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Lectures take place Mondays 11-12 and Thursdays 10-11,snvedk plus
Wednesday Week 1 at 11, andt Thursday Week 3 at 10. There will be two
problem sheets, and two Practical classes Friday of Weekl Faday of Week
4 and there will be two Examples classes Tuesday 10-11 of $\@eid 5. The
Practical in Week 4 will be assessed. Your marker for the lpralsheets is Yang
Wu; the work is due Friday of Weeks 2 and 4 at 5 pm.

While the examples class will cover problems from the probsteet, there
may not be enough time to cover all the problems. You will bién@ost from the
examples class if you (attempt to) solve the problems on hieetsahead of the
examples class.

Lecture notes are published lattp://www.stats.ox.ac.uk/~reinert/
timeseries/timeseries.htm. The notes may cover more material than the
lectures. The notes may be updated throughout the lecturseo

Time series analysis is a very complex topic, far beyond wbald be covered
in an 8-hour class. Hence the goal of the class is to give & twerview of the
basics in time series analysis. Further reading is recordeten

1 What are Time Series?

Many statistical methods relate to data which are indepamndeat least uncorre-
lated. There are many practical situations where data rbiglcbrrelated. This is
particularly so where repeated observations on a giverisyate made sequen-
tially in time.

Data gathered sequentially in time are calldtree series

Examples

Here are some examples in which time series arise:
e Economics and Finance

e Environmental Modelling

e Meteorology and Hydrology



e Demographics
e Medicine
e Engineering

e Quality Control

The simplest form of data is a long-ish series of continuoaasurements at
equally spaced time points.
That is

e observations are made at distinct points in time, these poiets being
equally spaced

e and, the observations may take values from a continuousdison.

The above setup could be easily generalised: for examm@dirttes of obser-
vation need not be equally spaced in time, the observati@ysanly take values
from a discrete distribution, . ..

If we repeatedly observe a given system at regular timevaltgr it is very
likely that the observations we make will be correlated. ®ocannot assume that
the data constitute a random sample. The time-order in wihietobservations
are made is vital.

Objectives of time series analysis:

e description - summary statistics, graphs

¢ analysis and interpretation - find a model to describe the til@pendence
in the data, can we interpret the model?

e forecasting or prediction - given a sample from the serim®dast the next
value, or the next few values

e control - adjust various control parameters to make thesdit closer to a
target

e adjustment - in a linear model the errors could form a timéeseof cor-
related observations, and we might want to adjust estimedednces to
allow for this



2 Examples: from Venables and Ripley, data from Diggle (1990)
1h: a series of 48 observations at 10-minute intervals onrligigig hormone
levels for a human female

deaths: monthly deaths in the UK from a set of common lung diseases fo
the years 1974 to 1979

500 1000 1500 2000 2500 3000 3500 4000

T T T T T T T
1974 1975 1976 1977 1978 1979 1980

dotted series = males, dashed = females, solid line = total
(We will not split the series into males and females from now o

1.1 Definitions

Assume that the series, runs throughout time, that {SX;);—o +1,+0,..., butis only
observed attimes=1,...,n.



So we observéXy, ..., X,). Theoretical properties refer to the underlying
process X;)iez.

The notationsX,; and X (¢) are interchangeable.

The theory for time series is based on the assumption of rekooder sta-
tionarity’. Real-life data are often not stationary: e.geylexhibit a linear trend
over time, or they have a seasonal effect. So the assumtistetionarity below
apply after any trends/seasonal effects have been rem@wwill look at the
issues of trends/seasonal effects later.)

1.2 Stationarity and autocovariances

The process is calledeakly stationaryr second-order stationary for all inte-
gerst, T

E(Xy) = p
COV(Xt+T7 Xr) =Vt

wherey is constant ang, does not depend on
The process istrictly stationaryor strongly stationaryf

(Xeyy oo, X)) and  (Xygry oo, Xpir)
have the same distribution for all sets of time points. . , ¢, and all integers-.

Notice that a process that is strictly stationary is autacady weakly station-
ary. The converse of this is not true in general.

However, if the process is Gaussian, that (st , . . ., X;, ) has a multivariate
normal distribution for all¢,, ..., t;, then weak stationarity does imply strong
stationarity.

Note thatvar(X;) = 7, and, by stationarityy_, = ;.
The sequenceéy;) is called theautocovariance functian
Theautocorrelation functior{acf) (p;) is given by
_n
Yo
The acf describes the second-order properties of the tingsse

pr = corr(Xypr, Xr)
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We estimatey, by ¢;, andp, by r;, where

J— Ct

min(n
1 —
¢ == Y X —X[X.-X]  and o =—.

—t,n)
Co
s=max(1,1—t)

e Fort > 0, the covarianceov(X,,,, X,) is estimated from the — ¢ ob-
served pairs
(Xt+17X1)7 R (Xna Xn—t)-

If we take the usual covariance of these pairs, we would hegudifferent
estimates of the mean and variances for each of the subg&ties. . ., X,,)

and (X, ..., X, ), whereas under the stationarity assumption these have
the same mean and variance. So we Xisgwice) in the above formula.

A plot of r, againstt is called thecorrelogram

A series(X;) is said to bdaggedif its time axis is shifted: shifting by lags
gives the seriesX;_,).

Sor, is the estimated autocorrelation at Iggit is also called thesample
autocorrelation function

1h: autocovariance function

020 025 030

1h: autocorrelation function



2 Models of stationary processes

Assume we have a time series without trends or seasonatffEieat is, if nec-
essary, any trends or seasonal effects have already beewgéiinom the series.
How might we construct a linear model for a time series wittbaarrelation?

Linear processes

The process$X,) is called dinear processf it has a representation of the form

Xy =p+ Z Cr€t—r

rT=—00

v



wherey is a common meanjc, } is a sequence of fixed constants drd; are
independent random variables with mean 0 and common varianc

We assumé_ ¢? < oo to ensure that the variance & is finite.

If the {¢,} are identically distributed, then such a orocess is sgrgtdtionary.
If ¢, = 0forr < 0itis said to becausal i.e. the process at timtedoes not depend
on the future, as yet unobserved, values;of

The AR, MA and ARMA processes that we are now going to define are al
special cases of causal linear processes.

2.1 Autoregressive processes

Assume that a current value of the series is linearly depgng®on its previous
value, with some error. Then we could have the linear retatigp

X,=aX,1+¢

whereg, is awhite noisdime series. [That is, the are a sequence of uncorrelated
random variables (possibly normally distributed, but netessarily normal) with
mean 0 and variancg’.]

This model is called aautoregressivéAR) model, sinceX is regressed on
itself. Here the lag of the autoregression is 1.

More generally we could have an autoregressive model ofr grden ARp)
model, defined by

p
Xt = Z aithi + €.
i=1

At first sight, the AR(1) process
Xy =aX; 1+
is not in the linear formX; = u + > ¢.¢,_,.. However note that

Xy =aXi 1+ ¢
=€+ Oé(Et_l + OéXt_Q)
=6+ ag_+alg ot + o

2
=€t o1+ € o+

1 k
€t k1 + Q" Xy,



which is in linear form.
If ¢, has variance?, then from independence we have that
Var(X,) = o* + a’0* 4+ - + " Vo? + o Var(X,_;).
The sum converges as we assume finite variance.

But the sum converges only if| < 1. Thus|a| < 1 is a requirement for the
AR(1) process to be stationary.
We shall calculate the acf later.

2.2 Moving average processes

Another possibility is to assume that the current value efdéries is a weighted
sum of past white noise terms, so for example that

Xt = € + Pep1.

Such a model is calledmoving averagéMA) model, sinceX is expressed as a
weighted average of past values of the white noise series.

Here the lag of the moving average is 1. We can think of the evhdise
series as beingnovationsor shocks new stochastically uncorrelated information
which appears at each time step, which is combined with atimavations (or
shocks) to provide the observable setlées

More generally we could have a moving average model of aydan MA(g)
model, defined by

q
Xy =6+ Z Bi€i—j-

j=1

If ¢, has variance?, then from independence we have that

q
Var(X,) = o* + Z 3ia.

J=1

We shall calculate the acf later.



2.3 ARMA processes

An autoregressive moving average proc@s8MA(p, q) is defined by

P q
Xy = Z a; Xy + Zﬁj@—j
i=1 =0

whereg, = 1.

A slightly more general definition of an ARMA process incorgi&s a non-
zero mean valug, and can be obtained by replaciag by X; — 4 and X, ; by
X;_; — u above.

From its definition we see that an M@)(process is second-order stationary

foranyp,..., 3,

However the ARf{) and ARMA(p, ¢) models do not necessarily define second-
order stationary time series.

For example, we have already seen that for an AR(1) model we theecon-
dition |«| < 1. This is thestationarity conditionfor an AR(1) process. All AR
processes require a condition of this type.

Define, for any complex number theautoregressive polynomial

balz) =1—aq2— - — a2l
Then thestationarity conditiorfor an AR(p) process is:
all the zeros of the functiop,(z) lie outside the unit circle in the complex plane

This is exactly the condition that is needed fm,...,a,} to ensure that the
process is well-defined and stationary (Beeckwell and Davis 1991), pp. 85-87

2.4 The backshift operator
Define thebackshift operato3 by
BX,=X,1, B?X,=B(BX,) =X,

We include the identity operatdiX;, = B°X, = X,.
Using this notation we can write the AR(processX; = > 7 a;X;_; +¢ as

p
(I - ZOQBZ> Xt = €
1=1

10



or even more concisely
$a(B)X = .

Recall that an MA{) process isX; = ¢, + >_1_, Be1 ;.
Define, for any complex numbet themoving average polynomial

op(z) =1+ Prz+ -+ B2
Then, in operator notation, the MY process can be written
q .
X, = ([ +) ﬁij> €
j=1
or

X = ¢3(B)e.

For an MA(g) process we have already noted that there is no need foi@nstat
arity condition on the coefficients;, but there is a different difficulty requiring
some restriction on the coefficients.

Consider the MA(1) process

Xt = € + Pep1.

As ¢, has mean zero and varianeg we can calculate the autocovariances to be

% = Var(Xo) = (1+ %0’

7 = Cov(Xy, Xy)
= Couv(e, 1) + Cou(eg, Bey) + Cov(Be_q, €1) + Cov(Be_q, Be)
= Cov(e, Peo)
= fo%,

Ye = 0, ]{322

So the autocorrelations are

g
14 5%

p0:17 P1 =



Now consider the identical process but wittreplaced byl /3. From above
we can see that the autocorrelation function is unchangetdi®yransformation:
the two processes defined Byand1/5 cannot be distinguished.

It is customary to impose the followinigentifiability condition

all the zeros of the functiop;(z) lie outside the unit circle in the complex plane

The ARMA(p, q) process

p q
X, = Z o; Xy + Zﬁjet_j
i=1 §=0
where(, = 1, can be written
¢a(B)X = ¢p(B)e.
The conditions required are
1. the stationarity condition ofrvy, ..., a,}

2. the identifiability condition oq 5y, ..., 3,}

3. an additional identifiability conditions,(z) and ¢s(z) have no common
roots.

Condition 3 is to avoid having an ARMA(¢) model which can, in fact, be ex-
pressed as a lower order model, say as an ARMA(, ¢ — 1) model.

2.5 Differencing

Thedifference operatoK is given by
VX =Xt — Xi

These differences form a new time seriéX (of lengthn — 1 if the original series
had lengthn). Similarly

VX, =V(VX,) = X, —2X,_1 + X,

12



and so on.

If our original time series is not stationary, we can lookta first order dif-
ference proces¥ X, or second order differenc&’X, and so on. If we find that
a differenced process is a stationary process, we can lo@fdRMA model of
that differenced process.

In practice if differencing is used, usualy= 1, or maybed = 2, is enough.

2.6 ARIMA processes

The processy; is said to be am@autoregressive integrated moving average process
ARIMA(p, d, q) if its dth differenceV?X is an ARMA({p, q) process.
An ARIMA( p, d, ¢) model can be written

¢a(B)V'X = ¢5(B)e

or
¢a(B)(I = B)'X = ¢5(B)e.

2.7 Second order properties of MA)

For the MA(g) processX; = Z?:o Bj€:—;, wheref, = 1, itis clear thatE(X,) =
0 for all ¢.
Hence, fork > 0, the autocovariance function is

e = E(Xi Xi—k)

O Bie ) Bierrs)
=0 =0
= Z Z BiBiE(€r—j€t——i)-

j=0 i=0

=k

Since the:, sequence is white Nois&(e,_je;__;) = 0 unlessj =i + k.

Hence the only non-zero terms in the sum are of the fof 3., and we

have k
Y = D ‘@ﬂmk\ k| < q
0 k] > q

13



and the acf is obtained via, = v« /7o-

In particular notice that the acf if zero fpt| > ¢. This ‘cut-off’ in the acf after
lag ¢ is a characteristic property of the MA process and can be ingdéntifying
the order of an MA process.

Simulation: MA(1) with 5 = 0.5

Series ma: 1.sim

Simulation: MA(2) with 8, = 3, = 0.5

Series ma: 2.sim

To identify an MA(g) process:

We have already seen that for an MA(ime series, all values of the acf be-
yond lagq are zero: i.ep, = 0 for k > gq.

So plots of the acf should show a sharp drop to near zero aketh coeffi-
cient. This is therefore a diagnostic for an MAprocess.

14



2.8 Second order properties of ARf)

Consider the ARY{) process
p
Xt = Z OéZ'Xt_i + €.
=1

For this modelE(X;) = 0 (why?).
Hence multiplying both sides of the above equationXy; and taking ex-
pectations gives

p
Ve = Z%‘%—u k> 0.
=1
In terms of the autocorrelationg = i /v

p
Pk = Z Qi Pr—i, k>0
i—1

These are th&¥ule-Walkerequations.

The population autocorrelatiopg are thus found by solving the Yule-Walker
equations: these autocorrelations are generally all eo0-z

Our present interest in the Yule-Walker equations is thatadd use them
to calculate thep, if we knew thecq,;. However later we will be interested in
using them to infer the values of corresponding to an observed set of sample
autocorrelation coefficients.

Simulation: AR(1) witha = 0.5

15



Simulation: AR(2) witha; = 0.5, a5 = 0.25

Series ar2.sim

To identify an ARp) process:

The AR({p) process hag, decaying smoothly as increases, which can be
difficult to recognize in a plot of the acf.

Instead, the corresponding diagnostic for an ARfocess is based on a quan-
tity known as thepartial autocorrelation functior{pacf).

The partial autocorrelation at lagis the correlation betweeX,; and X;_,
after regression o, 1, ..., X; 1.

To construct these partial autocorrelations we succdgdiveautoregressive
processes of ordel, 2,... and, at each stage, define the partial autocorrelation
coefficienta, to be the estimate of the final autoregressive coefficientz,ss
the estimate ofy;, in an AR() process. If the underlying process is AdR(then
oy, = 0 for k > p, so a plot of the pacf should show a cutoff after jag

The simplest way to construct the pacf is via the sample goaloof the Yule-
Walker equations for an ARJ

p
pkzzazplkﬂ\ kzlvap
=1

The sample analogue of these equations replacbky its sample value,:

p

Tk:Zai7pr|k_i‘ k=1,...,p

=1

16



where we writes, ,, to emphasize that we are estimating the autoregressivé-coef

cientsay, ..., a, on the assumption that the underlying process is autorggees
of orderp.
So we have equations in the unknowns ,, . . . , a, ,, Which could be solved,

and thepth partial autocorrelation coefficientds ,.

Calculating the pacf

In practice the pacf is found as follows.
Consider the regression &f, on X; 1, ..., X; j, that is the model

k
Xy = Z a;pXi—j + €

Jj=1

with ¢; independent oX, ..., X; ;.

GivendataXy, ..., X,, least squares estimates{ef , . . ., ax x } are obtained
by minimising
1 n k 2
2 e — JE— . .
O, = n Z (Xt Zaj’kXt_J> .
t=k+1 j=1

Thesexn, ;, coefficients can be found recursivelykrfor £ = 0,1,2, .. ..
Fork = 0: O'g = Cp; Qg0 = 0, andal,l = p(l)
And then, given the,; ,_; values, thes; values are given by

k—1
Pl = D1 Aj—1Pk—j
k—1
1— Ej:l jk—1Pj

ik = Qj -1 — Ak kQk—j f—1 J=1.. k-1

Ak .k =

and then

ok = 011 = aiy).

This recursive method is tHeevinson-Durbirrecursion.
Theay . value is thekth samplepartial correlation coefficient
In the case of a Gaussian process, we have the interpretatibn

agr = corr( Xy, Xy—p | Xeo1, oo, X))

17



If the processX, is genuinely an ARY{) process, then,, ;, = 0 for k > p.
So a plot of the pacf should show a sharp drop to near zerolafter and this
is a diagnostic for identifying an ARY.

Simulation: AR(1) witha = 0.5

Simulation: AR(2) witha; = 0.5, a5 = 0.25

Series ar: 2.sim

Simulation: MA(1) with 3 = 0.5

18



Simulation: MA(2) with 8, = 3, = 0.5

Tests on sample autocorrelations

To determine whether the values of the acf, or the pacf, agkgilgle, we can
use the approximation that they each have a standard deviataroundl //n.

So this would givet2/,/n as approximate confidence bounds (2 is an approx-
imation to 1.96). In R these are shown as blue dotted lines.

Values outside the range2/./n can be regarded as significant at about the
5% level. But if a large number of, values, say, are calculated it is likely that
some will exceed this threshold even if the underlying tirees is a white noise
sequence.

Interpretation is also complicated by the fact thatithare not independently
distributed. The probability of any oneg lying outside+2/,/n depends on the
values of the other;.

19



3 Statistical Analysis

3.1 Fitting ARIMA models: The Box-Jenkins approach

The Box-Jenkins approach to fitting ARIMA models can be divid#d three
parts:

e ldentification;
e Estimation;

e \erification.

3.1.1 Identification

This refers to initial preprocessing of the data to makeatighary, and choosing
plausible values op and ¢ (which can of course be adjusted as model fitting
progresses).

To assess whether the data come from a stationary processawe c

¢ look at the data: e.g. a time plot as we looked at forlthaeries;
e consider transforming it (e.g. by taking logs;)
e consider if we need to difference the series to make it statip

For stationarity the acf should decay to zero fairly rapidfythis is not true,
then try differencing the series, and maybe a second timecéssary. (In practice
it is rare to go beyond = 2 stages of differencing.)

The next step is initial identification gfandq. For this we use the acf and the
pacf, recalling that

o for an MA(q) series, the acf is zero beyond lag
o for an AR({p) series, the pacf is zero beyond lag

We can use plots of the acf/pacf and the approxirdzgé,/n confidence bounds.

20



3.1.2 Estimation: AR processes

For the ARp) process
p
Xy = Z a; X+ €
=1

we have the Yule-Walker equatiops = 3 7_, a;pji—|, for k > 0.

We fit the parameters,, . . ., o, by solving
p
rk:Zairﬁ_k‘, k=1,....p
=1
These arey equations for the unknownsay, . .., oy, Which, as before, can be

solved using a Levinson-Durbin recursion.

The Levinson-Durbin recursion gives the residual variance
n P 2
N 1 ~
t=p+1 j=1
This can be used to guide our selection of the appropriatergrd Define an
approximate log likelihood by
—2log L = nlog(7}).
Then this can be used for likelihood ratio tests.
Alternatively,p can be chosen by minimising AIC where
AIC = —2log L + 2k

andk = pis the number of unknown parameters in the model.

If (X;); is a causal AR{) process with i.i.d. WN0, 2), then (see Brockwell
and Davis (1991), p.241) then the Yule-Walker estimat@ optimal with respect
to the normal distribution.

Moreover (Brockwell and Davis (1991), p.241) for the pacf abasal ARp)
process we have that, for > p,

VGmm
is asymptotically standard normal. However, the elemehtse® vectora,, =
(G1m, - - -, G ) @re in general not asymptotically uncorrelated.
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3.1.3 Estimation: ARMA processes

Now we consider an ARMA( ¢) process. If we assume a parametric model for
the white noise — this parametric model will be that of Gaassvhite noise —we
can use maximum likelihood.

We rely on theprediction error decompositiorirhat is, X1, . . ., X,, have joint
density

FX0, LX) = FX) [ A | X, X)),
t=2

Suppose the conditional distribution of; given Xi, .o X is normal with
meanX, and variance’,_, and suppose thaf; ~ N(X;, ;). (This is as for the
Kalman filter— see later.)

Then for the log likelihood we obtain

Py

t=1

. X, — X,)?
—2logL = Z {log(27r) +log Py + u}

Here X, and P,_, are functions of the parametets, ..., a,, 1,..., 3, and
so maximum likelihood estimators can be found (numerigdiy minimising
—2log L with respect to these parameters.

The matrix of second derivatives ef2 log L, evaluated at the mle, is the ob-
served information matrix, and its inverse is an approxiomato the covariance
matrix of the estimators. Hence we can obtain approximatedsird errors for the
parameters from this matrix.

In practice, for ARf) for example, the calculation is often simplified if we
condition on the firsin values of the series for some small That is, we use a
conditional likelihood, and so the sum in the expression{fdtog L is taken over
t=m+ 1ton.

For an ARp) we would use some small value f, m > p.

When comparing models with different numbers of parameitassimportant
to use the same value of, in particular when minimising AIC= —2log L +
2(p + q). In R this corresponds to keepingcond in thearima command fixed
when comparing the AIC of several models.
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3.1.4 \Verification

The third step is to check whether the model fits the data.
Two main techniques for model verification are

e Overfitting: add extra parameters to the model and use et ratio ort
tests to check that they are not significant.

e Residual analysis: calculate residuals from the fitted maddl plot their
acf, pacf, ‘spectral density estimates’, etc, to check tiney are consistent
with white noise.

3.1.5 Portmanteau test of white noise

A useful test for the residuals is the Box-Pierce portmantesi. This is based on

K
Q=n)_
k=1

whereK > p+ ¢ but much smaller than, andr,, is the acf of the residual series.
If the model is correct then, approximately,

2
Q ~ XK—p—q

SO0 we can base a test on this: we would reject the model at tevel)) >

X%(—p—q(l - Oé)
An improved test is the Box-Ljung procedure which replaQdsy

Q:n(n—l—Z)ZnTk.

The distribution ofQ is closer to a;@(_p_q than that ofQ).

Once we have a suitable model for the time series, we coulty @p es-
timate, say, a trend in a time series. For example, supp@de:th .., z; are
explanatory variables, that is an ARMA(p,q)-process, and that we observe a
seriesy;. Our null model may then be that

K:M+ﬁlaj1+"'+ﬁkxk+etv tzla"'aTv

23



and the alternative model could be
Yi=p+ fi(N)+0ix1+ ...+ Grrpg+e, t=1,...,T,

where f;(\) is a function for the trend. Ag, is ARMA, we can write down the
likelihoods under the two models, and then carry out a gdisethlikelihood ratio
test to assess whether the trend is significant.

For confidence intervals, assume that all errors are inakgrely normally
distributed. Then we can estimate the covariance matrixfaising the Yule-
Walker equations; call this estimaté Let X be theT" x (k + 2) design matrix.
Then we estimate the covariance matrix pf \, 3;,) by

3= (XT(o2V) 1X) L

If o, is the square root of the diagonal elementircorresponding to\, then

~

A £ 0,tq/2 is @ 100a-confidence interval fok.

As an example, se¥.Zheng, R.E.Basher, C.S.Thompson: Trend detection in
regional-mean temperature series: Maximum, minimum, diamal range and
SST. In: Journal of Climate Vol. 10 Issue 2 (1997), pp. 317-326

3.2 Analysis in the frequency domain

We can consider representing the variability in a time sdngerms of harmonic
components at various frequencies. For example, a veryisimpdel for a time
seriesX; exhibiting cyclic fluctuations with a known periog say, is

X = acos(wt) + Gsin(wt) + &

whereg, is a white noise sequence,= 27 /p is the known frequency of the cyclic
fluctuations, andv and 3 are parameters (which we might want to estimate).
Examining the second-order properties of a time seriesut@cavariances/autocorrelations
is ‘analysis in the time domain’.
What we are about to look at now, examining the second-oragrapties by
considering the frequency components of a series is ‘aisalyshe frequency
domain’.
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3.2.1 The spectrum

Suppose we have a stationary time sefesvith autocovariancegyy).
For any sequence of autocovarian¢es) generated by a stationary process,
there exists a functiof’ such that

%:/ e AdF(N)

whereF' is the unigue function ofi-, 7| such that
1. F(—7) =0
2. F'is non-decreasing and right-continuous

3. the increments of” are symmetric about zero, meaning that@og a <
b <,

The functionF' is called thespectral distribution functiolr spectrum F' has
many of the properties of a probability distribution fumctj which helps explain
its name, buf’(7) = 1 is not required.

The interpretation is that, f&d < a < b < 7, F(b) — F(a) measures the
contribution to the total variability of the process withire frequency range <
A< b.

If F'is everywhere continuous and differentiable, then

sy =

is called thespectral density functioand we have

T = /7r e®AF(N)d.

—Tr

It > |vx| < oo, then it can be shown thgtalways exists and is given by

1 ; T 1 —
fO) == Z %6’\’“:%—#;2%0080\/@).
= k=1
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By the symmetry ofy., f(A) = f(=\).

From the mathematical point of view, the spectrum and actasorequiv-
alent information concerning the underlying stationamgd@m sequencéX,).
However, the spectrum has a more tangible interpretatioerms of the inherent
tendency for realizations @fX;) to exhibit cyclic variations about the mean.

[Note that some authors put constant2ofin different places. For example,
some put a factor of /(2) in the integral expression foy, in terms ofF, f, and
then they don’t need &/(27) factor when givingf in terms of~;.]

Example: WN(, o2)

Here,y, = o2, v, = 0 for k # 0, and so we have immediately

for all A

2
o
A)=—
f) = o
which is independent of.
The fact that the spectral density is constant means thdtegjlencies are
equally present, and this is why the sequence is calledéwtuise’. The converse
also holds: i.e. a process is white noise if and only if it density is constant.

Note that the frequency is measured in cycles per unit timegkample, at
frequency% the series makes a cycle every two time units. The numbemas ti
periods to complete a cycle is 2. In general, for frequekdlyge number of time
units to complete a cycle ﬁ;:

Data which occurs at discrete time points will need at leastoints to de-
termine a cycle. Hence the highest frequency of intere§t IS

The integral”_¢**dF () is interpreted as a so-called Riemann-Stieltjes in-
tegral. If F' is differentiable with derivative, then

/ ") = / BTN

If F'is such that
. 0 |f)\<)\0
F(A)—{ a A=A

then i
/ e*FAF(N) = ae™*o,

—T
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The integral is additive; if

0 if A< Ao
a+b ifA> )\

then

/_ ' eFdF(\) = / : T AF(N) + / ﬂe““*dF(/\)

™ Ao A1
— aelk}xo _|_ (a + b _ a)elk)\l
— aezk)\o + beZkAl.

Example: Consider the process
X = Uy sin(2mAot) + Us cos(2mAt)

with U, U, independent, mean zero, variancaandom variables. Then this pro-
cess has frequency;; the number of time periods for the above series to complete
one cycle is exactlx%. We calculate
v = E{U;sin(2wAgt) + Us cos(2mA\ot))
X (Uy sin(2mAo(t + h)) + Uy cos(2mAo(t + h))}
= o {sin(2m\ot) sin(27 o (¢ + h)) + cos(2mAot)) cos(2m Ao (t + h))}.

Now we use that
sinasinfg = %(COS(OK — f3) — cos(a + 3))
cosacosfS = %(COS(Oé — ) + cos(a + f3))

to get

2
T = % (cos(2mAoh) — cos(2m (2t + h))
+ cos(2mAoh) — + cos(2m (2t + h)))
= 0% cos(2m\h)

0_2

_ —2mwiloh 2midoh
= 3 (e +e )
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So, witha = b = ', we use

0 |f)\<—)\0
FA) =4 Z if =X <A<
0'2 |f)\2)\0

Example: AR(1):X; = aX; 1 + €.

Herey, = 02/(1 — a?) andy;, = al*ly, for k # 0.
So

1 > ,
_ k| irk
f(N) —2770 E o"le

k=—o00

_ o i - k_irk i - k —iXk
—27T+27T70;ae +27T70;ae

(2 —iA
Yo ae ae
= (14 _ ,
27 ( 1—ae*  1-— oze—l)‘)

(1 —a?)
27(1 — 2acos A + a2)

0.2

27(1 — 2acos A + a2)

where we used** + ¢ = 2cos \.

Simulation: AR(1) witha = 0.5

Series: arLsim
AR (1) spectrum




Simulation: AR(1) witha = —0.5

Series: arlb.sim
AR (2) spectrum

Plotting the spectral densitf(\), we see that in the cage > 0 the spectral
density f(\) is a decreasing function of: that is, the power is concentrated at
low frequencies, corresponding to gradual long-rangeudhtains.

For a < 0 the spectral density'()) increases as a function of that is,
the power is concentrated at high frequencies, which refkbet fact that such a
process tends to oscillate.

ARMA(p, q) process

P q
X = Z a; Xy + Zﬁjetfj
i=1 =0

The spectral density for an ARMAfg) process is related to the AR and MA

polynomialsg,, (z) andgg(z).
The spectral density of; is

_ ?gp(e™™)P

T = S oae ™
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Example: AR(1) Here,(z) = 1 — az and¢g(z) = 1, so, for—r < A <,

) = =1 —ae™?| 7
21
2

= U—|1 — acos A + iasin |72
2m

0.2

= —{(1 —acos\)? + (asin \)*} !
2m
o2

27(1 — 2accos A + a?)

as calculated before.

Example: MA(1)
Hereo,(z) = 1, ¢5(2) = 1 + 0z, and we obtain, for-m < A < T,

FO) = e+ geip
97

0.2

= ﬁ(l + 260 cos(\) + 6?).

Plotting the spectral densitf()), we would see that in the cage> 0 the
spectral density is large for low frequencies, small forhhigequencies. This is
not surprising, as we have short-range positive correglaimoothing the series.

For & < 0 the spectral density is large around high frequencies, amalls
for low frequencies; the series fluctuates rapidly abouniésn value. Thus, to a
coarse order, the qualitative behaviour of the spectrasitiers similar to that of
an AR(1) spectral density.

3.2.2 The Periodogram

To estimate the spectral density we usepghaodogram
For a frequencyw we compute the squared correlation between the time series
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and the sine/cosine waves of frequencyThe periodograni(w) is given by

n 2

Z e—itht

t=1

o] i)

](w):L

2mn

The periodogram is related to the estimated autocovarimmotion by

1 o e @ le .
=5 Z e = o + ;;ct cos(wt);

t=—00

ct:/ eI (w)dw.

So the periodogram and the estimated autocovariance dinctintain the same
information. For the purposes of interpretation, somesirmee will be easier to
interpret, other times the other will be easier to interpret

Simulation: AR(1) witha = 0.5

eries: arl.
Raw Periodogram

16400

eeeeeeeee

Simulation: AR(1) witha = —0.5
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Simulation: MA(1) with 5 = 0.5

Series: mal.sim
Raw Periodogram

bandwidth = 0.000144

From asymptotic theory, dtourier frequenciesv = w; = 27j/n, j =
1,2,..., the periodogram ordinatgd (w; ), I(ws), . .. } are approximately inde-
pendent with mean§f (wy), f(w2), ... }. Thatis for thesev

I(w) ~ f(w)E
whereF is an exponential distribution with mean 1.

Note thatvar[/(w)] ~ f(w)?, which does not tend to zero as— oo. So/(w)
is NOT a consistent estimator.

Thecumulative periodograry (w) is defined by

[n/2]
Ulw)= Y I(ws)/ Y I(ws)
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This can be used to test residuals in a fitted model, for exanmpive hope that
our residual series is white noise, the the cumulative degoam of the residuals
should increase linearly: i.e. we can plot the cumulativegoegram (in R) and
look to see if the plot is an approximate straight line.

If X;,t = 0,+1,42,... is Gaussian white noise, anduf, = % are the
Fourier frequencies; 7t < wy < , then the random variables

Z?c:l I(wy)

=——7* r=1,...,q—1,
Zizl I(wy)
are distributed as the order statistics;of 1 independent random variables, each
being uniformly distributed of, 1].
As a consequence, we may apply a Kolmogorov-Smirnov tessiess whether
the residuals of a time series are white noise.

Example: Brockwell & Davis (p 339, 340): Data generated by
X; = cos(nt/3) + ¢ t=...,100

where{¢, } is Gaussian white noise with variance 1. There is a peak ipdhie
odogram atvy; = 0.34.

In addition, the independence of the periodogram ordirettdsferent Fourier
frequencies suggests that the sample periodogram, as aofurnd w, will be
extremely irregular. For this reason smoothing is ofterliagpfor instance using
a moving average, or more generally a smoothing kernel.

3.2.3 Smoothing

The idea behind smoothing is to take weighted averages @rghimouring fre-
guencies in order to reduce the variability associated wwdividual periodogram
values.

The main form of a smoothed esimator is given by

A 1 A—w
= | -K I .
for =[x (252) 1ovan
Here K is somekernel function(= a probability density function), for example a
standard normal pdf, andis thebandwidth
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The bandwidth affects the degree to which this process smooths the peri-
odogram. Smalk = indictes a little smoothing, largle = a lot of smoothing.

In practice, the smoothed esimatev) will be evaluated by the sum

D=3 [ (%

2 1 Wi — W
~— —K |- I(wj).

J

2 w; —w
gj:%K( Jh )

) ~ Zgjf(wj)

) I(\)d\

Writing

we calculate that

and
Varlfw) ~ 3 gifw) ~ o ff [ K@ids

as well as

bias(f(w)) ~ f”éw) h2/$2K(£L')d£L',

seeVenables and Ripley, p.408hen

\/Qbms )/ [ (w)

is referred to as theandwidthin R.
As the degree of smoothinfg increases, the variance decreases but the bias
increases.

Example seriesth
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Time

Example seriesdeaths

00 3000 3500 4000

8
k1
8
Ei

500
L

T T T T T T T
1974 1975 1976 1977 1978 1979 1980

year

deaths: unsmoothed periodogram

deaths: Raw Periodogram

frequency
bandwidth = 00481, 95% C.l. is (-6.26,16.36)dB
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Suppose we have estimated the periodogram values, I (ws), ..., where
w;=2mj/n,j=12,....
An example of a simple way to smooth is to use a moving average,so
estimate/ (w;) by
1 1 1
To ! wi-) + gl (wjms) + T(wj-2) + - + I{wjs)] + 75l (Wjra).
Observe that the sum of the weights above (i.e ;fseand thels) is 1.
Keeping the sum of weights equal to 1, this process could lebfrad by using
more, or fewer] (wy,) values to estimaté(w; ).
Also, this smoothing process could be repeated.

If a series is (approximately) periodic, say with frequengythen periodogram
will show a peak near this frequency.

It may well also show smaller peaks at frequen@ieg, 3wy, - . . .

The integer multiples af, are called ithharmonics and the secondary peaks
at these high frequencies arise because the cyclic varigtithe original series is
non-sinusoidal. (So a situation like this warns againgrjrieting multiple peaks
in the periodogram as indicating the presence of sever@ihdiyclic mecha-
nisms in the underlying process.)

In R, smoothing is controlled by the opti@pans to thespectrum function.
The unsmoothed periodogram (above) was obtainedpgatrum(1h). The

plots are on log scale, in units décibelsthat is, the plot is 010 log,, I (w).
The smoothed versions below are

spectrum(lh, spans = 3)
spectrum(lh, spans = c(3,3))
spectrum(lh, spans = c(3,5))

In R, the default is to use thmodified Daniell kernelThis kernel places half
the weights at the endpoints; the other half is distributafoumly.

All of the examples, above and below, from Venables & Ripley.

V & R advise:

e trial and error needed to choose the spans;
e spans should be odd integers;

e use at least two, which are different, to get a smooth plot.
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spectrum (dB)

spectrum (dB)

spectrum (dB)

-14

Ih: Smoothed Periodogram, spans=3

T T T T T
01 02 03 04 05

frequency
bandwidth = 00159, 95% C.1.is (~4.32, 7.73)dB

Ih: Smoothed Periodogram, spans=c(3,3)

T T T T T
01 02 03 04 05
frequency
bandwidth = 00217, 95% C.l. is (-3.81, 6.24)dB.
Ih: Smoothed Periodogram, spans=c(3,5)
T T T T T
o1 02 03 04 05

frequency
bandwidth = 0.0301, 95% C.I. is (-3.29, 4.95)d8.
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deaths: Smoothed Periodogram, spans=c(3,3)

24
g o
g 9
£
8
2
24
9
T T T T T T T
0 1 2 3 4 5 6
frequency
bandwidth = 0.173, 95% C.I. is (-3.81, 6.24)dB
deaths: Smoothed Periodogram, spans=c(3.5)
24
P
g
€
F gl
g
9
T T T T T T T
0 1 2 3 4 5 6
frequency
bandwidth = 0.241, 95% C.1. is (-3.29, 4.95)d8
deaths: Smoothed Periodogram, spans=c(5,7)
24
P
g
E
g o
§ 8
T T T T T T T
0 1 2 3 4 5 6

frequency
bandwidth = 0.363, 95% C.1. is (-2.74, 3.82)d8

1h: cumulative periodogram
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deaths: cumulative periodogram

3.3 Model fitting using time and frequency domain
3.3.1 Fitting ARMA models

The value of ARMA processes lies primarily in their abilityapproximate a wide
range of second-order behaviour using only a small numbpa@meters.

Occasionally, we may be able to justify ARMA processes in &eoifrthe basic
mechanisms generating the data. But more frequently, theysed as a means
of summarising a time series by a few well-chosen summatrissts: i.e. the
parameters of the ARMA process.

Now consider fitting an AR model to thie series. Look at the pacf:

39



Fit an AR(1) model:
lh.arl <- ar(lh, F, 1)

The fitted model is:
Xt = 0.58Xt_1 + €

with 02 = 0.21.
One residual plot we could look at is

cpgram(lh.ari1$resid)

1h: cumulative periodogram of residuals from AR(1) model

AR() fitto h

Also try select the order of the model using AIC:
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lh.ar <- ar(lh, order.max = 9)
lh.ar$order
lh.ar$aic

This selects the AR(3) model:
Xt = 0.65Xt_1 — 0.06Xt_2 — 0.23Xt_3 + €

with o2 = 0.20.
The same order is selected when using

lh.ar <- ar(lh, order.max = 20)
lh.ar$order

1h: cumulative periodogram of residuals from AR(3) model

AR(3) fitto h

By default,ar fits by using the Yule-Walker equations.

We can also use

arima in library (MASS)

to fit these models using maximum likelihood. (Examples inAldes & Rip-
ley, and in the practical class)

The functiontsdiag produces diagnostic residuals plots. As mentioned in a
previous lecture, thg-values from the Ljung-Box statistic are of concern if they
go below 0.05 (marked with a dotted line on the plot).

1h: diagnostic plots from AR(1) model
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3.3.2 Estimation and elimination of trend and seasonal compwnts

The first step in the analysis of any time series is to plot tta.d

If there are any apparent discontinuities, such as a sudukemge of level, it
may be advisable to analyse the series by first breakingatanhomogeneous
segments.

We can think of a simple model of a time series as comprising
e deterministic components, i.e. trend and seasonal commg®ne

e plus arandom or stochastic component which shows no infibrengattern.
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We might write such @ecomposition models the additive model
Xe=my + 8¢ + Z4
where

m; = trend component (or mean level) at timhe
s; = seasonal component at time
Z; = random noise component at time

Here the trendn, is a slowly changing function of, and if d is the number of
observations in a complete cycle then= s;_,.
In some applications a multiplicative model may be appdpri

Xt = mtStZt.
After taking logs, this becomes the previous additive model

It is often possible to look at a time plot of the series to spatd and seasonal
behaviour. We might look for a linear trend in the first ingt@nthough in many
applications non-linear trend is also of interest and prese

Periodic behaviour is also relatively straightforward pots However, if there
are two or more cycles operating at different periods in @tgaries, then it may
be difficult to detect such cycles by eye. A formal Fourierlgsia can help.

The presence of both trend and seasonality together canitmakee difficult
to detect one or the other by eye.

Example: Box and Jenkins airline data. Monthly totals (tlamas) of inter-
national airline passengers, 1949 to 1960.
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airpass.log <- log(AirPassengers)
ts.plot(airpass.log)

T T T T T T
1950 1952 1954 1956 1958 1960

Time

We can aim to estimate and extract the deterministic compgemne, and s;,
and hope that the residual or noise compongnturns out to be a stationary
process. We can then try to fit an ARMA process, for exampl&, to

An alternative approach (Box-Jenkins) is to apply the dife operato¥’
repeatedly to the serie’s; until the differenced series resembles a realization of a
stationary process, and then fit an ARMA model to the suitaiflgrénced series.

3.3.3 Elimination of trend when there is no seasonal componén

The model is
Xt =my + Zt

where we can assunig(7;) = 0.

1: Fit a Parametric Relationship

We can taken; to be the linear trendh; = oy + a4t, or some similar polyno-
mial trend, and estimate,; by minimising> " (X; — m;)? with respect tayy, a;.

Then consider fitting stationary modelsito= X, —m,, wherem,; = ay+at.

Non-linear trends are also possible of course,lsgyn; = ag + a1kt (0 <
k<1),m=ap/(1+ae ), ...

In practice, fitting a single parametric relationship to atire time series is
unrealistic, so we may fit such curves as these locally, lopatig the parameters
a to vary (slowly) with time.
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The resulting series; = X; — m, is thedetrended time series

Fit a linear trend:

time step

2: Smoothing

If the aim is to provide an estimate of the local trend in a tsedes, then we
can apply anoving average That is, take a small sequence of the series values
Xi—g,---, Xy,..., Xi4q, and compute a (weighted) average of them to obtain a
smoothed series value at timesaym;, where

1 q
m; = E Xots.
my 2 + 1 t+]

J=—q
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It is useful to think of{m, } as a process obtained frohft} by application of
a linearfilter m, = 3777 a; X, ;, with weightsa; = 1/(2¢ + 1), —¢ < j < ¢,
anda; =0, |j] > ¢.

This filter is a ‘low pass’ filter since it takes datg and removes from it the
rapidly fluctuating componenf, = X,—m,, to leave the slowly varying estimated
trend termm,.

We should not choosgtoo large since, ifn; is not linear, although the filtered
process will be smooth, it will not be a good estimatergf

If we apply two filters in succession, for example to progredg smooth a
series, we are said to be using a convolution of the filters.

By careful choice of the weights;, it is possible to design a filter that will not
only be effective in attenuating noise from the data, butchhwill also allow a
larger class of trend functions.

Spencer’s 15-point filter has weights

a; j j1 <7

aj=0  [j|>7

= a_

1
(a0, a1, .a7) = 55(74,67,46,21,3, 5,6, 3)

and has the property that a cubic polynomial passes thrawegfilter undistorted.

spencer.wts <- c¢(-3,-6,-5,3,21,46,67,74,67,46,21,3,-5,-6,-3)/320
airpass.filt <- filter(airpass.log, spencer.wts)
ts.plot(airpass.log, airpass.filt, 1lty=c(2,1))

Original series and filtered series using Spencer’s 15tfhidter:

T T T T T T
1950 1952 1954 1956 1958 1960

Time
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Detrended series via filtering:

iss.log - airpassfilt

T T T T T T
1950 1952 1954 1956 1958 1960

Time

3: Differencing

Recall that thalifference operatois VX, = X;— X, ;. Note that differencing
is a special case of applying a linear filter.

We can think of differencing as a ‘sample derivative’'. If warswith a linear
function, then differentiation yields a constant functigvhile if we start with a
guadratic function we need to differentiate twice to get tmastant function.

Similarly, if a time series has a linear trend, differencthg series once will
remove it, while if the series has a quadratic trend we woeleidnto difference
twice to remove the trend.

Detrended series via differencing:
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3.4 Seasonality

After removing trend, we can remove seasonality. (Aboveettended versions
of the airline data clearly still have a seasonal compopent.

1: Block averaging

The simplest way to remove seasonality is to average thenaigms at the
same point in each repetition of the cycle (for example, fonthly data average
all the January values) and subtract that average from thesat those respective
points in the cycle.

2: Seasonal differencing

The seasonal difference operatoNisX; = X; — X, _, wheres is the period
of the seasonal cycle. Seasonal differencing will remoesaeality in the same
way that ordinary differencing will remove a polynomialrice

airpass.diff<-diff(airpass.log)
airpass.diff2 <- diff(airpass.diff, lag=12)
ts.plot(airpass.diff2)

ass.diff2
0.00

-0.

After differencing at lag 1 (to remove trend), then at lagtti2émove seasonal
effects), thelog (AirPassengers) Series appears stationary.

That is, the serie¥’ V1, X, or equivalently the seriesl — B)(1 — B'*)X,
appears stationary.

R has a functiorstl which you can use to estimate and remove trend and
seasonality using ‘loess’.
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stl is a complex function, you should consult the online docuaisin be-
fore you use it. The time series chapter of Venables & Ripleytaas examples
of how to usest1. As with all aspects of that chapter, it would be a good idea fo
you to work through the examples there.

We could now look to fit an ARMA model t6/V,.X, or to the residual
component extracted byt1.

Seasonal ARIMA models

Recall thatX is an ARMA(p, ¢) process if

P q
Xt — Z X =€+ Z Bi€i—;
i=1 j=1

and.X is an ARIMA(p, d, ¢) process ifV?X is ARMA(p, q).
In shorthand notation, these processes are

$a(B)X = ¢ps(B)e  and  ¢,(B)VIX = ¢g(B)e.
Suppose we have monthly observations, so that seasorainsatépeat every

s = 12 observations. Then we may typically expégtto depend on such terms
asX;_ 12, and maybeX; o, aswell asX;_ 1, X; o,....

A general seasonal ARIMA (SARIMA) model, is
D,(B)Bp(B*)Y = B, (B)Po(B)e
where®,, &p, ©,, P, are polynomials of orders, P, ¢, () and where
Y = (1-B)%1 - B*)"X.
Here:
e sis the number of observations per seasory s012 for monthly data;

e D is the order of seasonal differencing, i.e. differencin¢pgts (we were
content withD = 1 for the air passenger data);

e d is the order of ordinary differencing (we were content witk- 1 for the
air passenger data).
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This model is often referred to as an ARIMA(d, q) x (P, D, Q),) model.
Examples

1. Consider a ARIMA model of ord€n, 0,0) x (0,1, 1)15.
This model can be written

(1—aB)Y; = (1 + B%)¢g
where

Yi=Xi — Xio1o.

2. The ‘airline model’ (so named because of its relevancheair passenger
data) is a ARIMA model of ordef0, 1,1) x (0,1, 1);2.
This model can be written

Y, = (14 51B)(1+ 5:B"%)e

whereY;, = VV,X is the series we obtained after differencing to reach sta-
tionarity, i.e. one step of ordinary differencing, plus @tep of seasonal (lag 12)
differencing.

3.5 Forecasting in ARMA models

As a linear time series, under our usual assumptions on thed@ygomial and
the MA-polynomial, we can write an ARMA model as a causal mpdel

(e.0)
X; = E Cr€iyp.
r=0

Suppose that we are interested in forecasfiiig ,, from observationd X, ¢ <
T'}. Consider forecasts of the form

o0

XT,k - E Cry k€T —r.

r=0
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Then

00 00
XT+k_XT,k = E Cr€Tk—r — E Cryk€T—r
r=0 r=0
k—1 e 00
= § Cr€Ttk—r T § Cr€Tyk—r — E Cs€T—s+k
r=0 r=Fk s=k
k—1
= E Cr€Tk—r-
r=0

This gives rise to the mean squared prediction error

E{( X1y — XT,k)2} = (Z_: Cf) ‘73

r=0

Thus
(o)
XT,k = Z Crik€T—r

r=0
is our theoretical optimal predictor.

Note that the mean squared prediction errors are base swleghe uncer-
tainty of prediction; they do not take errors in model idadtion into account.

In practice one usually uses a recursive approach. D@ﬁﬁ@ to be the
optimal predictor ofXr,; given Xi,..., Xr; for -7+ 1 < k < 0, we set
Xrr = Xryk. Then use the recursive relation

p q
XT,k: = E arXT,k—r + éT-l—/f + § ﬁséT—&-k—s
r=1 s=1

For & < 0 we can use thus relation to calculatdor 1 <t < T. Fork > 0 we
defineé, = 0 for t > T, to calculate the forecasts.

The difficulty is how to start off the recursion. Two standaddutions are
Either assume&;, = ¢, =0 forallt <0,
or forecast the series in reverse direction to determirimatds of Xy, X_4,...,
aswellasg =0,e_; = 0, etc.
A superior approach is to recast the model in state space &mnapply the
Kalman filter.
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4 State space models

State-space models assume that the observatiy)s are incomplete and noisy
functions of some underlying unobservable progéss, called thestate process
which is assumed to have a simple Markovian dynamics. Thergéstate space
model is described by

1. Yy, Y1, Y5, ... is a Markov chain

2. Conditionally on{Y;}:, the X;'s are independent, andl; depends orY;
only.

When the state variables are discrete, one usually callsibilel ahidden Markov
mode] the termstate space moded mainly used for continuous state variables.

4.1 The linear state space model
A prominent role is played by the linear state space model

Y, = G+ (1)
Xt — Hth + Wy, (2)

whereG, and H, are deterministic matrices, aid, ), and(w,), are two indepen-
dent white noise sequences withandw; being mean zero and having covariance
matricesV;> andWW?, respectively. The general case,

Y, = gt(thl,Ut)
Xy = ht(Y{e,wt),

is much more flexible. Also, multivariate models are avdéali he typical ques-
tion on state space models is the estimation or the prediofithe state$Y;), in
terms of the observed data poirfs;);.

Example. Suppose the two-dimensional model

0 1 1
}/t: (0 O>K—l+(ﬁ)Xt7

whereX; is one-dimensional mean zero white noise. Then

Y2,t = ﬁXt
Yi. = Yo +X =X+ 8Xiq,
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SO we obtain an MA(1)-process.
Example. Suppose the model

Yi = oY1+ v
Xt - Ylf+wt7

where(v;); and(w;); are two independent white noise sequences witndw,
being mean zero and having variané&sand¥?, respectively. Then

X —0Xi1 = Yi— oY +w — owiy

= U+ w — Qw_;.

The right-hand side shows that all correlations at lagsl are zero. Hence
the right-hand side is equivalent to an MA(1) model, and thsfollows an
ARMA(1,1)-model.

To make the connection with ARMA(1,1) more transparent, i
€t = Ut + Wt

gives a mean zero white noise series with variasnte= V2 + W?. Thuse, has

the same distribution ag Y- w,. Putting

W2
=y

Ut wy — Quwimy = €+ Beq.

thus gives that

In fact any ARMA(p,q)-model with Gaussian WN can be formulated as a state
space model. The representation of an ARMA model as a stategpodel is
however not unique, see Brockwell and Davis (1991), pp.482-4

Note that the above model is more flexible than an ARMA modefotfexam-
ple, the observation at timds missing, then we simply put; = (0,0,...,0)%.
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4.2 Filtering, smoothing, and forecasting

The primary aims of the analysis of state space models an®tupe estimators
for the underlying unobserved signgl given the data&X® = (X,..., X;) up to
time s. Whens < t the problem is calledorecasting whens = t it is called
filtering, and whens > ¢ it is calledsmoothing For a derivation of the results
below see also Smith (2001).

We will throughout assume the white noise to be Gaussian.

In Kalman filters made eadyy Terence Tong, at
http://openuav.astroplanes.com/library/docs/writeup.pdf
an analogy of the following type is given.

Suppose that you just met a new friend and you do not know howetpal
your new friend will be. Based on your history, you estimatewthe friend will
arrive. You do not want to come too early, but also you do nattw@be too late.

You arrive on time at your first meeting, while your friendiees 30 min late.
So you adapt your estimate, you will not be so early next time.

TheKalman filteris a method for updating parameter estimates instantly when
a new observation occurs, based on the likelihood of theentigtata - without
having to re-estimate a large number of parameters usiqgsildata.

The Kalman filter was first developed in an engineering franrewand we
shall use it for filtering and forecasting. Itis a recursivethod to calculate a con-
ditional distribution within a multivariate normal framewk. As it is recursive,
only the estimated state from the previous time step andutrertt measurement
are needed to compute the estimate for the current state.

The state of the filter is represented by two variables: thenage of the state
at time t; and the error covariance matrix (a measure of theated accuracy of
the state estimate). The Kalman filter has two distinct piaBeedict and Update.
The predict phase uses the state estimate from the prewinastép to produce
an estimate of the state at the current timestep. In the eppiatse, measurement
information at the current timestep is used to refine thiglipteon to arrive at a
new, (hopefully) more accurate state estimate, again #octirent timestep.

It is useful to first revise some distributional results foultivariate normal
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distributions. Suppose that
A 1 21 2o
~ MVN , . 3
(2 )~ (1) -( 5 52)) g
Then the conditional distribution df; givenZ; = z; is
L(Z1|Zy = 2) = MVUN (1 + E1257] (22 — pi2), 11 — S22 B1)  (4)
and conversely, i, ~ MVN (12, ¥92) and if (4) holds, then (3) holds.

In particular, the conditional distribution &f; given Z, = z, is again normal,
and we can give its mean and its covariance matrix explicitly

If Z1, Z», Z5 are jointly normally distributed with means, and covariance
matricesy,, = E[(Z, — it,)(Z4 — 1tg)'], for p, ¢ = 1, 2, 3, and assume thag, = 0
andX,; = 0. Then

E(Z1|ZQ, Zg) - E(Zl‘ZQ) + 21325;3123
and

Var(Zy|Zs, Z3) = Var(Z,|Z;) — Y13Y53 23-

To illustrate how the filter works, we first look at a one-diraiemal example.

Let X1 = {z1,...,2,_1} be the set of past observations from a time seXes
which arises in the state space model
Xy = Yi+g

Yo = Y+,

wheree, is mean-zero normal with variane€ andr, is mean-zero normal with
varianceo;; all independent.

Assume that the conditional distributionifgivenX =) is '(a,, P,), where
a; and P, are to be determined. Given and P;, our objective is to calculate, ,
andP,.; whenz,, the next observation, arrives.

Now

ap = E(YiXY)
E(Y; 4 /X))
E(Y;]X)

55



and

Py = Var(Yia|XY)
Var(Y; +m|X®)
= Var(Y;|X") + a2,

Definev; = x; — a; andF;, = Var(v;). Then
E(u X"y = BE(Y; + ¢ — a| XY
= a—a; =0.
ThusE(v;) = E(E(v|X®V)) = 0 and
Cov(vy, xj) = E(vx;) = E[E(Ut|X(t*1))xj] =0,

and ag, andz; are normally distributed, they are independentfer 1,... t—1.
WhenX® is fixed, X~ andz, are fixed, saX*~1) andw, are fixed, and vice
versa. Thus

E(Y,[X"Y) = B(Vi|XY, vy)
and
Var(Y,|X") = Var(Y;| XV, v,).
Now we apply the conditional mean and variance formula fottinariate
normally distributed random variables:

E(W[XY) = BYX0Y,v)
= BY,XU) + Cov(Vy, v,)Var(v) v,

where

Cov(Yy,v)) = EYi(x —a))
= EY(Y:+e —ay)]
= EY(Y:— ar)]
= E[(Y; = a)’) + e B[E(Y; — X))
= ElY; — a)?
= E[E{(Y; — a,)’| X"V}

[

= E[Var(Y,| Xt D)

|
e

Y
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and

Var(v)) = F
= Var(Y,+ ¢ — ap)
= Var(Y[X® ) 4 o2

= P +o°

Put P
Kt == —t

Fy

then, sincer, = E(Y;|X*1), we have
E(ElX(t)> = a; + Kﬂ]t.
Now

Var(Y|X®) = Var(V;| XD o)
= Var(Y X" V) = Cov(Y, v,)*Var(v,) ™

P2

- p -t

"R
= P(1-Ky)

Thus the rule set of relations for updating from tin® ¢ + 1 is

v, = x,—a; Kalman filter residual; innovation
a1 = ap + Ky
Ft = Pt ‘I‘ 0_62
Pt+1 = Pt(l—Kt)+0'721
P
K, = —
t Ft’

fort=1,... n.

Note: a; and P, are assumed to be known; we shall discuss how to initialize
later.
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Now consider the more general model

Y, = G+
Xy = HY,+wy,

with (v;); independent white noisé& N (0, V;), and(w;); ind. W N (0, ;). Here,
Y, is a vector representing unknown states of the systemXarude the observed
data. . PuX! = (X, X5, ..., X;), the history ofX up to timet, and

P = EW[X?)
P, = BE{(Y, Y5 (Ye - Y5)"}
= B{(Yy — Y5 (Y, — Vi) 1%}

Whent, = t, = t, we will write P? for convenience.

Suppose&’y = pand P = ¥, and that the conditional distribution &f_; given
the historyX‘~! up to timet — 1,

ﬁ(Yt—1|Xt_1) = MVN(Y?—?’ Ppq).
ThenZ(Y;|X'!) is again multivariate normal. We have that

E(Xt|Yt) = HY,
VaT(Xt|Yt) = Wt'

With
R, = G,P_,G;'+V,

the conditional distribution of X;, ;) givenX*~! is given by

1) H,GY! ! W, + HRH' HR,
X >—MVN (( Gyt )\ wmHT R ))

We can compute that the conditional distributiontpfgiven X*~! is multivariate
normal with mear;’ and variancept(t_l), where

Y;tt = Gtht:11 + RthT(Wt + HthHtT)il(Xt - HthYf:ll)
Pt(t—l) — R,— RH'(W, + HRH) "H,R,.
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These equations are known as #eman filter updating equationsrhis solves
the filtering problem.

Have a look at the expression fgf. It contains the ternd’,Y,'}!', which is simply
what we would predict if it were known that,_; = Y/, plus a term which
depends on the observed error in forecasting(i¥e.— H,G,Y,7!).

Note that we initialized the recursion B = y and PY = o,. Instead one might
have initialized the recursion by some prior distributiohpy an uninformative
prior X§ = 0, Py = kI, wherel denotes the identity matrix.

Forforecasting suppose > s. By induction, assume we knoW’® ,, P? ;. Then

Y;s - Gt}/;il
P = G.P: G +V,.

Recursion solves the forecasting problem.

TheR commandpredict (arima) uses Kalman filters for prediction; see for
example the airline passenger example, with the code oroilnse website.

We can calculate that the conditional distribution’af, ; given X’ is
MVN(HtHGtHY?H, Ht+1Rt+1HtT+1 + Wisq).

This fact is the basis of therediction error decompositiqrgiving us a likelihood
for parameter estimation.

For smoothing we use th&alman smootheWe proceed by backwards induction.
Suppose that}’, P/ are known, wheré> is the conditional covariance matrix of
X; given{Yy,...,Y;} . With a similar derivation as above, fo=n,n—1,...,1,

v, = }/?—_11 + (Y - Y;:n_l)
Py = Ptt:ll + S (B = Ptt_1>JtT4

where
Jt—l — Ptt__llHT<Ptt_1)_1-

Note that these procedures differ for different initialtdlzutions, and sometimes
it may not clear which initial distribution is appropriate.
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See alsalman filters made eadyy Terence Tong, at
http://openuav.astroplanes.com/library/docs/writeup.pdf.

Example: Johnson & Johnson quarterly earnings per share, 1960-1989.
model is

Xy = T, +S;+v, observed
T, = ¢T,_1+wy, trend
S; = Si14+ Sio+ S;_3+we Sseasonal component

Assume that the seasonal components sum to zero over thgudatters, in ex-
pectation. Herev; are i.i.d. mean-zero normal vectors with covariance magrix
anduv, are i.i.d. mean-zero normal with covariange
The state vector is
Y, = (T, Si, Sic1, Sia).

SeeShumway and Stoffep.334-336. The initial estimates are as follows.
Growth is about 3 % per year, so choase- 1.03. The initial mean is fixed at
(0.5,0.3,0.2,0.1)", and the initial covariance matrix is diagonal with; ;, = 0.01,
fori = 1,2,3,4. Initial state covariance values were takeryas= 0.01, g22 =
0.1 to reflect relatively low uncertainty in the trend model cargd to the sea-
sonal model. All other elements ¢f are taken to be 0. We take = 0.04. Itera-
tive estimation (using the EM algorithm) yielded, after #rations,R = .0086,
¢ = 1.035, 11 = 0.0169, g2 = 0.0497, andy = (.55, .21, .15, .06).

5 Non-linear models

Note that this chapter and the next chapter were not covaredtures.

Financial time series, e.g. share prices, share priceasdgpot interest rates,
currency exchange rates, have led to many specialized siaddimethods.

There are two main types:

¢ ARCH models
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e Stochastic Volatility models

ARCH = autoregressive conditionally heteroscedastic

ARCH models are models analagous to ARMA models, but with AR aAd M
components which act on the variances of the process assyelt anstead of, the
means.

Stochastic Volatility

In stochastic volatility models there is some unobservedgss known as the
volatility which directly influences the variance of the ebgd series. That is,
these have some similar characteristics to state spacesnode

A review of ARCH / Stochastic Volatility models is:
Shephard (1996), which is Chapter 1Tafne Series Model&ditors: Cox, Hink-
ley, Barndorff-Nielsen), Chapman and Hall

Usually we consider the daily returgsgiven by

y; = 100 log ( o )
Ti—1

wherez; is the price on day.

Common features of series of this type are:

e there is a symmetric distribution about the mean

there is little autocorrelation among the valuegof

there is strong autocorrelation among the valueg of

they; have heavy tailed distributions (i.e. heavier tails thamanal distri-
bution)

the variance of the process changes substantially over time

Most models of financial time series are of the general sirect
Y | 2~ N(MtaUtQ)
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wherez, is some set of conditioning random variables (maybe laggdaeg of
y;) andy,; ando? are functions of;.

An example of an ARCH model is:
Yt | Zt N(O,U?)

where

2y = (917 .- 7yt—1>

2 __ 2 2
O-t — a() + Oélyt_l + tee + apyt_p-

Clearly here the variance gf depends on lagged values:pf
An example of a stochastic volatility model is
Yt ‘ ht ~ N(O, €ht)

where

hiv1 = Y0 +ihe + 1
ne ~ N(07 0-2)

with the variables);, being independent asvaries.

The state variablg, is not observed, but could be estimated using the observa-
tions. This situation is similar to that for state space nedaut it is the variance
(not the mean) of;, that depends oh, here.

5.1 ARCH models
The simplest ARCH model, ARCH(1), is
Y = O, ‘7t2 =ap+ Oélthfl

with ¢, ~ N(0,1), and the sequence ef variables being independent. Here
a1 > 0 has to be satisfied to avoid negative variances. Note thataheditional
distribution ofY; givenY;_; = y,_1 IS

N(0, ap + Oflyt2—1)'
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Hence
E(Y:) = E[E(Y[Yi-1)] = 0.

To calculate the variance, we re-write

2 2 9
Yy = 016
2 2
o+ oY, = 0y
so that
2 2 29 2
Yy — (O‘O + Oélytfl) = 0.6 — 0y,
or
2 2
Y; = Qo+ oy q + g,
with

vy = o2(e — 1).
Note thate? ~ y3. Now
E(v) = E[E(v]Yi-1)]
= ElofE(ef — 1) =0,
and furthermore
COU(Uth 'Ut) = E(UtUt+h) = E[E(Utvt+h|yt+h—1)]
= E[UtE(UtUt+h|Yt+h—1ﬂ = 0.

Thus the error processis uncorrelated. If the variance ofis finite and constant
in time, and if0 < «; < 1, theny? is a causal AR(1)-process. In particular,

&%)

E(Y?) =Var(Y;) =

1-— aq .
In order forVar(T?) < co we need3a? < 1.

As the conditional distribution of; given the past is normal and easy to write
down, to estimate parameters in an ARCH(1)-model, usuallylitonal maxi-
mum likelihood is used. For a wide class of processes, asytioptormality of
the estimators has been proven. A practical difficulty ig the likelihood sur-
face tends to be flat, so that even for the simplest form ARCHIGE) masimum
likelihood estimates ofiy anda; can be quite imprecise.
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5.2 GARCH and other models

The ARCH model can be thought of as an autoregressive modgl iin ob-
vious extension of this idea is to consider adding movingaye terms as well.
This generalization of ARCH is called GARCH. The simplest GARCH #glasl
GARCH(1,1):

2 2 2
Yt = O€y, o; = ap+ a1y, + fiogy

The sequence is second-order stationany; if- 3, < 1.

The simplest estimation scheme for the GARCH(1,1) model us@e $nitial
sample of observations to obtain a crude estimate’pfind then use maximum
likelihood estimation based on the prediction error decositfpn.

A further extension (EGARCH, where E is for exponential) is todal the
log of o7 as a function of the magnitude, and of the sign;,of.

The R commangarch in the tseries package uses the Jarque-Bera test for
normality, based on sample skewness and kurtosis. For asamp. ., x, the
test statistic is given by

with

the sample skewness, and

oo (@ — 1)
(5 X = 2)?)°
the sample kurtosis. For a normal distribution, the exmkskewness is 0, and the
expected kurtosis is 3. To test the null hypothesis that ét@ come from a normal

distribution, the Jarque-Bera statistic is compared to thesquare distribution
with 2 degrees of freedom.
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5.3 Stochastic volatility

The basic alternative to ARCH-type models is to alleivto depend not on past
observations but on some unobserved components.
The log-normal stochastic volatility model is

yr = exp(h¢/2), b1 =y +vihe + 1

wheree, ~ N(0,1) andr, ~ N (0, 07) are independent for adl
The process; is strongly stationary if and only ify;| < 1, and if h; is
stationary, then so ig. Means, and autocorrelations can be computed.
Estimation is not straightforward any more,lag ¢ does not have a normal
distribution. Often Monte-Carlo approaches are used: see Rdtures!

6 Further topics

6.1 Multivariate time series

Virtually all the above discussion generalizes when a vestobserved at each
point in time. In the time domain, analysis would typicallyeucross-correlations
and vector autoregressive-moving average models. In éugiéncy domain, de-
pendencies at different frequencies are analysed selyarate

6.2 Threshold models

For example when considering neuron firing in the brain, oesiare stimulated
but will only fire once the stimulus exceeds a threshold. Timeeshold models
are used,;

Y1 = 9(Yy) + e,

whereg(Y;) is piecewise linear.

6.3 More general nonlinear models

Nonlinear time series are of the form

Y;H-l = g(YD + €, Or n—l—l = g<Y;‘/7€t)7

65



whereg(y) or g(y, €) is nonlinear.

For nonlinear time series, the amplitude (the periodogm@mes not suffice to
estimate the spectral density, and the acf; instead theephadso needed. That
is, we use vectors of time-delayed observations to desthidevolution of the
system. For example, suppose our time series is

1,3,6,7,4,2,4,5,6

and we want to describe it in a 3-dim space, using a delay dign bur vectors
are

(1,3,6);(3,6,7);(6,7,4); (7,4, 2)

and so on, and we can see how these vectors move around inspduoa.

The interplay between randomness and nonlinearity gessergw effects
such as coexistence of fixed points, periodic points, andtahattractors, and
new tools have been developed for these systems. In particwdnlinear time
series analysis uses many ideas from deterministic chaosyth

6.4 Chaos

There is a large literature centering around the idea thmesample deterministic
processes generate output that is very like a realizaticam sibchastic process.
In particular it satisfies sensitivity to the initial condits. This is a completely
different approach to time series.
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