not to affect the

random process. Arbitrary time spans between observations can be represented

by multiplicative parameters ρm. Actor-dependent rate functions can be modeled,

e.g., by an exponential link function,

λi(ρ, α, x) = ρm exp
(∑

k

αkuik(x)
)
, (3)

valid between the moments of observing x(tm) and x(tm+1).

B. Options for change. When actor i gets the opportunity to make a change,

this actor has a permitted set Ai(x0) of values to which the digraph may be
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changed, where x0 is the current value of the digraph. The idea that actors may

change their outgoing ties, but only one tie variable at the time, is reflected by

Ai(x0) ⊂ {x0} ∪ Ar
i(x

0) (4a)

where Ar
i(x

0) is the set of adjacency matrices differing from x in exactly one

element,

Ar
i(x

0) = {x | xij = 1− x0ij for one j 6= i, and xj′k = x0j′k for all other (j′, k)}.

(4b)

Including x0 in Ai(x0) can be important for expressing the property that actors

who are satisfied with the current network will prefer to keep it unchanged.

Therefore, the usual model is Ai(x0) = {x0} ∪ Ar
i(x

0).

It is assumed that the network dynamics is driven by a so-called objective

function fi(β, x
0, x) that can be interpreted as the relative attractiveness for

actor i of moving from the network represented by x0 to the network x, and

where β is a parameter. The conditional probability that the next digraph is x,

given that the current digraph is x0 and actor i gets the opportunity to make a

change, is assumed to be given by the multinomial model

pi(β, x
0, x) =


exp

(
fi(β, x

0, x)
)∑

x̃ exp
(
fi(β, x0, x̃)

) x ∈ Ai(x0)

0 x 6∈ Ai(x0)
(5)

where the summation extends over x̃ ∈ Ai(x0). This formula can be motivated by

a random utility argument as used in econometrics (e.g., Maddala, 1983), where

it is assumed that the actor maximizes fi(β, x
0, x) plus a random disturbance

having a standard Gumbel distribution. Assumption (4) implies that instead of

pi(β, x
0, x) we can also write pij(β, x

0) where the correspondence between x and

j is defined as follows: if x 6= x0, j is the unique element of N for which xij 6= x0ij ;
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the arbitrary definition is made that j = i if x = x0. This less redundant notation

will be used in the sequel. Thus, for j 6= i, pij(β, x
0) is the probability that, under

the condition that actor i has the opportunity to make a change and the current

digraph is x0, the change will be to xij = 1− x0ij with the rest unchanged; while

pii(β, x
0) is the probability that, under the same condition, the digraph will not

be changed.

The most usual models are based on objective functions that depend on x

only. This has the possible interpretation that actors wish to maximize a function

fi(β, x) (plus a random residual) that itself is independent of “where they come

from”, although the previous state does determine the set of possible next states.

The greater generality of (5), where the objective function can depend also on the

previous state x0, makes it possible to model path-dependencies, or hysteresis,

where the loss suffered from withdrawing a given tie differs from the gain from

creating this tie, even if the rest of the network has remained unchanged. In the

literature on this model, when the objective function does not depend on the

previous state, it is also called an evaluation function.

Various ingredients for specifying the objective function were proposed in Snij-

ders (2001). A linear form is convenient,

fi(β, x
0, x) =

L∑
k=1

βk sik(x
0, x) , (6)

where the functions sik(x
0, x), called effects, are determined by subject-matter

knowledge, available scientific theory, and formulation of research questions. The

effects should represent essential aspects of the network structure, assessed from
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the point of view of actor i, such as

sik(x
0, x) =

∑
j

xij (outdegree) (7)

∑
j

xij xji (reciprocated ties) (8)

∑
j,k

xij xjk xik (transitive triplets) (9)

∑
j

x0ij x
0
ji xij xji (persistent reciprocity); (10)

they can also depend on covariates – such as resources and preferences of the

actors, or costs of exchange between pairs of actors – or combinations of network

structure and covariates. See Snijders et al. (2010) for a basic list of effects, and

Ripley et al. (2016) for an extensive list.

2.1 Intensity matrix; time-homogeneity

The model description given above defines X(t) as a continuous-time Markov

process with Q-matrix or intensity matrix (e.g., Norris, 1997) for x 6= x0 given

by

q(x0, x) =


λi(α, x

0) pi(β, x
0, x) if x ∈ Ai(x0), i ∈ N

0 if x 6∈ ∪iAi(x0).
(11)

The assumptions do not imply that the distribution of X(t) is stationary. The

transition distribution, however, is time-homogeneous, except for time depen-

dence reflected by time-varying components in the functions sik(x
0, x), and ex-

cept for multiplicative constants as explained in the next paragraph.

The time points t1, . . . , tM of the observations can be used for marking time-

heterogeneity of the transition distribution. For example, covariates may be

included with values allowed to change at the observation moments. A special role

is played here by the time durations tm − tm−1 between successive observations.
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Standard theory for continuous-time Markov chains (e.g., Norris, 1997) shows

that the matrix of transition probabilities from X(tm) to X(tm−1) is e(tm−tm−1)Q,

where Q is the matrix with elements (11). Thus, changing the duration tm−tm−1

can be compensated by multiplication of the rate function λi(α, x) by a constant.

The connection between an externally defined real-valued time variable tm and

the rapidity of network change is tenuous at best, and the parameter ρm in (3)

absorbs effects of the durations tm − tm−1. This makes the numerical values tm

unimportant.

2.2 Simulation algorithm

The following steps can be used for simulating the process for the time period

from tm to tm+1.

1. Set t = tm and x = x(tm).

2. Generate ∆T according to the exponential distribution with parameter

λ(α, x).

3. If t+ ∆T > tm+1 set t = tm+1 and stop.

4. Select randomly i ∈ {1, ..., n} using probabilities

λi(α, x)

λ(α, x)
.

5. Select randomly x′ ∈ Ai(x) using probabilities pi(β, x, x
′) (see (5)).

6. Set t = t+ ∆T .

7. Set x = x′.

8. Return to step (2).

If the continuous-time stochastic process X(t) would be observed for t1 ≤ t ≤ tM

including all the time increments ∆T generated in the above simulation steps the
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model would be a generalized linear model with two parts, (3) and (6). Given

that the stochastic process X(t) is observed only for t = t1, t2, . . . , tM , the model

can be regarded as a generalized linear model with a lot of missing data.

3 ESTIMATION

Exact calculations for this model are infeasible, except for uninterestingly simple

special cases. Since the model can be simulated in a straightforward manner, it

lends itself to simulation-based estimation procedures.

3.1 Method of Moments

The estimation method that is used mostly in practice is the Method of Moments

procedure proposed in Snijders (2001). Denote the estimated parameter by θ =

(ρ, α, β). The statistics used for estimation are heuristically derived as follows.

For each element of θ there is a one-dimensional statistic that is sensitive to this

parameter. For ρm, influencing the total amount of change, the statistic used is

the Hamming distance,

D
(
X(tm+1), X(tm)

)
=
∑
i,j

| Xij(tm + 1)−Xij(tm) | . (12)

For parameter αk, determining how strongly the rate of change for actor i is

influenced by uik(X), a sensitive statistic is

Ak
(
X(tm+1), X(tm)

)
=
∑
i,j

uik
(
X(tm)

)
| Xij(tm + 1)−Xij(tm) | . (13)

For linear predictors (6) where sik(x
0, x) does not depend on x0, higher values of

βk will tend to lead to networks x for which the value of sik(x) is higher, for all

i. Therefore, for estimating βk, sensitive statistics are given by

sk
(
X(tm)

)
=
∑
i

sik
(
X(tm)

)
. (14)
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Combining these statistics and employing the Markov chain assumption for the

observed data x(t1), . . . , x(tM ), the estimating equations are

D
(
x(tm+1), x(tm)

)
=Eθ

{
D
(
X(tm+1), x(tm)

)
| X(tm) = x(tm)

}
(m = 1, . . . ,M − 1) (15a)

M−1∑
m=1

Ak
(
x(tm+1), x(tm)

)
=

M−1∑
m=1

Eθ
{
Ak
(
X(tm+1), x(tm)

)
| X(tm) = x(tm)

}
(k = 1, . . . ,Kα) (15b)

M−1∑
m=1

sk
(
x(tm+1)

)
=

M−1∑
m=1

Eθ
{
sk
(
X(tm+1)

)
| X(tm) = x(tm)

}
(k = 1, . . . ,Kβ), (15c)

where Kα and Kβ are the number of elements of α and β.

To find the solution of (15), stochastic optimization can be used. Snijders

(2001) uses a multivariate version of the Robbins-Monro algorithm (Robbins and

Monro, 1951; Ruppert, 1991; Kushner and Yin, 2003) with the improvements pro-

posed by Polyak (1990) and Ruppert (1988). The ‘double averaging’ technique of

Bather (1989) and Schwabe and Walk (1996) turns out to give further improve-

ment. The R package RSiena (Ripley et al., 2016; Snijders, 2016a) implements

this in a three-phase algorithm, where the first phase is for roughly determining

the sensitivity of expected statistics to parameters; the second phase conducts

Robbins-Monro parameter updates based on simulations of the network dynam-

ics for the current parameter value; and the third is for determining how well

(15) is indeed approximated, and for determining standard errors. For the latter

purpose the derivatives of the expected values with respect to the parameters are

needed, and these can be estimated by the score function method (Schweinberger

and Snijders, 2007; Rubinstein, 1986); this is elaborated below. This algorithm
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is quite robust, although rather time-consuming.

3.2 Generalized Method of Moments

The statistics (14) used for the Method of Moments depend only on the networks

observed at the end of each period (tm−1, tm]. It might be possible to obtain

greater efficiency by utilizing more statistics, e.g., function of both the networks

observed at the beginning and the end of each period. E.g., for estimating the

parameter βk for the reciprocity effect sk(x) =
∑

j xijxji, (14) leads to

∑
i,j

Xij(tm)Xji(tm) ,

a measure for the amount of reciprocity observed at tm. Another relevant statistic

would be ∑
i,j

(
1−Xij(tm−1)

)
Xji(tm−1)Xij(tm)Xji(tm) ,

measuring the amount of observed reciprocation from tm−1 to tm. Utilizing more

statistics than parameters is possible with the generalized method of moments

(Burguete et al., 1982; Hansen, 1982). The principle is, for a q-dimensional

statistic S with outcome denoted s and a p-dimensional parameter θ with q > p,

to estimate θ such that (
s− EθS

)′
W
(
s− EθS

)
(16)

is minimal as a function of θ. When S = covθ(S) this estimator will be at least

as efficient as the method of Moments estimator for any subvector of S. The

further elaboration and the numerical implementation of a simulated generalized

method of moments for this model is presented in Amati et al. (2015).
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3.3 Likelihood-based methods

Bayesian and frequentist likelihood-based estimators were developed by Koski-

nen and Snijders (2007) and Snijders et al. (2010). These estimators use data

augmentation (Tanner and Wong, 1987). The procedure is explained here only

for the case of constant rate functions, i.e., λi(α, x) ≡ ρm between tm and tm+1.

The observed data x(t1), . . . , x(tM ) is augmented by the chain of all choosing

actors i and intermediate states x′ in the simulation algorithm; the time delays

∆T can be integrated out. The intermediate states are the results of the ‘choices’

by the actors described above; recall that the outcome of the choice may be that

the state stays the same. The formulae are given for M = 2 waves; generalization

to more waves is obtained by concatenating the chains from wave to wave. Denote

the sequence of subsequent intermediate states, resulting from these choices, by

x1 = x(t1), x2, . . . , xR = x(t2), the actor making the choice for xh by ih, and

the time delay between xh and xh+1 by ∆Th. Then R is determined by the

requirement
R−1∑
h=1

∆Th < t2 − t1 ≤
R∑
h=1

∆Th . (17)

The model assumptions imply that

P{Xh = xh, ih = i | Xh−1 = xh−1} =

exp
(∑

k

βksik(xh)
)

n
∑

x∈Ai(xh−1)

exp
(∑

k

βksik(x)
) , (18)

provided that the sequences (ih) and (xh) are compatible in the sense that for each

h the difference (if any) between xh−1 and xh is in row ih of the adjacency matrix.

Further, the continuous Markov chain assumption implies that the number R−1

of choices made between t1 and t2 has a Poisson distribution,

P
{R−1∑
h=1

∆Th < t2 − t1 ≤
R∑
h=1

∆Th

}
= e−nρ(t2−t1)

(
nρ(t2 − t1)

)R−1
(R− 1)!

. (19)
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Using the Markov assumption, the likelihood of the augmented data therefore is

given by

P
{
R = r,X2 = x2, . . . , XR−1 = xr−1, I2 = i2, . . . , IR = ir | X(t1) = x1, X(t2) = xR

}
(20)

= e−nρ(t2−t1)
(
ρ(t2 − t1)

)r−1
(r − 1)!

×
r∏

h=2

exp
(∑

k βksihk(xh)
)∑

x∈Ai(xh−1)
exp

(∑
k βksihk(x)

)
provided that sequences (ih) and (xh) are compatible. In the data augmentation

method, be it frequentist or Bayesian, the crucial step is to obtain a sample from

the conditional distribution of the augmented data, here X2, . . . , XR−1, I2, . . . , IR,

given the observed data, here
(
x(t1), x(t2)

)
. This is done in Snijders et al. (2010)

by a Metropolis-Hastings scheme consisting of a mix of the following proposals.

The proposals are formulated in terms of ‘toggles’, because effectively each change

in the network dynamics is a change of some Xij to (1−Xij), called a toggle of

(i, j).

1. Paired deletions: two toggles of the same element (i, j) are randomly se-

lected and both deleted.

2. Paired insertions: for a random pair (i, j) (i 6= j), two toggles are inserted

at random positions in the chain.

3. Single insertions: for a random node i, a choice by i resulting in a non-

change is inserted at a random position.

4. Single deletions: a random choice resulting in a non-change is deleted from

the chain.

5. Permutations: a section of the chain is randomly permuted.

This collection of proposals leads to a communicating random process on the
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space of all possible chains connecting x(t1) to x(t2). Using acceptance ratios

determined by the proposal probabilities and the likelihood (20), the Metropolis-

Hastings procedure converges to the conditional distribution given the observa-

tions.

This is used to estimate the posterior distribution in a Bayesian approach in

Koskinen and Snijders (2007). To find the Maximum Likelihood (ML) estimate,

Snijders et al. (2010) employ the missing data principle of Orchard and Woodbury

(1972) and Louis (1982). Denoting the parameter by θ, observed data by X, and

augmented data by V , let the observed data score function be JX(θ;x) and the

total data score function JXV (θ;x, v). Then

Eθ{JXV (θ;x, V ) | X = x} = JX(θ;x) , (21)

so that the likelihood equation can be expressed as

Eθ{JXV (θ;x, V ) | X = x} = 0. (22)

Snijders et al. (2010) present a method for solving this equation by a Robbins-

Monro stochastic approximation procedure, similar to the one sketched above for

the Method of Moments.

3.3.1 Data augmentation and the score function For the calculation

of standard errors by the delta method, derivatives of the type

∂EθS(X)

∂θ

are needed for various statistics S(X); see Schweinberger and Snijders (2007).

Under regularity conditions satisfied here, this is equal to

∂EθS(X)

∂θ
= EθJX(θ,X)S(X) = EθJXV (θ,X, V )S(X) (23)
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for any data augmentation V . This is a very convenient equation, because in

our case X is easily simulated but JX(θ,X) is incalculable; this equation allows

to choose a data augmentation by unobserved statistics V which is computed

anyway for the simulation of V and for which JXV (θ,X, V ) is easy to calculate.

This is used for the standard errors of the Method of Moments estimates (regu-

lar as well as generalized), with the data augmentation being the i and x′ of each

step of the simulation algorithm for the process described in Section 2.2. These

are the same statistics as in the data augmentation for the ML estimation, but

computed in a different process. This is elaborated in Schweinberger and Snijders

(2007), where it is also discussed that the derivatives can also be approximated

by ratios of finite differences, but this has various disadvantages.

4 CO-EVOLUTION MODELS

The principle of a continuous-time discrete-state Markov chain can be extended

from a changing network to a more complicated outcome space, consisting of the

Cartesian product of several spaces.

4.1 Networks and Behavior

The interest in networks is based for a large part on their important consequences

for nodal variables of actors – behavioral tendencies, attitudes, performance, etc.

These will often not only be influenced by networks, but also themselves ex-

ert influence on networks. This leads to scientific interest in the interdependent

dynamics of networks and actor variables, e.g., friendships and health-related

lifestyle behaviors of adolescents, or collaboration and performance of organisa-

tions.
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Let X(t) be a changing network (directed graph) on n nodes, as above; and let

Z(t) =
(
Z1(t), . . . , Zn(t)

)
be a vector of nodal variables for the same nodes. To

keep the treatment in the discrete realm, assume that Zi(t) is an ordinal discrete

variable with values 1, 2, . . . ,K for some integer K ≥ 2. The model presented

above can then be duplicated for these two as joint dependent variables: for X

and also for Z there are rate functions λXi and λZi , and objective functions fXi

and fZi . Parameters in fXi are denoted βX , those in fZi are βZ . It is assumed

that at any moment t, not more than one variable Xij(t) or Zi(t) can change, so

that opportunities for change are either for the network, X, or the behavior, Z.

Network changes are modeled as above, except that now the objective function

fX can also depend on the current state of the behavior. Given that actor i

has an opportunity for change in behavior, for the current value zi(t) = z0 the

options for the next possible state are z0 − 1, z0, z0 + 1. The probabilities are

pZi (β, x, z0, z) =



exp
(
fZi (β, x, z0, z)

)
1∑

δ=−1
exp

(
fZi (β, x, z0, z0 + δ)

) z = z0 + δ; δ ∈ {−1, 0, 1}

0 otherwise.

(24)

If this would mean an excursion out of the permitted range {1, . . . ,K}, z stays

the same.

The network-and-behavior dynamics can be simulated from tm to tm+1 by the

following steps.

1. Set t = tm, x = x(tm), z = z(tm).

2. Generate ∆T according to the exponential distribution with parameter

λ+ =
∑

i

(
λXi (α, x, z) + λZi (α, x, z)

)
.

3. If t+ ∆T ≥ tm+1, set t = tm+1 and stop.
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4. Select variable V ∈ {X,Z} with probabilities

P{V } =
∑

i λ
V
i (α, x, z)/λ+ .

5. Select randomly i ∈ {1, ..., n} using probabilities

λVi (α, x, z)∑
i′ λ

V
i′ (α, x, z)

.

6. If V = X, select randomly x′ ∈ Ai(x) using probabilities pi(β, x, x
′) (see

(5)); set x = x′.

If V = Z, select randomly z′ ∈ {z−1, z, z+1} using probabilities pZi (β, x, z, z′)

(see (24)); if 1 ≤ z′ ≤ K, set z = z′.

7. Set t = t+ ∆T .

8. Return to step (2).

By letting the objective function fXi for the network depend on the network x

as well as the behavior z, and doing the same for the objective function fZi for the

behavior, a dynamic interdependence between the network and the behavior can

be modelled, so that the model represents social selection (where network changes

depend on network as well as behavior) together with social influence (where

behavior changes depend on behavior as well as network). The possibilities for

jointly analysing social selection and social influence are discussed extensively in

Steglich et al. (2010).

Estimation of these models by the Method of Moments was discussed in Snij-

ders et al. (2007). We limit ourselves here to the case that the objective functions

can be expressed without a dependence on the previous state; the mentioned ref-

erence also treats the general case. The objective function for the network then

has the form

fXi (x, z) =
∑
k

βXk sXik(x, z) (25)
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and the objective function for behavior

fXi (x, z) =
∑
k

βZk s
Z
ik(x, z) . (26)

Estimation by the Method of Moments works like was explained above, but the

statistics still have to be specified. For the dependencies across the two variables,

cross-lagged statistics are used, expressing the ‘causal’ arrow pointing from the,

earlier, explanatory variable to the, later, dependent variable. Define the func-

tions

sXk (x, z) =
∑
i

sXik(x, z)

and

sZk (x, z) =
∑
i

sZik(x, z) .

For parameters βX and βZ , respectively, the moment equations are

M−1∑
m=1

Eθ
{
sXk
(
X(tm+1), z(tm)

)
| X(tm) = x(tm), Z(tm) = z(tm)

}
=

M−1∑
m=1

sXk
(
x(tm+1), z(tm)

)
(k = 1, . . . ,Kβ) , (27)

M−1∑
m=1

Eθ
{
sZk
(
x(tm), Z(tm+1)

)
| X(tm) = x(tm), Z(tm) = z(tm)

}
=

M−1∑
m=1

sZk
(
x(tm), z(tm+1)

)
(k = 1, . . . ,Kβ) . (28)

These estimators perform quite well, but improved performance is expected from

the Generalized Method of Moments. This is the basis of current work, extending

Amati et al. (2015).

An algorithm for Maximum Likelihood is also implemented in the R package

RSiena, and explained in Snijders (2016a). The principles are the same as for the

networks-only model, but there are more details because the changes have more

aspects.
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4.2 Multivariate Networks

Quite a similar approach can be used to model co-evolution of several networks.

Examples are friendship and advice in task-oriented environments, or like and

dislike. Multivariate actor-oriented network models were proposed in Snijders

et al. (2013). Each network is a dependent variable with its own rate function,

objective function, and parameter vector; the objective functions for each will

depend on all networks to represent their dynamic interdependence. Denote the

networks by X1 = (X1ij) and X2 = (X2ij). Here the dependence has a multilevel

aspect (cf. Snijders, 2016b). We give here a number of dependencies at different

levels with illustrative components of the objective function for X2.

• The level of ties or dyads:

– direct entrainment:
∑

j x1ij x2ij ;

– mixed reciprocity:
∑

j x1ji x2ij ;

• The level of actors: degrees in one network affect degrees in the other

network,

– outdegree associations:
(∑

j x1ij
)(∑

j x2ij
)
;

– indegree associations:
(∑

j,h x1hj x2ij
)
;

• The level of triads, which is also related to composition of relations and

algebraic network models. Two examples are, with an interpretation for

X1 = friendship, X2 = advice:

– mixed closure, composition X1 ◦X1 ⇒ X2 :
∑

j,h x1ih x1hj x2ij ;

friends of friends tend to become advisors;

– mixed closure, composition X1 ◦X2 ⇒ X2 :
∑

j,h x1ih x2hj x2ij

advisors of friends tend to become advisors.
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4.3 Other extensions

The use of a simulation model as a model for data, with simulation-based esti-

mates and tests, gives a lot of freedom to define details of the model and extend

or adapt it for particular data structures. This section gives some of these exten-

sions.

Changing composition In many situations it may occur that the actor set

is not constant throughout, but changes between the start and end of the ob-

servation period. Students may leave or enter school, companies can go broke,

organisations may be established. Provided such changes are exogenous, this can

be straightforwardly specified in the simulation design, as discussed in Huisman

and Snijders (2003). The researcher will have to specify the initial ties, and what

‘happens to’ the ties after an actor left the network.

Structurally determined values Some ties may be impossible. For example,

in the network of advice between judges in Tubaro et al. (2017) some of the actors

were available as advisors but could not make any advice choices themselves. It

is also possible that some ties are prescribed, such as advice from a superior to

a direct subordinate. This implies that some tie variables Xij may be structural

zeros or structural ones. Such restrictions can be implemented as specifications

of the set Ai(x) of permitted values of the adjacency matrix for the next step in

the simulations.

Ordered tie values Networks with ordinal discrete tie values can be repre-

sented by multivariate networks, using transformation to the level networks, de-

fined as follows. Let x =
(
xij
)

be the adjacency matrix of a network with possible
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tie values xij = 0 for no tie, and xij = 1, . . . ,K for some K ≥ 2, for increasingly

stronger ties. This can be represented by K level networks x(1), . . . , x(K) defined

by

x
(k)
ij =


0 xij < k

1 xij ≥ k .
(29)

Often an acceptable requirement for the underlying continuous-time process is

that at any given time point t, xij(t) = k can change to the values k − 1 or

k + 1 — to the extent that these are within the range [0,K] — but not make

larger instantaneous jumps. An example with K = 2 is for weak (k = 1) and

strong (k = 2) ties, and the requirement means that to go from no tie to a

strong tie, or vice versa, it is necessary to pass through the intermediate state

of a weak tie. This can be implemented by modeling the multivariate network(
X(1)(t), . . . , x(K)(t)

)
with restrictions (depending on x, t and k) to the sets

A(k)
i (x), enforcing this requirement. This is elaborated in Snijders and Steglich

(2017b).

Duration analysis Analysis of survival times dependent on a network where

the network itself evolves in dependence on the set of survivors can be applied,

e.g., to diffusion of innovations co-evolving with a network. This can be repre-

sented by the model of Section 4.1 with a binary ‘behavior’ variable that cannot

decrease, implemented as a restriction on the permitted set of z′ in the simulation

model in that section. Such a model was proposed by Greenan (2015). Her model

represents the dependence of survival on the network and the covariates in the

rate function, not in the objective function. This leads to a network coevolution

version of the proportional hazards model.
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Non-directed networks A larger difference is the modeling of non-directed

networks, defined by the restriction that xij = xji. Here the actor-oriented

framework requires to express the coordination between actors i and j in the

choice of the tie value xij(t). Several models for this coordination are presented

in Snijders and Pickup (2017).

5 SOME EXAMPLES

The actor-oriented model has been used in various publications, many of which

are listed at http://www.stats.ox.ac.uk/~snijders/siena/.

The example presented here is based on social network data collected in the

‘Teenage Friends and Lifestyle Study’ (Pearson and Michell, 2000; West and

Sweeting, 1996).1 This data set was collected in view of prevention of smoking

among adolescents, and it was also used, e.g., in the article explaining the joint

analysis of social selection and social influence (Steglich et al., 2010), where smok-

ing was the main behavioral variable. Here only results for the network dynamics

are given.

Friendship network data were collected for a cohort of pupils in a school in the

West of Scotland. The panel data were recorded over a three year period starting

in 1995, when the pupils were aged 13, and ending in 1997. A total of 160 pupils

took part in the study, 129 of whom were present at all three measurement points.

The friendship networks analyzed here were observed by allowing the pupils to

name up to six closest friends. A picture of the second wave is in Figure 1.

1The study was funded by the Chief Scientist Office of the Scottish Home and Health Depart-

ment under their Smoking Initiative (grant K/OPR/17/8), and was executed by Lynn Michell

and Patrick West of the Medical Research Council / Medical Sociology Unit, University of

Glasgow.
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The data set analyzed here consists of the pupils present at all three waves.

Based on sociological theories about friendship combined with earlier studies, the

model included the following set of effects:

1. The outdegree effect (7).

2. The reciprocity effect (8).

3. To account for transitive closure, i.e., the tendency for friends of friends to

be friends, the so-called geometrically weighted edgewise shared partners

(‘GWESP’) effect (Snijders et al., 2006; Hunter, 2007). This differs from

the transitive triplets effect (9) in that the number of indirect connections

does not have a linear effect on the log-probability for the creation of a

direct tie, but rather a concave increasing effect:

GWESP(i, α, x) =
∑
j

xij e
α
{

1 −
(
1− e−α

)∑
h xihxhj

}
. (30)

Here α is a tuning parameter, which here is chosen at the usual fixed value

of α = ln(2). The GWESP effect fits better than the transitive triplets

effect for this and many other data sets.

4. Four degree-related effects, useful for a good representation of the indegree

and outdegree distributions:

sIPi(x) =
∑
j

xij x+j indegree popularity

sOAi(x) =
∑
j

xij xi+ outdegree activity

sIAi(x) =
∑
j

xij x+i indegree activity

sRAi(x) =
∑
j

xij

(∑
h

xihxhi

)
reciprocated degree activity .

Here the + denotes summation over the index.
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5. Having the same gender,

sSGi =
∑
j

xij I{gender i = gender j} ,

where I{A} is the indicator function of the event A.

6. The distance between the dwelling places. This was operationalized as the

centered logarithm of the distance between the centroids of the postcode

regions:

sLDi =
∑
j

xij ln(dij) .

Estimation was done with the Method of Moments as in Snijders (2001), using the

R package RSiena version 1.1-294. To account for the restriction that outdegrees

were not larger than 6, the permitted set Ar
i(x

0) in Section 2 was the set of all

digraphs with outdegrees not larger than 6, and differing in no more than one tie

variable from x0.

The results are in Table 1. The interpretation is the following. For the rate pa-

rameters, actors have on average 13 and 10 opportunities for change, respectively,

in periods 1 (wave 1 – wave 2) and 2 (wave 2 – wave 3). Recall that an opportu-

nity for change does not need to lead to a change, and changes can be canceled

before being observed; these estimated rate parameters are therefore higher than

the observed average number of changes. The parameters in the objective func-

tion can be tested by referring the t-ratio of estimated divided by standard error

to an approximate standard normal distribution. No proof is available for this,

but it is supported by extensive simulation studies. Since all effects in this model

operate for creation of new ties as well as for maintenance of existing ties, positive

parameters have the interpretation that the effect works for both these aspects of

the dynamics. The outdegree effect balances between creation and termination of
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ties, given all other effects in the model, and usually is taken for granted in the in-

terpretation; it is negative, reflecting that the probability of befriending arbitrary

others is low. There is a strong tendency toward reciprocity (β̂R = 3.297) as well

as transitive closure as represented by the GWESP effect (β̂GWESP = 1.856). This

is generally seen for friendship networks. Friendship ties become less likely as the

distance between dwellings increases (β̂LD = −0.18), and are more likely between

same-gender pairs (β̂SG = 0.636). High indegrees have a negative effect on receiv-

ing and keeping incoming friendships (β̂IP = −0.055) and also on creating and

maintaining outgoing friendships (β̂IA = −0.115). High current outdegrees have

a positive effect on creating and maintaining outgoing friendships (β̂OA = 0.101).

However, all these degree effects should be considered in the light of all other

effects, in particular the reciprocated degree-activity effect (β̂RA = −0.244). An

interpretation is that those who have many reciprocated friendships are satisfied

with their network position, this negative parameter showing that they are less

active in creating new ties; the strongly positive reciprocity effect implies they

keep their existing ties with a high probability; contrasting with this, those with

few reciprocated friendships will try to establish more friendships. Note that the

maximum outdegree of 6 is a bound which is used as a constraint in the simula-

tion model; this should be taken into account in the interpretation of parameter

estimates.
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Figure 1: Second wave of West of Scotland friendship network. Arrows denote

ties. Boys represented as squares, girls as circles. Color/shading represents smok-

ing (bottom) and drinking (top): orange/light is high, blue/dark is low. Picture

made by Krists Boitmanis.



28 Tom A.B. Snijders

Effect parameter (s.e.)

Rate period 1 ρ̂1 = 12.853 (1.375)

Rate period 2 ρ̂2 = 10.217 (1.020)

outdegree β̂OD = –3.092 (0.224)

reciprocity β̂R = 3.297 (0.271)

GWESP β̂GWESP = 1.856 (0.083)

indegree-popularity β̂IP = –0.055 (0.020)

outdegree-activity β̂OA = 0.101 (0.035)

reciprocated degree-activity β̂RA = –0.244 (0.065)

indegree-activity β̂IA = –0.115 (0.051)

log distance (centered) β̂LD = –0.180 (0.040)

same gender β̂SG = 0.636 (0.083)

Table 1: Estimation results of actor-oriented model for Glasgow data: parameter

estimates and standard errors.
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Co-evolution of networks and behavior The models for co-evolution of

networks and behavior have been used in various studies of how adolescent life

styles and health behaviors are influenced by friends’ behaviors, and how impor-

tant they are for making and losing friends. An overview is the special issue

‘Network and Behavior Dynamics in Adolescence’ of the Journal of Research on

Adolescence, see Veenstra et al. (2013).

Multivariate dependent networks A multivariate application was pre-

sented by Huitsing et al. (2014). Two interdependent networks of bullying and

defending were studied in three elementary schools with a total of 354 children

over three waves. The children could nominate others in the school who bullied

them, and also others who defended them. Note that bullies can be themselves

also defended, which points to cooperation in bullying. Of special interest was

how bullying and defending influenced each other, with distinct attention for ef-

fects at the dyadic, actor, and triadic levels. At the dyadic level, unexpectedly, no

significant effects were found and also at the actor level, where effects of in- and

outdegrees were tested, results were not strong and differed somewhat between

the three schools. Clear patterns did emerge, however, at the triadic level. For

example, in these three groups, if i bullies j and k defends j, then the proba-

bility is higher that, later, i will also bully k: defending others leads to being

victimized, in turn, by their bullies. Another pattern is that if i defends j and

j bullies k, the probability will be higher that, later, i will also bully k. Here

the defending is interpreted not as ‘defense against bullies’ but ‘defending bullies

against others who try to intervene’. Such patterns can be called mixed triadic

closure, generalizing the more well-known pattern of transitive network closure.
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6 SOME OTHER RELATED MODELS

There are a lot of non-statistical models for network dynamics, designed for the-

oretical or other purposes. These are too many to even start reviewing here.

Surveys of statistical models for networks were given by Goldenberg et al. (2009)

and Kolaczyk (2009). Reviews from an economics, statistical physics, and socio-

logical point of view, respectively, are to be found in Jackson (2008) and Graham

(2015); Newman (2010); and Snijders (2011). An overview of dynamic network

models from a background of statistical mechanics, but with quite general ap-

plications, is Holme and Saramäki (2012). In the following, we briefly mention

some statistical longitudinal network models for networks observed at two or

more discrete time points.

Some of these are longitudinal versions of the Exponential Random Graph

Model, the ‘ERGM’ of Wasserman and Pattison (1996) and Lusher et al. (2013).

Of these, the longitudinal tie-oriented model of Koskinen and Snijders (2013)

is closest to the stochastic actor-oriented models presented here. This model

is called the longitudinal ERGM (LERGM) in Koskinen et al. (2015). It is a

continuous time model, with changes restricted to sequences of changes of single

tie variables. The opportunities for change occur randomly for pairs of nodes,

and the probability of tie changes, given that some pair of nodes was selected, are

defined by a logistic regression model conditional on the rest of the graph just like

in the basic ERGM. The model specification can be done in quite a similar way as

for the actor-oriented model proposed in this chapter, except that an analogue of

the rate function is not straightforward to define and not implemented in current

software.

Hanneke et al. (2010) proposed the temporal ERGM (TERGM). This is a
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discrete time network model for a network time series X(t1), . . . , X(tM ) where

the conditional distribution of X(tm) given X(tm−1) has an ERGM distribution.

They elaborated the case where the Xij(tm) for i, j = 1, . . . , n are conditionally

independent given X(tm−1). This avoids the so-called near-degeneracy problems

discussed in Snijders et al. (2006) and Schweinberger (2011), but Lerner et al.

(2013) concluded that the restriction to models with conditional independence

given the preceding observation does not give a good representation of network

dependencies, unless inter-observation times are relatively short. A different pre-

sentation of basically the same model was given by Paul and O`Malley (2013).

The TERGM was extended by Krivitsky and Handcock (2014) to the ‘separable

temporal ERGM (STERGM)’ which is a TERGM for which the newly created

ties are conditionally independent of the terminated ties. This assumption will

not always be tenable, but it may facilitate interpretation of parameters. Their

article contains an application implementing triadic network dependence.

Other longitudinal models build on the latent space network models of Hoff

et al. (2002). These models postulate a low-dimensional Euclidean space in which

the nodes are positioned, with the log-odds of a tie being a linear function of

covariates and the distance between the nodes. Durante and Dunson (2014)

propose a longitudinal latent space model, using the inner product instead of the

distance; whether this is well interpretable and provides a good fit will depend

on the application. In their model the positions of the nodes evolve in continuous

time according to a Gaussian process.

A different approach is taken by Westveld and Hoff (2011). Since the tie xij = 1

is interpreted as a connection going from i to j, it is customary to call i the sender

and j the receiver of the tie. Westveld and Hoff specify a mixed effects model,
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with sender and receiver effects, which are correlated over time. In a sense this

is a longitudinal version of the p2 model of van Duijn et al. (2004), but with a

less detailed representation of reciprocity.

For the Stochastic Actor-Oriented Model as well as all these other models,

estimation procedures have been developed but up to now no mathematical proofs

are available of properties such as unbiasedness or consistency. The relevant

asymptotics here would be that, with a fixed number of waves M , the number of

nodes n tends to infinity while the average degree remains bounded in probability.

The network dependence is so difficult that until now it seems these models

have resisted attempts at constructing such proofs, although various simulations

have led to conjectures that indeed some consistency and asymptotic normality

properties should hold. Graham (2015) reviews some identification properties.

7 DISCUSSION

The crucial issue for network modeling is how to represent dependence structures

between network ties. For single (‘cross-sectional’) observations of one network

this is very hard, but for longitudinal network data there is at least the arrow of

time. The Stochastic Actor-Oriented Model is designed for longitudinal network

data collected in a panel design, with 2 or more panel waves. It is a Markov

chain model, consisting of a combination of two generalized linear models for the

unobserved continuous-time process, but observed only at the times of the panel

waves. If change between subsequent waves is not too large, then a strong de-

pendence between the repeated observations may be presumed. A rule of thumb

was proposed (Snijders et al., 2010) that Jaccard measures of similarity between

successive waves preferably should be .3 or more. This means that the number of
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remaining ties is not much less than the average of the number of newly created

ties and the number of terminated ties. Experience with applications has shown,

however, that data sets with larger turnover, and Jaccard similarities between

successive waves lower even than 0.2, may also be meaningfully analysed with

this model. When the amount of change is somewhat limited in this way, and

when it is reasonable to assume that, as an approximation, network change took

place as an unobserved sequence of dyadic (as opposed to groupwise) changes,

the Stochastic Actor-Oriented Model may be a good representation of network

dynamics. As with other generalized linear models there is a wide flexibility

to adapt the model specification to the domain of application, research question,

and subject-matter knowledge. How to specify the model is discussed at length in

Snijders and Steglich (2017a). Some examples are given in Snijders and Steglich

(2017b).

The model is available in the R package RSiena. Its manual (Ripley et al.,

2016) presents many specification possibilities. Published applications can be

found at website http://www.stats.ox.ac.uk/~snijders/siena/.

The choice between models, comparing the Stochastic Actor-Oriented Model

to other models such as those mentioned in Section 6, should be based on con-

siderations such as goodness of fit, conceptual validity, specification possibilities,

interpretability, and practicality. This will depend also on the purposes of the

data analysis: e.g., studying network dependencies themselves, or controlling for

network structure in tests of effects of actor or dyadic variables. Goodness of fit,

in the sense of a good representation of dependence structures, can be assessed

by comparing simulated data to observed data in the way discussed for cross-

sectional network models by Hunter et al. (2008). Methods for doing this were



34 Tom A.B. Snijders

developed by Lospinoso (2012) and are presented in Snijders and Steglich (2017a).

The network effects that can be specified in the Stochastic Actor-Oriented Model

and in the various longitudinal variants of the Exponential Random Graph Model

give more flexible possibilities to explicitly specify and investigate the details of

the network dependence than the latent space or the mixed effect models.

The Stochastic Actor-Oriented Model is based on a continuous-time probability

model, while the data are assumed to be collected at discrete time moments,

possibly as few as 2. With the free multiplicative parameter ρm in the rate

function (3), this implies that as long as observation does not interfere with the

process, the timing of the observations does not affect the validity of the model.

The model refers to a process unfolding in continuous time with a stationary

transition distribution (unless some of the parameters are time-dependent) of

which the marginal distribution is not necessarily stationary; the meaning and

values of parameters other than ρm are unrelated to the observation times. This

may be an advantage over discrete-time models when modeling processes for

which time elapsed between observations is irregular, or does not have a regular

consequence on the network changes.

For modeling cross-sectional network data the Exponential Random Graph

Model (Wasserman and Pattison, 1996; Lusher et al., 2013) is much used. This

model is known to be plagued by the problem of near-degeneracy, which appears

as the property that for many quite usual observed data sets, the maximum

likelihood estimate is obtained for a distribution concentrating almost all of its

probability mass on a few networks, some complete or very dense and some

empty or very sparse, for which the expected value of the sufficient statistics is

indeed equal to the observed value, but all of which are quite distant from the
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observed network. This problem is discussed, e.g., in Snijders et al. (2006), Ri-

naldo et al. (2009), and Schweinberger (2011), and the former reference proposes

specifications that avoid near-degeneracy. Because of its longitudinal nature, this

problem does not affect the Stochastic Actor-Oriented Model; depending on the

model specification, it may, however, apply to its limiting stationary distribution.

For practical application, this is of no direct concern. There is a relation with

model specification, however, because the specifications for which the limiting

distribution could be near-degenerate might also be prone to having a worse fit

when applied to panel data. As an example, transitivity for cross-sectional net-

works cannot be modeled well by the Exponential Random Graph Model with

the count of transitive triplets among the sufficient statistics; this statistic leads

to near-degenerate models. For the purpose of modeling transitivity, it can be re-

placed by the geometrically weighted edgewise shared partners (‘GWESP’) effect

which is analogous to (30), see Hunter (2007). The count of transitive triplets

defines a linear effect of the number of indirect connections on the log-odds for

the existence of a direct tie; the GWESP statistic defines a concave increasing

effect, and its sublinearity counters the near-degeneracy. For the longitudinal

Stochastic Actor-Oriented Model the transitive triplets effect is (9); this effect

can be used mostly without a problem, but often a better fitting representation

of transitivity is given by the GWESP effect (30).

Modeling network dynamics is quite demanding in a number of respects, and

the area is itself highly dynamic. More models will have to be developed in

response to needs of empirical researchers. New procedures should be constructed

that may be more efficient statistically and/or computationally, and implemented

in software. Mathematical results should be proved for properties of the statistical
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procedures. A major open question is the robustness of estimation results for

misspecification, and the role played in this respect by the goodness of fit of a

model.
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Ripley, R. M., T. A. B. Snijders, Z. Bóda, A. Vörös, and P. Preciado (2016).

Manual for Siena version 4.0. Technical report, Oxford: University of Oxford,

Department of Statistics; Nuffield College.

Robbins, H. and S. Monro (1951). A stochastic approximation method. Annals

of Mathematical Statistics 22, 400–407.

Rubinstein, R. (1986). The score function approach for sensitivity analysis of

computer simulation models. Mathematics and Computers in Simulation 28,

351–379.

Ruppert, D. (1988). Efficient estimation from a slowly convergent Robbins-Monro

process. Technical Report 781, School of Operations Research and Industrial

Engineering, Cornell University.

Ruppert, D. (1991). Stochastic approximation. In B. K. Ghosh and P. K.

Sen (Eds.), Handbook of Sequential Analysis, pp. 503–529. New York: Mar-

cel Dekker.



Stochastic Actor-Oriented Models for Network Dynamics 41

Schwabe, R. and H. Walk (1996). On a stochastic approximation procedure based

on averaging. Metrika 44, 165–180.

Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete ex-

ponential families. Journal of the American Statistical Association 106, 1361–

1370.

Schweinberger, M. and T. A. B. Snijders (2007). Markov models for digraph panel

data: Monte Carlo-based derivative estimation. Computational Statistics and

Data Analysis 51 (9), 4465–4483.

Snijders, T. (2016a). Siena algorithms. Technical report, University of Groningen,

University of Oxford,

http://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf.

Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics.

Sociological Methodology 31, 361–395.

Snijders, T. A. B. (2011). Statistical models for social networks. Annual Review

of Sociology 37, 131–153.

Snijders, T. A. B. (2016b). The multiple flavours of multilevel issues for net-

works. In E. Lazega and T. A. B. Snijders (Eds.), Multilevel Network Analysis

for the Social Sciences; Theory, Methods and Applications, pp. 15–46. Cham:

Springer.

Snijders, T. A. B. and P. Doreian (2010). Introduction to the special issue on

network dynamics. Social Networks 32, 1–3.

Snijders, T. A. B. and P. Doreian (2012). Introduction to the special issue on

network dynamics (part 2). Social Networks 34, 289–290.

Snijders, T. A. B., J. H. Koskinen, and M. Schweinberger (2010). Maximum like-



42 Tom A.B. Snijders

lihood estimation for social network dynamics. Annals of Applied Statistics 4,

567–588.

Snijders, T. A. B., A. Lomi, and V. Torlò (2013). A model for the multiplex
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