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Measures of Correlation/Dependence

I Pearson
I Spearman
I Kendall
I Hoeffding’s
I Maximal Correlation
I Distance Correlation
I Mutual Information
I Maximal Information Coefficient (MIC)
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Review of correlation measures
Pearson correlation ρ is a measure of linear dependence
between variables.

I In the population: given random variables X ,Y ∈ R

Cor(X ,Y ) =
Cov(X ,Y )√

Var(X )
√

Var(Y )

I In the sample: given vectors x , y ∈ R

cor(x , y) =
cov(x , y)√

var(x)
√

var(y)
=

(x − x̄1)T (y − ȳ1)

||x − x̄1||2||y − ȳ1||2

If x , y are have been centered

cor(x , y) =
xT y

||x ||2||y ||2
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Properties of the population correlation

ρ
def
= Cor(X ,Y ) =

Cov(X ,Y )√
Var(X )

√
Var(Y )

Properties of ρ
I Cor(X ,X ) = 1
I Cor(X ,Y ) = Cor(Y ,X )

I Cor(aX + b,Y ) = sign(a)Cor(X ,Y ) for any a,b ∈ R
I −1 ≤ Cor(X ,Y ) ≤ 1
I |Cor(X ,Y )| = 1 if and only if Y = aX + b for some

a,b ∈ R, with a 6= 0
I If X ,Y are independent then Cor(X ,Y ) = 0
I If Cor(X ,Y ) = 0 then X ,Y need not be independent!!!
I If (X ,Y ) is bivariate normal and Cor(X ,Y ) = 0,then X ,Y

are independent
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Bivariate normal distribution
Two-dimensional Gaussian distribution
The random vector Z = (X ,Y ) ∈ R2 has a bivariate normal dist.

Z ∼ N(µ,Σ),

µ ∈ R2 is the mean & Σ ∈ R2×2 is the covariance matrix

µ =

[
µX
µY

]
Σ =

[
σ2

X ρσXσY
ρσXσY σ2

Y

]
(1)

where E [X ] = µX ; E [Y ] = µY ; Var(X ) = σ2
X ; Var(Y ) = σ2

Y ;

Cov(X ,Y ) = ρσXσY

Cor(X ,Y ) = ρ

I The probability density function of Z = (X ,Y ) is given by

fX ,Y (z) =
1

2π
√

det(Σ)
e−

1
2 (z−µ)T Σ−1(z−µ)

I Fact: ρ = 0 implies that X and Y are independent rv
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Review: properties of sample correlation
cor(x , y) =

cov(x , y)√
var(x)

√
var(y)

=
(x − x̄1)T (y − ȳ1)

||x − x̄1||2||y − ȳ1||2
I cor(x , x) = 1
I cor(x , y) = cor(y , x)
I cor(ax + b, y) = sign(a)cor(x , y) for any a,b ∈ R
I −1 ≤ cor(x , y) ≤ 1
I |cor(x , y)| = 1 iff y = ax + b for some a,b ∈ R with a 6= 0
I cor(x , y) = 0 iff x , y are orthogonal
I If x , y are centered then cor(x , y) = cos θ, where θ is the

angle between the vectors x , y ∈ Rn

I cos θ = xT y
||x ||2||y ||2
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Drawbacks of the Pearson Correlation

I by far the most popular tool in practice for understanding
bivariate relationships

I easy calculation and interpretability means

Pearson ρ is not a useful measure of dependency overall:
I does not guarantee a causal relationship
I a lack of correlation does not even mean there is no

relationship between two variables!
I best suited to continuous, normally distributed data
I it is easily corrupted by outliers
I only a measure of linear dependency (Note: most data out

there is nonlinear by nature)
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R code for data generation and computing the
Pearson correlation
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Correlation patterns with the regression line imposed
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Clark, M., A comparison of correlation measures (2013)
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Spearman/Rank correlation
I defined in the sample
I goes beyond measuring linearity between x , y ∈ Rn

I measures a monotone association between x , y ∈ Rn

I given vectors x , y ∈ Rn, define the rank vector rx ∈ Rn that
ranks the components of x

rx (i) = k

if xi is the k th smallest element in x
I Example: if x = (0.7,0.1,0.5,1) then rx = (3,1,2,4)

I Similarly define the ranks ry corresponding to y
I Rank correlation is given by the (sample) correlation of rx

and ry
rcor(x , y) = cor(rx , ry )

I Remark: |rcor(x , y)| = 1 if and only if there is a monotone
function f : R 7→ R such that yi = f (xi) for each i = 1, . . . ,n
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Spearman correlation - R code
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Kendall’s τ correlation

Kendall τ rank correlation coefficient:
I alternative to Spearman; identifies monotonic relationships

τ(X ,Y ) =
# of concordant pairs− # of discordant pairs

n(n−1)
2

I concordant means if the ranks for both elements agree: if
both xi > xj and yi > yj or if both xi < xj and yi < yj

I otherwise, discordant
I τ ∈ [−1,1], same interpretations as for Spearman’s

correlation
I typically used in ranking problems in ML (Lecture 7)
I R: cor.test with parameter method = ’kendall’ (package

stats)
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Linear Relationships
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Pearson Correlation



15

Nonlinear patterns

Figure: The patterns will be referred to as TOP: wave, trapezoid,
diamond; MIDDLE: quadratic; BOTTOM: X, circle and cluster.
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Nonlinear patterns + Noise

Figure: The patterns will be referred to as TOP: wave, trapezoid,
diamond; MIDDLE: quadratic; BOTTOM: X, circle and cluster.
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Demand for electricity
I driven by weather conditions and especially temperature.
I one could predict the demand for electricity as a function of

the temperature
I weather dynamics could included in pricing (for derivative

instruments)

Figure: Source: Carmona, Chapter on Commodity Prices
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Hoeffding’s-D
I Hoeffding’s D is another rank based since the 1940s

Hoeffding (1948). A non-parametric test of independence
I a measure of the distance between F (x , y) and G(x)H(y),

where F (x , y) is the joint CDF of X and Y , and G and H
are marginal CDFs

D =

∫
(F −GH) dF

I measures the difference between the joint ranks of (X ,Y )
and the product of their marginal ranks

I it can pick up on nonlinear/non-monotonic relationships
I lies on the interval [−.5,1]

I positive/negative signs have no interpretation (D identifies
non-monotonic relationships also)

I the larger the value of D, the more dependent are X and Y
(for many types of dependencies)
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Maximal correlation

I a notion of population correlation
I it has no preference for linearity or monotonicity
I it characterizes independence completely
I given two random variables X ,Y ∈ R, the maximal

correlation between X ,Y is defined as

mCor(X ,Y ) = maxf ,g Cor(f (X ),g(Y )) (2)

where the maximum is taken over all functions
f ,g : R 7→ R, with Var(f (X )) > 0 and Var(g(Y )) > 0.

I Note that 0 ≤ mCor(X ,Y ) ≤ 1
I Key property: mCor(X ,Y ) = 0 if and only if X and Y are

independent
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Independence of random variables
I A pair of random variables X ,Y ∈ R are called

independent if for any sets A,B ⊆ R

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

I If fX , respectively fY , denotes the density of X , respectively
Y , and (X ,Y ) has joint density fX ,Y , independence implies

fX ,Y (x , y) = fX (x)fY (y), ∀x , yR

I The joint is the product of the marginals densities
I Note: if X ,Y are independent, then for any functions f ,g it

holds true that

E [f (X )g(Y )] = E [f (X )]E [g(Y )]

I X ,Y being independent implies that Cor(f (X ),g(Y )) = 0
for any functions f ,g, and thus mCor(X ,Y ) = 0

Remark: zero mCor implies independence (non-trivial)
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The characteristic function
For a random variable X ∈ R, its characteristic function is
defined as

φX (t) = E[eitX ]

For a pair of random variable X ,Y ∈ R, its joint characteristic
function is defined as

φX ,Y (t , s) = E[ei(tX+sY )]

(1) Characteristic functions completely characterize the
distribution of a random variable

φX (t) = φY (t), ∀t ∈ R ⇐⇒ X ,Y have the same distribution

(2) X and Y are independent ⇐⇒ φX ,Y (t , s) = φX (t)φY (s)
(3) If a,b ∈ R, then Z = aX + b has characteristic function

φZ (t) = eibtφX (t)
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Characteristic function - examples
Let X ∼ Bernoulli(p)

φX (t) = E[eitX ] (3)
= E[cos(tX )] + iE[sin(tX )] (4)
= p cos(t · 1) + (1− p) cos(t · 0)

+ i (p sin(t · 1) + (1− p) sin(t · 0)) (5)
= p cos(t) + (1− p) + i p sin(t) (6)
= (1− p) + p(cos(t) + i sin(t)) (7)

= (1− p) + peit (8)

Let X ∼ Exponential(λ)

φX (t) =
λ

λ− i t

(homework exercise)
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”mCor = 0” =⇒ independence
Assuming mCor= 0
I let fX (t) = ei tX

I let gY (s) = ei sY

I mCor= 0 implies

Cor(ei tX ,ei sY ) = 0

I which implies
Cov(ei tX ,ei sY ) = 0

I using Cov(X ,Y ) = E[XY ]− E[X ]E[Y ] yields

E[ei tX ei sY ] = E[ei tX ] E[ei sY ]

E[ei tX+i sY ] = E[ei tX ] E[ei sY ]

φX ,Y (t , s) = φX (t)φY (s)

I which concludes the proof that X and Y are independent.
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Maximal correlation in R
I algorithm to compute mCor in the population
I fixed points of maximal correlation
I Alternating Conditional Expectations(ACE)
I adapt the ACE algorithm in the sample

”ace” package in R:
I q = ace(x,y)
I maximal correlation = cor(q$tx, q$ty)

• MAC: Multivariate Maximal Correlation Analysis, Nguyen
et al, ICML 2014
I genes reveal only a weak correlation with a disease if each

gene is considered individually,
I but, when considered as a group of genes the correlation

may be very strong
I pairwise correlation measures are not sufficient as they are

unable to detect complex interactions of a group of genes.
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Distance correlation

I a very recent measure of statistical dependence between
two random variables

I also works for two random vectors of not necessarily equal
dimension

I it characterizes independence completely
I Measuring and testing dependence by correlation of

distances, Gabor J. Szekely, Maria L. Rizzo, and Nail K.
Bakirov, Annals of Statistics, Volume 35, Number 6 (2007),
2769-2794

I well-defined in both the population and in the sample
I very computationally easy to calculate
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Distance correlation

I properties of a true dependence measure, like Pearson ρ
I distance correlation satisfies 0 ≤ R ≤ 1, and R = 0 only if

X and Y are independent
I In the bivariate normal case, R ≤ |ρ| and equals one when
ρ± 1

I Note that one can obtain a dCor value for X and Y of
arbitrary dimension

I can be computed using the dcor function in the energy R
package

I one could also incorporate a rank-based version of this
metric as well
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Distance correlation - sample version
Let (xi , yi), i = 1, . . . ,n denote a sample from a pair of
real/vector-valued r.v. (X ,Y )

I define the distance matrices A,B ∈ Rn×n as

Aij = |xi − xj | and Bij = |yi − yj |, i , j = 1, . . . ,n

I for higher (possibly different) dimensions

Aij = ||xi − xj ||F and Bij = ||yi − yj ||F , i , j = 1, . . . ,n

I (x ,y could be of different dimensions: n × d1, n × d2)
I double center the distance matrices A,B to get Ã, B̃

Ãij = Aij − Āi· − Ā·j + Ā··

I Āi· denotes the mean of row i
I Ā·j denotes the mean of column i
I Ā·· denotes the overall mean of A

I this centers both the rows and columns of A,B
I all rows and columns of Ã and B̃ sum to 0
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Distance correlation - sample version
I in short notation

Ãjk = (I −M)A(I −M) and B̃jk = (I −M)B(I −M)

where M = 1
n 11T

The distance covariance of x , y is defined as the square root of

dcov2(x , y)
def
=

1
n2

n∑
i,j=1

Ãij B̃ij

The distance variance is defined as

dvar2(x)
def
= dcov2(x , x)

The distance correlation of the sample is given by

dcor2(x , y)
def
=

dcov2(x , y)√
dvar2(x)

√
dvar2(y)
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Distance correlation - sample version

Properties:
I dcor(ax + b, y) = dcor(x , y),∀a,b ∈ R,a 6= 0
I 0 ≤ dcor(x , y) ≤ 1
I dcor(x , y) = 0 ⇐⇒ y = ax + b for some a,b ∈ R,a 6= 0
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Distance correlation - sample vs population

dcov2(x , y) =
1
n2

n∑
i,j=1

Ãij B̃ij

I one can show the following holds true

dcov2(x , y) =
1
n2

n∑
i,j=1

AijBij−
1
n

n∑
j=1

A·jB·j−
1
n

n∑
i=1

Ai·Bi·+A··B··

I where
I Ai· =

∑n
j=1 Aij

I A·j =
∑n

i=1 Aij
I A·· =

∑n
i,j=1 Aij (and similarly for B)

Compare to the (population) distance covariance

dCov2(X ,Y )
def
= E[|X − X ′||Y − Y ′|] + E[|X − X ′|]E[|Y − Y ′|]
− E[|X − X ′||Y − Y ′′|]− E[|X − X ′′||Y − Y ′|]
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Distance correlation - sample vs population

Properties:

dcov2(x , y) =
1
n2

n∑
i,j=1

Ãij B̃ij

I one can show the following holds true

dcov2(x , y) =
1
n2

n∑
i,j=1

AijBij−
1
n

n∑
j=1

A·jB·j −
1
n

n∑
i=1

Ai·Bi·+A··B··

Compare to the (population) distance covariance

dCov2(X ,Y )
def
= E[|X − X ′||Y − Y ′|] + E[|X − X ′|]E[|Y − Y ′|]
− E[|X − X ′||Y − Y ′′|]− E[|X − X ′′||Y − Y ′|]



32

Distance correlation via characteristic functions
Recall:
For a r.v. X ∈ R, its characteristic function:

φX (t) = E[eitX ]

For a pair of r.v.’s X ,Y ∈ R, their joint characteristic function:

φX ,Y (t , s) = E[ei(tX+sY )]

The initial motivation for dCov:

dCov(X ,Y ) = ||φX ,Y − φXφY ||

I || · || is a certain norm on functions
I dCov(X ,Y ) = ||φX ,Y − φXφY || = 0 ⇐⇒ φX ,Y (t , s) =
φX (t)φY (s),∀s, t ∈ R ⇐⇒ X ⊥ Y
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Distance Correlation (Wiki)
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Liner relationship - clean and noisy
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Comparison of correlation measures
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Comparison of correlation measures
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Comparison of correlation measures
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Linear Relationships

Figure: Pearson (Top Left), Spearman (Top Right), Hoeffding’s
(Bottom Left), DistCor (Bottom Right)
Clark, M., A comparison of correlation measures (2013). For each correlation in the legend, 1000 x,y data sets are
created, each of length 1000. Squared values for Pearson and Spearman.
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Nonlinear patterns

+ Noise 7→

Figure: The patterns will be referred to as TOP: wave, trapezoid,
diamond; MIDDLE: quadratic; BOTTOM: X, circle and cluster. Noisy
versions on the left.
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Nonlinear Relationships: Pearson & Spearman

Figure: Neither Pearson not Spearman are able to find a relationship
among any of the patters regardless of noise level.
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dcor vs. MIC: nonlinear patterns
Maximal Information Coefficient (MIC):
I regarded as a ’correlation for the 21st century”
I based on concepts from information theory

Both dCor & MIC show significant values for most patterns.
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Mutual Information and the Maximal Information
Coefficient (MIC)

I regarded as a ’correlation for the 21st century”
I based on concepts from information theory
I entropy as a measure of uncertainty of random variable

The entropy (measured in bits) of a discrete random variable X ,
with probability mass function p(x) = P(X = x), is given by

H(X ) = −
∑
x∈X

p(x) log2 p(x)

Equivalent expression

H(X ) = Ep

(
log

1
p(x)

)
Remark 1: H(X ) ≥ 0
Remark 2: Hb(X ) = logb aHa(X )
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Example: X ∼ Bernoulli(X ){
1,w. p. p
0,w. p. 1− p

H(X ) = −p log p − (1− p) log(1− p) := H(p)
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Recap joint and marginal distributions

Given (X,Y) a pair of discrete r.v.’s taking values in X and Y
I the joint distribution of X and Y is given by

p(x , y) = P(X = x ,Y = y), x ∈ X , y ∈ Y

I the (marginal) distribution of X

pX (x) = p(x) = P(X = x) =
∑
y∈Y

p(x , y)

I the (marginal) distribution of Y

pY (y) = p(y) = P(Y = y) =
∑
x∈X

p(x , y)
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Joint Entropy

The joint entropy H(X ,Y ) of a pair of discrete random variables
(X ,Y ) ∼ p(x , y) is given by

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

also written as

H(X ,Y ) = −E(log p(X ,Y ))

It measures the uncertainty associated to (X ,Y ).
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Conditional Entropy

Given (X ,Y ) ∼ p(x , y), define the conditional entropy H(Y |X )

H(Y |X )
def
=
∑
x∈X

p(x)H(Y |X = x)

where
H(Y |X = x)

def
=
∑
y∈Y

p(y |x) log p(y |x)

and the conditional probability is given by

p(y |x)
def
= P(Y = y |X = x) =

P(Y = y ,X = x)

P(X = x)
=

p(x , y)

p(x)

Interpretation: H(Y |X ) measures the amount of uncertainty
remaining about Y after X is known.
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Conditional Entropy

H(Y |X = x) =
∑
x∈X

p(x)H(Y |X = x)

=
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log p(y |x)

=
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= −E(log p(Y |X ))

Using this, one can show that

H(X ,Y ) = H(X ) + H(Y |X )
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Relative Entropy

The relative entropy or Kullback-Leibler distance between p(x)
and q(x)

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(x)

q(x)

)
I not a proper distance

I does not satisfy the triangle inequality
I not symmetric

I a measure of the distance between the two distributions
p(x) and q(x)
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Mutual Information
Given mass functions
I X ∼ p(x), Y ∼ p(y)
I (X ,Y ) ∼ p(x , y)

The mutual information I(X ; Y )
I measure of the variables mutual dependence
I is the relative entropy between p(x , y) and p(x)p(y)

I(X ; Y ) = D (p(x , y) || p(x)p(y))

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

= Ep(x ,y)

(
log

p(X ,Y )

p(X )p(Y )

)
Note: D(p||q) 6= D(q||p)
Interpretation: I(X ; Y ) measures the
I the information that X and Y share
I average reduction in uncertainty on X that results from

knowing Y
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Mutual Information

I measures how much one random variable tells us about
another

I MI(X ,Y ) ≥ 0
I High MI indicates a large reduction in uncertainty
I Low MI indicates a small reduction in uncertainty
I MI(X ,Y ) = 0⇐⇒ (X ,Y ) are independent

I various algorithms to estimate MI
I for discrete data, the density functions p(x), p(y), and

p(x , y) can be estimated by simply counting the events

I R function: mi.empirical (package entropy )
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Mutual Information and entropy

Properties (try to prove on your own):
I I(X ; Y ) = H(X )− H(Y |X )

I I(X ; Y ) = H(Y )− H(X |Y )

I I(X ; Y ) = H(X ) + H(Y )− H(X ,Y )

I I(X ; Y ) = I(Y ; X )

I I(X ) = H(X )

Jensen’s inequality: If f is a convex function and X is a random
variable

E(f (X )) ≥ f (E(X ))



52

Figure: The relation between entropy and mutual information.
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Implications of Jensen’s inequality
I Information/Gibbs inequality inequality:

D(p||q) ≥ 0

with equality if and only if p(x) = q(x),∀x ∈ X
I Corollary:

I(X ; Y ) ≥ 0

with equality if and only if X and Y are independent
I Fun fact:

H(X ) ≤ log |X |

with equality if and only if X ∼ Unif (X ) (exercise).
I Conditioning reduce entropy (additional information cannot

hurt)
H(X |Y ) ≤ H(X )

(follows from earlier properties)
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Motivation for MIC

I Determine important undiscovered relationships in data
sets with lots of variables
I move beyond linear and monotonic relationships

I Have a computationally efficiently algorithm that robustly
identifies the important relationships
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Why is the Pearson correlation not enough?

Figure: Pearson is not a viable choice for understanding many
dependencies that are ubiquitous in modern data sets.
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Reshes et al., Science, 2011

Figure: Citations on Google Scholar: 475 (2015), 1325 (2019)
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Exploratory data analysis road-map

Given a huge data set, how do you search for pairs of variables
that are closely associated?

I calculate some measure of dependence for each pair
I rank the pairs by their scores
I examine the top-scoring pairs.

Crucial step along the way: the statistic we use to measure
dependence should have two heuristic properties
I generality
I equitability
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MIC - Maximal Information Coefficient

I Functional relationships: MIC ∼= R2

I Range: from 0 (statistical independence) to 1 (no noise)
I For linear relationships: MIC ∼= (Pearson ρ)2

Note: the coefficient of determination, denoted R2 (”R square”)
∈ [0,1], indicates how well the given data fits a statistical model
(line, curve, etc). More on this later, when discussing
regression models.

Larger family of statistics:
MINE - Maximal Information-based Nonparametric Exploration:
I used to identify interesting associations
I classify associations by properties such as nonlinearity

and monotonicity
I application to data sets in health, baseball, and genomics
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Generality

I with sufficient sample size the statistic should capture a
wide range of interesting associations, not limited to
specific function types
I linear, exponential, or periodic, or even to all functional

relationships
I relationships take many functional forms, but many

important relationships (e.g., a superposition of functions)
are not well modeled by a function
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Figure: Simulations. (A) Independent data, (B) linear association, (C)
exponential association - non-linear monotonic association, (D)
quadratic association - non-linear non-monotonic, (E) sine
association: non-linear non-monotonic, (F) circumference:
non-functional association, (G) cross: non-functional association, (H)
square: non-functional association and (I) local correlation: only part
of the data is correlated, which is represented by crosses.

A comparative study of statistical methods used to identify dependencies
between gene expression signals, Siqueira et al., BRIEFINGS IN
BIOINFORMATICS. VOL 15. NO 6, 2013
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Equitability

I the statistic should give similar scores to equally noisy
relationships of different types

I do not want noisy linear relationships precede strong
sinusoidal relationships (when sorting the pairs in terms of
the proposed statistic)

I difficult to formalize for associations in general
I for the basic case of functional relationships:

I An equitable statistic should give similar scores to
functional relationships with similar R2 values (given
sufficient sample size).

Controversial result:
I Kinney & Atwal refute the claim that MIC is ”equitable”
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MIC - Generality and Equitability

Figure: Performance of MIC on associations that not well modeled by
a function (as the noise level varies).
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Comparison of MIC to existing methods

Figure: Scores given to various noiseless functional relationships by
several different statistics
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Experimental setup

Compare MIC, Spearman correlation coefficient, mutual
information, maximal correlation (ACE) on

I 27 different functional relationships with independent
uniform noise added

I varying the noise level (1-R2 value of the data relative to
the noiseless function)

I each shape and color corresponds to a different
combination of function type and sample size

I in each plot, pairs of thumbnails show relationships that
received identical scores

I for data exploration, we would like these pairs to have
similar noise levels
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Spearman Rank Correlation vs. Noise
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Maximal Correlation (ACE) vs. Noise



67

Mutual Information vs. Noise
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MIC vs. Noise
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Pearson correlation failing
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Application to global indicators from the WHO

Figure: (A) MIC vs ρ for all pairwise relationships. (C) Both ρ and MIC
yield low scores for unassociated variables. (D) Ordinary linear
relationships score high under both tests. (E to G) Relationships
detected by MIC but not by ρ, because of nonlinearity (E and G) or
because more than one relationship is present (F). (H) A
superposition of two relationships that scores high under all tests.
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Mutual information (WHO data set)

Figure: (B) Mutual information (Kraskov et al. estimator) versus
Pearson ρ for the same relationships. High mutual information scores
tend to be assigned only to relationships with high ρ, whereas MIC
gives high scores also to relationships that are nonlinear.
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Mutual information (MI) versus MIC

Figure: The relationships on the left appear less noisy than those on
the right⇒ MIC assigns higher scores to the two relationships on the
left. In contrast, MI assigns similar scores to the top two relationships
and similar scores to the bottom two relationships.
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Calculating MIC - Central Idea

”If a relationship exists between two variables, then a grid can
be drawn on the scatterplot of the two variables that partitions
the data to encapsulate that relationship.”
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Calculating MIC - Central Idea

I explore all grids up to a maximal grid resolution, dependent
on the sample size

I compute, for every pair of integers (x , y), the largest
possible MI achievable by any x-by-y grid

I normalize MI values to ensure a fair comparison
I MIxy ∈ [0,1]

I define the characteristic matrix M = (mx ,y ), where mx ,y is
the highest MI achieved by any x-by-y grid

I MIC = the maximum value in M
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Computing MIC: Scatterplots and Grids

Figure: For each pair (x , y), the MIC algorithm finds the x-by-y grid
with the highest induced mutual information.
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Scoring Grids

I Resolution: MIC tries all resolutions (x,y) where xy < n0.6

I Partitioning: For each resolution (x , y) MIC finds the grid
partition placement with highest mutual information MI
I Use approximation algorithm to reduce the number of

partition placements we consider

(Note: previously, we used I(X ; Y ) for mutual information)

MI(X ; Y ) = D (p(x , y) || p(x) p(y)) (9)

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)
(10)

= Ep(x ,y)

(
log

p(X ,Y )

p(X )p(Y )

)
(11)
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Mutual Information
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Mutual Information
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Characteristic matrix & Normalization

I highest mutual information score for each resolution is
stored in the characteristic matrix Mx ,y

I different resolution grids have different maximum mutual
information scores

I normalize
Mx ,y =

max MI(G)

log min(x , y)

I maximum is taken over all x-by-y grids G
I Mx ,y ∈ (0,1)
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The characteristic M matrix

Figure: The algorithm normalizes the mutual information scores and
compiles a matrix that stores, for each resolution, the best grid at that
resolution and its normalized score.
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The surface of the characteristic M matrix

Figure: The normalized scores form the characteristic matrix M,
which can be visualized as a surface; MIC corresponds to the highest
point on this surface.
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Measures based on MIC

Other statistics using MIC and the characteristic matrix M
I Maximum Asymmetry Score (MAS): Deviation from

monotonicity
I Minimum Cell Number (MCN): Complexity measure

I Tells you the minimum number of partitions to get the MIC
score

Collection of statistics:
MINE - Maximal Information-based non-parametric Exploration
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Mathematical properties of MIC

The authors were able to prove that, with probability
approaching 1 as sample size grows, the following hold true
I MIC assigns scores that tend to 1 to all never-constant

noiseless functional relationships
I MIC assigns scores that tend to 1 for a larger class of

noiseless relationships (including super-positions of
noiseless functional relationships)

I MIC assigns scores that tend to 0 to statistically
independent variables
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MINE statistics versus Pearson Correlation
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dcor vs. MIC: nonlinear patterns
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Criticism of MIC

Comment to Science (Simon and Tibshirani 2012)

MIC was shown to have less power than distance correlation
(dCor)

I simulated pairs of variables with varying amounts of noise
added

I power def
= probability that test will correctly reject H0

(hypothesis that there is no relationship)
I lower power = more false positives
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MIC vs. Pearson vs. dCor
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MIC vs. Pearson vs. dCor
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Conclusion

MIC - useful tool:
I for mining various types of association rules
I works well for a variety of data sets
I for identification and characterization of structure in data

Follow-up references on MIC:
I Measuring dependence powerfully and equitably, by Yakir

A. Reshef, David N. Reshef, Hilary K. Finucane, Pardis C.
Sabeti, Michael M. Mitzenmacher (arXiv:1505.02213)

I An Empirical Study of Leading Measures of Dependence,
D. Reshef, Y. Reshef, P. Sabeti, M. Mitzenmacher
(arXiv:1505.02214)


