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Abstract:
Sample size determination in multilevel designs requires attention to the fact
that statistical power depends on the total sample sizes for each level. It is
usually desirable to have as many units as possible at the top level of the
multilevel hierarchy. Some formulae are given to obtain insight in the design
aspects that are most influential for standard errors and power.
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Power and sample size in multilevel modeling

Power of statistical tests generally depends on sample size and other design
aspects; on effect size or, more generally, parameter values; and on the level
of significance. In multilevel models, however, there is a sample size for each
level, defined as the total number of units observed for this level. E.g., in
a three-level study of pupils nested in classrooms nested in schools, there
might be observations on 60 schools, a total of 150 classrooms, and a total of
3,300 pupils. On average in the data, each classroom then has 22 pupils, and
each school contains 2.5 classrooms. What are the relevant sample sizes for
power issues? If the researcher has the freedom to choose the sample sizes
for a planned study, what are sensible guidelines?

Power depends on the parameter being tested, and power considerations
are different depending on whether the researcher focuses on, e.g., testing
a regression coefficient, a variance parameter, or is interested in the size of
means of particular groups. In most studies, attention goes primarily to
regression coefficients, and this article focuses on such coefficients. The cited
literature gives methods to determine power and required sample sizes also
for estimating parameters in the random part of the model.
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A primary qualitative issue is that, for testing the effect of a level-one
variable, the level-one sample size (in the example, 3,300) is of main impor-
tance; for testing the effect of a level-two variable it is the level-two sample
size (150 in the example); etc. The average cluster sizes (in the example,
22 at level two and 2.5 at level three) are not very important for the power
of such tests. This implies that the sample size at the highest level is the
main limiting characteristic of the design. Almost always, it will be more
informative to have a sample of 60 schools with 3,300 pupils than one of
30 schools also with 3,300 pupils. A sample of 600 schools with a total of
3,300 pupils would even be a lot better with respect to power, in spite of
the low average number of students (5.5) sampled per school, but in practice
such a study would of course be much more expensive. A second qualitative
issue is that for testing fixed regression coefficients, small cluster sizes are
not a problem. The low average number of 2.5 classrooms per school has
in itself no negative consequences for the power of testing regression coef-
ficients. What is limited by this low average cluster size, is the power for
testing random slope variances at the school level, i.e., between-school vari-
ances of effects of classroom- or pupil-level variables; and the reliability of
estimating those characteristics of individual schools, calculated from class-
room variables, that differ strongly between classes. (It may be recalled that
the latter characteristics of individual units will be estimated in the multi-
level methodology by posterior means, also called empirical Bayes estimates;
see the Encyclopedia entry on Predicting the random effects.)

When quantitative insight is required in power for testing regression co-
efficients, it often is convenient to consider power as a consequence of the
standard error of estimation. Suppose we wish to test the null hypothesis
that a regression coefficient γ is 0, and for this coefficient we have an estimate
γ̂ which is approximately normally distributed, with standard error s.e.(γ̂).
The t-ratio γ̂/s.e.(γ̂) can be tested using a t-distribution; if the sample size
is large enough, using a standard normal distribution. The power will be
high if the true value (effect size) of γ is large and if the standard error is
small; and a higher level of significance (larger permitted probability of a
type I error) will lead to a higher power. This is expressed by the following
formula, which holds for a one-sided test, and where the significance level is
indicated by α and the type-two error probability, which is equal to 1 minus
power, by β:

γ

s.e.(γ̂)
≈ z1−α + z1−β ,

where z1−α and z1−β are the critical points of the standard normal distribu-
tion. E.g., to obtain at significance level α = 0.05 a fairly high power of at
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least 1−β = 0.80, we have z1−α = 1.645 and z1−β = 0.84, so that the ratio of
true parameter value to standard error should be at least 1.645+0.84 ≈ 2.5.

For two-sided tests, the approximate formula is

γ

s.e.(γ̂)
≈ z1−(α/2) + z1−β ,

but in the two-sided case this formula holds only if the power is not too small
(or, equivalently, the effect size is not too small), e.g., 1− β ≥ 0.3.

For some basic cases, explicit formulae for the estimation variances (i.e.,
squared standard errors) are given below. This gives a basic knowledge of,
and feeling for, the efficiency of multilevel designs. These formulae can be
used to compute required sample sizes. The formulae also underpin the qual-
itative issues mentioned above. A helpful concept for developing this feeling
is the design effect, which indicates how the particular design chosen – in our
case, the multilevel design – affects the standard error of the parameters. It
is defined as

deff =
squared standard error under this design

squared standard error under standard design
,

where the ‘standard design’ is defined as a design using a simple random
sample with the same total sample size at level one. (The determination of
sample sizes under simple random sample designs is treated in the article in
this Encyclopedia on Sample size and power calculation.) If deff is greater
than 1, the multilevel design is less efficient than a simple random sample
design (with the same sample size); if it is less than 1, the multilevel design
is more efficient. Since squared standard errors are inversely proportional to
sample sizes, the required sample size for a multilevel design will be given by
the sample size that would be required for a simple random sample design,
multiplied by the design effect.

The formulae for the basic cases are given here (also see [11]) for two-level
designs, where the cluster size is assumed to be constant, and denoted by
n. These are good approximations also when the cluster sizes are variable
but not too widely different. The number of level-two units is denoted m,
so the total sample size at level one is mn. In all models mentioned below,
the level-one residual variance is denoted var(Rij) = σ2 and the level-two
residual variance by var(U0j) = τ 2.

1. For estimating a population mean µ in the model

Yij = µ + U0j + Rij ,
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the estimation variance is

var(µ̂) =
nτ 2 + σ2

m n
.

The design effect is deff = 1+(n− 1)ρI ≥ 1 , where ρI is the intraclass
correlation, defined by ρI = τ 2/(σ2 + τ 2).

2. For estimating the regression coefficient γ1 of a level-one variable X1

in the model

Yij = γ0 + γ1X1ij + γ2X2ij + . . . + γpXpij + U0j + Rij ,

where it is assumed that X1 does not have a random slope and has
zero between-group variation, i.e., a constant group mean, and that it
is uncorrelated with any other explanatory variables Xk (k ≥ 2), the
estimation variance is

var(γ̂) =
σ2

m n s2
X1

,

where the within-group variance s2
X1 of X1 also is assumed to be con-

stant. The design effect here is deff = 1− ρI ≤ 1 .

3. For estimating the effect of a level-one variable X1 under the same
assumptions except that X1 now does have a random slope,

Yij = γ0 + (γ1 + U1j)X1ij + γ2X2ij + . . . + γpXpij + U0j + Rij ,

where the random slope variance is τ 2
1 , the estimation variance of the

fixed effect is

var(γ̂) =
n τ 2

1 s2
X1 + σ2

m n s2
X1

,

with design effect

deff =
n τ 2

1 s2
X1 + σ2

τ 2
1 s2

X1 + τ 2 + σ2

which can be greater or less than 1.
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4. For estimating the regression coefficient of a level-two variable X1 in
the model

Yij = γ0 + γ1X1j + γ2X2ij + . . . + γpXpij + U0j + Rij ,

where the variance of X1 is s2
X1, and X1 is uncorrelated with any other

variables Xk (k ≥ 2), the estimation variance is

var(γ̂) =
n τ 2 + σ2

m n s2
X1

,

and the design effect is deff = 1 + (n− 1)ρI ≥ 1 .

This illustrates that multilevel designs sometimes are more, and sometimes
less efficient than simple random sample designs. In case 2, a level-one vari-
able without between-group variation, the multilevel design is always more
efficient. This efficiency of within-subject designs is a well-known phenom-
enon. For estimating a population mean (case 1) or the effect of a level-two
variable (case 4), on the other hand, the multilevel design always is less effi-
cient, and more seriously so as the cluster size and the intraclass correlation
are larger.

In cases 2 and 3, the same type of regression coefficient is being esti-
mated, but in case 3 variable X1 has a random slope, unlike in case 2. The
difference in deff between these cases shows that the details of the multi-
level dependence structure matters for these standard errors, and hence for
the required sample sizes. It must be noted that what matters here is not
how the researcher specifies the multilevel model, but the true model. If in
reality there is a positive random slope variance but the researcher specifies
a random intercept model without a random slope, then the true estimation
variance still will be given by the formula above of case 3, but the standard
error will be misleadingly estimated by the formula of case 2, usually a lower
value.

For more general cases, where there are several correlated explanatory
variables, some of them having random slopes, such clear formulae are not
available. Sometimes a very rough estimate of required sample sizes can still
be made on the basis of these formulae. For more generality, however, the
program PinT (see below) can be used to calculate standard errors in rather
general two-level designs.

A general procedure to estimate power and standard errors for any para-
meters in arbitrary designs is by Monte Carlo simulation of the model and
the estimates. This is described in [4] (Chapter 10).
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For further reading, general treatments can be found in [1], [2], [4] (Chap-
ter 10), [11], and [13] (Chapter 10). More specific sample size and design
issues, often focusing on two-group designs, are treated in [3], [5], [6], [7], [8],
[9], and [10].

Computer programs

ACluster calculates required sample sizes for various types of cluster random-
ized designs, not only for continuous but also for binary and time-to-event
outcomes, as described in [1].
See website www.update-software.com/Acluster .

OD (Optimal Design) calculates power and optimal sample sizes for testing
treatment effects and variance components in multisite and cluster random-
ized trials with balanced two-group designs, and in repeated measurement
designs, according to [8], [9], [10].
See website http://www.ssicentral.com/other/hlmod.htm .

PinT (Power in Two-level designs) calculates standard errors of regression
coefficients in two-level designs, according to [12]. With extensive manual.
See website http://stat.gamma.rug.nl/snijders/multilevel.htm .

RMASS2 calculates the sample size for a two-group repeated measures design,
allowing for attrition, according to [3].
See website http://tigger.uic.edu/ hedeker/works.html .
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