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Abstract Consider a system of particles performing branching Brownian motion with neg-
ative drift μ = √

2 − ε and killed upon hitting zero. Initially there is one particle at x > 0.
Kesten (Stoch. Process. Appl. 7:9–47, 1978) showed that the process survives with posi-
tive probability if and only if ε > 0. Here we are interested in the asymptotics as ε → 0
of the survival probability Qμ(x). It is proved that if L = π/

√
ε then for all x ∈ R,

limε→0 Qμ(L + x) = θ(x) ∈ (0,1) exists and is a traveling wave solution of the Fisher-
KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when
x < L and L − x → ∞. The proofs rely on probabilistic methods developed by the authors
in (Berestycki et al. in arXiv:1001.2337, 2010). This completes earlier work by Harris, Har-
ris and Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat. 42:125–145, 2006) and confirms
predictions made by Derrida and Simon (Europhys. Lett. 78:60006, 2007), which were ob-
tained using nonrigorous PDE methods.

Keywords Branching Brownian motion · Fisher-KPP equation · Branching processes

1 Introduction

1.1 Main Results

Consider branching Brownian motion started at x > 0, in which each particle splits into two
at rate one, drifts to the left at rate μ, and is killed upon reaching the origin. Kesten [13]
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showed that the process dies out almost surely if μ ≥ √
2 and survives forever with positive

probability if μ <
√

2. We consider here the probability Qμ(x) of survival when μ <
√

2.
Let ε = 2 − μ2 > 0, and choose L such that 1 − μ2/2 − π2/2L2 = 0. That is, we have
L = π/

√
ε. The main objective of this paper is to prove the following results concerning the

asymptotics of Qμ(x) as ε → 0.

Theorem 1 There is a function θ : R → (0,1) such that

lim
ε→0

Qμ(L + α) = θ(α)

for all α ∈ R. The function θ satisfies the differential equation

1

2
θ ′′ = √

2θ ′ − θ(1 − θ) (1)

with the boundary conditions limα→∞ θ(α) = 1 and limα→−∞ θ(α) = 0.

Theorem 1 does not fully determine the value of θ(α) because solutions to (1) are unique
only up to a translation.

The next theorem establishes more precise asymptotics for the survival probability when
x is much smaller than L, in which case the probability of survival tends to zero. For this
result, we allow x to be a function of ε, as long as L − x → ∞ as ε → 0. The result
therefore applies, for example, when x is a fixed number, or when x = Lα for 0 < α < 1, or
when x = L − logL.

Theorem 2 There exists a constant C such that if L − x → ∞ as ε → 0, then

Qμ(x) ∼ CLe−μ(L−x) sin

(
πx

L

)
,

where ∼ means that the ratio of the two sides tends to one as ε → 0.

Finally, we present a result which shows that, if initially there is one particle at x = L+α,
where α ∈ R, so that the probability that the process survives forever is bounded between
0 and 1, then the descendant particles quickly settle to the stable configurations discussed
in [4]. These are precisely the configurations that are needed to apply Proposition 1 and
Theorem 2 in [4].

Let Zε(t) = ∑Mε(t)

i=1 eμXi(t) sin(πXi(t)/L)1{Xi(t)≤L}, where (Xi(t))1≤i≤Mε(t) denotes the
set of active particles at time t . Likewise, denote Yε(t) = ∑Mε(t)

i=1 eμXi(t).

Proposition 3 Let t = cL2, where c > 0 is arbitrary. Then if initially there is one particle
at x = L + α, there exists a nonnegative random variable W , with Laplace transform given
by (24), such that

Zε(t)

ε1/2 exp(π
√

2ε−1/2)
→ 2π2e

√
2αW (2)

in distribution, while

Yε(t)

exp(π
√

2ε−1/2)
→ 0 (3)

in probability.
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As an immediate consequence of Proposition 3 and [4, Theorem 2], we obtain the fol-
lowing corollary. Let n ≥ 1, and let T > 0 be fixed. Consider the coalescent process defined
as follows. Choose n particles uniformly at random from the population at time ε−3/2T , and
label these particles at random by the integers 1, . . . , n. For 0 ≤ s ≤ T , define �ε(s) to be
the partition of {1, . . . , n} such that i and j are in the same block of �ε(s) if and only if
the particles labeled i and j are descended from the same ancestor at time (T − s)ε−3/2. Let
(�(s), s ≥ 0) denote the Bolthausen-Sznitman coalescent restricted to n particles. See, e.g.,
[4] for more precise definitions and [3] for background on coalescence.

Corollary 4 The processes (�ε(s),0 ≤ s < T ) converge as ε → 0, in the sense of finite-
dimensional distributions, to the Bolthausen-Sznitman coalescent (�( s

π2
√

2
),0 ≤ s < T ).

Remark 5 Note that in the above result it is essential to restrict to s < T , as for s = T , the
partition �ε(T ) is the trivial partition consisting of exactly one block. (Indeed, by construc-
tion all particles are descended from the same individual at time 0.)

1.2 Ideas Behind the Proofs

The proofs of Theorems 1 and 2 depend heavily on results in [4], of which this paper is a
sequel. In [4], we chose a different parameterization. More precisely, for each N ∈ N we
let L = (logN + 3 log logN)/

√
2, which means that ε = εN = 2π2/(logN + 3 log logN)2.

Consequently, obtaining asymptotic results as ε → 0 is equivalent to obtaining asymptotic
results as N → ∞.

The main result in [4] can be described as follows. Let MN(t) be the number of particles
alive at time t . Denote the positions of the particles at time t by X1(t) ≥ X2(t) ≥ · · · ≥
XMN (t)(t). Let

ZN(t) :=
MN (t)∑
i=1

eμXi(t) sin

(
πXi(t)

L

)
1{Xi(t)≤L}, t ≥ 0,

and

YN(t) :=
MN (t)∑
i=1

eμXi(t), t ≥ 0.

For each N , pick an initial configuration X1(0), . . . ,XMN (0)(0) such that ZN(0)/N(logN)2

converges in distribution to some nondegenerate random variable W as N → ∞ and such
that YN(0) = o(N(logN)3). Then the processes (ZN(t)/(N(logN)2), t ≥ 0) converge in
the sense of finite-dimensional marginals to a limit (Z(t), t ≥ 0). The limiting process
(Z(t), t ≥ 0) is a continuous-state branching process (CSBP) with branching mechanism
ψ(u) = au + 2π2u logu, where a ∈ R is a constant whose value remains unknown. This
CSBP in the case a = 0 was introduced by Neveu in [15]. Therefore, for such a sequence of
initial configurations, it is not surprising that the probability of extinction of the branching
Brownian motion converges to the probability that

lim
t→∞ Z(t) = 0

when Z(0) = W . This probability is nontrivial whenever W is not degenerate.
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Unfortunately, we can not apply this result directly to a sequence of initial configurations
which consists for each N of a single particle at L + α because the condition on YN(0)

fails. Instead we consider stopping the particles when they first hit a barrier at L − y, where
y → ∞ as N → ∞ but y 
 L. We call Ny the total number of particles that hit L − y,
and we use as our initial configuration Ny particles situated at L − y. Because the process
started from a single particle at x becomes extinct if and only if the descendants of each of
the Ny particles at L − y die off, this formulation is equivalent. The upshot is that this new
initial configuration falls in the application field of the results of [4], and we know explicitly
the distribution of the random variable W .

The argument above allows us to show that for a given α, the quantity Qμ(L + α) con-
verges to a limit, say θ(α), as ε → 0. Once this is known, it is relatively straightforward,
using what is known about the random variable W , to show that θ in fact solves (1), which
completes the proof of Theorem 1. To prove Theorem 2, we use results in [4] to estimate the
probability that a particle eventually reaches L − α and then apply the result of Theorem 1.

1.3 Related Results and Models

Models of branching Brownian motion with absorption and branching random walk with
absorption have received a lot of attention lately. We review here some of the pertinent
known results.

Harris, Harris, and Kyprianou [11] showed (see Theorem 13) that the function x �→
Qμ(x) satisfies Kolmogorov’s equation

1

2
Q′′

μ(x) = μQ′
μ(x) − Qμ(x)(1 − Qμ(x))

with boundary conditions limx→0 Qμ(x) = 0 and limx→∞ Qμ(x) = 1. They also showed
(see Theorem 1) that for each fixed μ <

√
2 there is a constant K such that

lim
x→∞ e(

√
μ2+2−μ)x(1 − Qμ(x)) = K.

Note that the results in [11] are stated in terms of the extinction probability rather than the
survival probability.

Harris and Harris [10] studied the case μ >
√

2. Since Qμ(x) = 0 for all x > 0, they
studied the function t, x �→ Qμ(t, x) = Px(ζ > t) where ζ is the extinction time, and using
spine decomposition techniques, they showed that there exists a constant K such that

lim
t→∞ Px(ζ > t)

√
2πt3

x
e−μx+( 1

2 μ2−1)t = K.

Simon and Derrida [6, 16] obtained quite precise estimates for the survival probabilities
when μ <

√
2. They considered a Brownian motion with diffusion coefficient σ 2 = 2, so

their value of L is twice as large as ours and their critical velocity is 2 rather than
√

2.
However, translating their results into our context and notation, they obtain (see (B.16) of
[16]) that there is a constant C such that when L − x � 1, we have

Qμ(x) = CLe
√

2(x−L)

(
sin

(
πx

L

)
+ O

(
1

L2

))
+ O(e2

√
2(x−L)).
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See also (6) of [6]. They also show (see (B.17) of [16]) that there is another constant c such
that when x > L or L − x is O(1), we have

Qμ(x) = 1 − θ(x − L + c) + O

(
1

L2

)
,

where θ solves the differential equation (1) above. Note that these results would imply The-
orems 1 and 2. Although the derivations in [6, 16], which are based on differential equations
arguments, are not fully rigorous, we believe that it is probably possible to fill in the details
in this argument and obtain the results by the methods used in [6, 16]. We choose instead to
pursue a probabilistic approach which shows the connections between survival probabilities
and Neveu’s CSBP.

Finally, while doing this project, we learned that Aidekon and Harris [1] were working
on similar questions using a spine-decomposition technique. We believe that their approach
will yield the same results that we have.

There has also been a surge of recent work on survival probabilities for branching random
walks in which particles are killed if they get to the left of a wall. For results in this direction,
see Gantert, Hu, and Shi [8], Bérard and Gouéré [2], Jaffuel [12], and Feng and Zeitouni [7].

2 Proof of Theorem 1

Throughout this section, let (Zt , t ≥ 0) be a continuous-state branching process with branch-
ing mechanism ψ(u) = au + 2π2u logu. We use Px to denote probabilities when Z0 = x

and Pν to denote probabilities when Z0 has distribution ν. From results in [9], we know that
this process does not go extinct, meaning that if Z0 > 0 then almost surely Zt > 0 for all
t > 0. Nevertheless, we have limt→∞ Zt = 0 with positive probability. The proposition be-
low relates this probability to the probability that branching Brownian motion goes extinct.

Proposition 6 Consider a branching Brownian motion with drift μ = √
2 − εN . Let

ZN(t) =
MN (t)∑
i=1

eμXi(t) sin(πXi(t)/L)

and

YN(t) =
MN (t)∑
i=1

eμXi(t).

Choose the initial configurations so that ZN(0)/N(logN)2 → ν in distribution as N → ∞,
and YN(0)/(N(logN)3) converges in probability to 0. Let E denote the event that
lim supt→∞ Zt = 0, and let EN = {limt→∞ MN(t) = 0}, the event of extinction of our branch-
ing Brownian motion. Then as N → ∞, limN→∞ P(EN) = Pν(E ).

The key idea of the proof is to use Proposition 1 in [4]. However, some care is needed
because the convergence in this proposition holds only in the sense of finite-dimensional
distributions, and this can not be extended to weak convergence in the Skorokhod topology.
The argument will therefore roughly consist of showing that if one observes Zt for some
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large but finite t , then one can guess whether the event E holds with very small error proba-
bility. Since Proposition 1 in [4] shows convergence of the finite-dimensional distributions,
it remains to show some a priori estimates for survival or extinction when ZN(t) is respec-
tively large or small. This is achieved via martingale arguments and a comparison with an
ordinary (Galton-Watson) branching process.

Lemma 7 For all x ∈ R, we have Px(E ) = e−xα , where α = exp(−a/2π2).

Proof By the branching property, f (x) = Px(E ) satisfies f (x + y) = f (x)f (y). To show
that f is indeed of the above type, it suffices to show that f (x) is not identically 1. This in
turn follows from the fact that

ψ ′(0) = −∞ < 0

and the discussion on p. 716 of Bertoin et al. [5]. The identification α = exp(−a/2π2) also
comes from that same result (it is the largest root of ψ(u) = 0). �

Note that in particular, for any 0 < δ < 1 we can find ε and A > ε such that Pε(E ) > 1−δ

while PA(E ) ≤ δ.

Lemma 8 Almost surely limt→∞ Zt exists and is either 0 or ∞. In particular, if 0 < ε < A,
then Pν(Zt ∈ [ε,A]) → 0 as t → ∞.

Proof By Lamperti’s construction, the process (Zt , t ≥ 0) is a time change of a spectrally
positive Lévy process. More precisely, let (Xt , t ≥ 0) be a Lévy process with Laplace ex-
ponent −ψ started from the distribution ν. Then, letting θt := inf{s > 0 : ∫ s

0 X−1
u du > t},

the process (Zt , t ≥ 0) has same distribution as (Xθt ∧τ0 , t ≥ 0) where τ0 := inf{t : Xt = 0}.
We remember that Xt drifts to +∞ and that if τ0 < ∞, then θt → τ0 as t → ∞ because the
process (Zt , t ≥ 0) can not go extinct. Therefore, the lemma follows from the dichotomy
that either τ0 < ∞ or τ0 = ∞. �

Lemma 9 Choose δ > 0 and ε > 0 so that Pε(E ) ≥ 1 − δ. Then there exists t0 such that if
t ≥ t0, |Pν(Zt < ε) − Pν(E )| ≤ 3δ.

Proof We write for all A > ε

Pν(E ) = Pν(E ;Zt ≤ ε) + Pν(E ;Zt ∈ (ε,A)) + Pν(E ;Zt > A).

Choosing A > 0 large enough that PA(E ) ≤ δ,

|Pν(E ) − Pν(Zt ≤ ε)| ≤ Pν(E �;Zt ≤ ε) + Pν(E ;Zt ∈ (ε,A)) + Pν(E ;Zt > A)

≤ Pε(E �) + Pν(Zt ∈ [ε,A]) + PA(E )

≤ 3δ

for t ≥ t0, since the middle term becomes smaller than δ for t large enough by Lem-
ma 8. �

We now come to the main technical part of the proof, which says that for the branching
Brownian motion, if ZN(t) happens to be large at some point, then it becomes unlikely that
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the process will ever become extinct. This is achieved through a rough comparison with a
supercritical branching process. First we need to slightly reformulate a result of [4]. Here
we are working with branching Brownian motion with particles killed both at 0 and at L,
and (Ft , t ≥ 0) denotes the natural filtration of this process.

Lemma 10 Assume that YN(0)/(N(logN)3) converges in probability to 0 as N → ∞. Let
R be the number of particles that hit L between times 0 and (logN)3. Then for sufficiently
large N , we have

E(R|F0) ≥ π
ZN(0)

N(logN)2
. (4)

Also, there is a constant C such that

E(R2|F0) ≤ C

(
ZN(0)

N(logN)2

)2

+ C
ZN(0)

N(logN)2
+ op(1), (5)

where op(1) denotes a term which tends to zero in probability as N → ∞. If there is a
deterministic sequence aN → 0 such that YN(0)/(N(logN)3) ≤ aN for all N , then the op(1)

can be replaced by an o(1) term, which tends to zero uniformly as N → ∞.

Proof To prove (4), we use Proposition 16 in [4], taking A = 0, s = 1, and θ = 1. Note that
this lower bound can be seen either from the first conclusion of Proposition 16 in [4] or just
from (71) of [4].

To get (5), we use Proposition 18 in [4]. Here, we can not apply the result directly because
the result requires ZN(0)/(N(logN)2) to be bounded by some constant ε−1/2 such that
θε−1/2 ≤ 1. However, we just observe that Proposition 18 of [4] comes from combining
(72), (73), and (78) of [4], which lead to the bound (5) when A = 0, s = 1, and θ = 1. Note
that the op(1) term in (5) comes from the term in (78) of [4] that involves YN . This term
becomes o(1) when YN(0)/(N(logN)3) ≤ aN for all N . �

We now introduce the Galton-Watson process to which we compare the branching Brow-
nian motion. Consider branching Brownian motion with drift −√

2 started with one par-
ticle at L, in which particles are killed when they reach L − y. Let Ty be the extinction
time for this process. Because Ty < ∞ almost surely, there exists an increasing function
g : (0,∞) → (0,∞) such that P(Ty > g(y)) → 0 as y → ∞. Now let y = yN be a sequence
that tends to infinity slowly enough that y = o(L) and g(2y)(

√
2 − μ) → 0 as N → ∞.

Lemma 11 Consider branching Brownian motion with drift −μ started with a single par-
ticle at L. Choose y = yN as above, and let Ny be the number of particles that are killed if
particles are killed upon reaching L − y. As N → ∞ we have

Nye
−√

2yy →d W, (6)

where →d denotes convergence in distribution. Furthermore, there exists a universal con-
stant D such that

lim inf
N→∞

E(ye−√
2yNy ∧ D) >

2

π2
√

2
. (7)
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Proof The variable Ny is a functional of a branching Brownian motion with drift −μ started
from one particle at L but it is easy to see that one can instead work with a branching
Brownian motion with drift −√

2. For this process, let Zy be the number of particles that
hit position L − y if initially there is one particle at L and particles are killed upon reaching
L − y. To offset the change of drift it suffices to replace the operation of killing at position
L−y by killing particles upon hitting an oblique line whose slope is exactly

√
2−μ. Hence

in this model (a branching Brownian motion with drift −√
2 started from one particle at L)

we take Ny to be the number of particles that at some time t > 0 reach the line L − y −
(
√

2 − μ)t if particles that hit this line are immediately killed.
As shown in Sect. 5 of Neveu [14], the process (Zu)u≥0 is a continuous-time branch-

ing process, and furthermore there exists a random variable W such that, almost surely as
y → ∞,

ye−√
2yZy → W. (8)

We now compare the distribution of Ny with that Zy . Observe first that Ny ≥ Zy . It
is the other direction that requires a few more arguments. Note for instance that Ny may
be infinite, although this will happen with exceedingly small probability. We claim that if
y ′

N = yN + g(2yN)(
√

2 − μ), then

P(Ny ≤ Zy′) → 1 (9)

as N → ∞. Because y ′ − y = g(2y)(
√

2 −μ) → 0 as N → ∞, this will immediately entail
that ye−√

2yNy converges in distribution to W.

Define the event C = {Ty′ < g(y ′)}. Note that y ′ ≤ 2y for sufficiently large N . Therefore,
for sufficiently large N , on the event C , we have that y + Ty′(

√
2 − μ) ≤ y + g(2y)(

√
2 −

μ) = y ′. In this case, we have that Ny ≤ Zy′ , since until Ty′ the vertical line L − y ′ is to the
left of the oblique line L − y − (

√
2 − μ)t and hence particles have more time to branch

if we kill at L − y ′. Because P(C) → 1 as N → ∞ by the definition of the function g, (9)
follows.

The second part of the lemma follows easily by the dominated convergence theorem and
the fact that W has infinite mean, which is a consequence of Proposition 27 in [4]. �

Consider the first Ny ∧ Dy−1e
√

2y particles that reach L − y. Let N̂ be the number of
descendants of these particles that reach L within a time (logN)3 after the parent particle
reached L − y (assuming particles are killed when they reach L).

Lemma 12 Choosing D as in Lemma 11, there is a universal C < ∞ such that

E(N̂) ≥ 2; E(N̂2) ≤ C (10)

for all N large enough.

Proof We estimate the expectation and second moment of N̂ using Lemma 10. Note that,
conditionally on Ny , N̂ has the same law as the number of descendants of Ny ∧ Dy−1e

√
2y

particles started from L − y, that hit L prior to time (logN)3 (i.e., the time at which the Ny

particles reach L − y is irrelevant). Note that for this process,

YN(0) = (Ny ∧ Dy−1e
√

2y)eμ(L−y) ≤ Dy−1eμLey(
√

2−μ),
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so YN(0)/(N(logN)3) → 0 as N → ∞ and we can apply Lemma 8. Thus, applying the
result of Lemma 10 and using the inequality sin(x) ≥ (2/π)x for x ∈ [0,π/2],

E(N̂ |Ny) ≥ (Ny ∧ Dy−1e
√

2y)eμ(L−y) sin(π(L − y)/L)π

N(logN)2

∼ π2
√

2(ye−√
2yNy ∧ D),

where ∼ means that the ratio of the two sides tends to one as N → ∞. Taking expectations
of both sides and applying Lemma 11, we get that

E(N̂) ≥ 2

for N large enough.
The second moment of N̂ is controlled in a similar fashion. By Lemma 10,

E(N̂2) ≤ C

(
Dy−1e

√
2yeμ(L−y) sin(πy/L)

N(logN)2

)2

+ C
Dy−1e

√
2yeμ(L−y) sin(πy/L)

N(logN)2
+ o(1),

which is bounded by a constant for sufficiently large N . Equation (10) is proved. �

For any particle that reaches L, we can associate a random variable N̂ as above, which
counts the number of offspring of that particle that first hit L − y and then return to L

after no more than time (logN)3. This gives rise to an (ordinary) Galton-Watson branching
process T whose offspring distribution is the distribution of N̂ . Note that if this Galton-
Watson process survives, then our branching Brownian motion cannot become extinct. To
see this, it suffices to check that on the event of survival there are particles alive at all
times. Fix a ray ξ ∈ T . Let Ti be the time at which the ith particle of this ray hits L. Then
(Ti+1 − Ti)i≥1 is stochastically bounded below by an i.i.d. sequence of random variables
which are strictly positive (being the time for a Brownian motion with drift μ to hit L − y

started from L). Thus by the law of large numbers, limi→∞ Ti = ∞ almost surely, and hence
there are particles alive at all times. With this in mind, we can prove Lemma 14 below. The
key tool in the proof will be a second-moment argument that gives a lower bound on the
survival probability of a Galton-Watson process.

Lemma 13 Let (pk)
∞
k=0 be a sequence of nonnegative numbers that sum to 1, and let X

be a random variable such that P(X = k) = pk for all nonnegative integers k. Let q be
the extinction probability of a Galton-Watson process started with a single individual with
offspring distribution pk . Then

1 − q ≥ 2(E[X] − 1)

E[X(X − 1)] .

Proof Let m = E[X] and α = E[X(X − 1)]. Let g(s) = E(sX) be the generating function of
the offspring distribution. Then by differentiating under the expectation sign, the derivatives
of all orders of g are nonnegative, hence in particular g′′(s) is nondecreasing and g′′(s) ≤
g′′(1) = α. Therefore, integrating between s and 1,

g′(1) − g′(s) =
∫ 1

s

g′′(t)dt ≤ α(1 − s)
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and hence g′(s) ≥ m − α(1 − s). Integrating further gives

g(1) − g(s) =
∫ 1

s

g′(t)dt ≥ m(1 − s) − α

∫ 1

s

(1 − t)dt

= m(1 − s) − α(1 − s)2/2.

Thus

g(s) ≤ 1 − m(1 − s) + α(1 − s)2/2 =: h(s).

Thus, the extinction probability q is smaller than the unique s < 1 such that the right-hand
side h(s) = s. Writing x = 1 − s, this means we are looking for x > 0 such that αx2/2 −
mx + x = 0, or x(1 − m + αx/2) = 0, or x = 2(m − 1)/α. The result follows. �

Lemma 14 Assume there is initially a particle at L. Then there exists a number ρ > 0,
independent of N , such that P(E �

N) ≥ ρ.

Proof By the above remark, it suffices to show that the survival probability for the Galton-
Watson tree T , if there is initially one particle at L, is bounded away from 0. By (10),
we know that E[N̂] ≥ 2 and E[N̂(N̂ − 1)] ≤ E[N̂2] ≤ C for sufficiently large N . It thus
follows from Lemma 13 that the survival probability is at least 2/C for sufficiently large N .
Furthermore, on the event that T does not become extinct, we know that E �

N holds almost
surely. This completes the proof of Lemma 14. �

It is now fairly simple to prove the following lemma.

Lemma 15 Consider branching Brownian motion with drift μ whose initial configurations
satisfy the conditions of Proposition 6 for a nonzero measure ν. Let δ > 0. Then there exists
A > 0 such that for all t > 0 and all large enough N ,

P

(
EN

∣∣∣∣ZN(t (logN)3)

N(logN)2
> A

)
≤ δ. (11)

Proof Let t > 0. Choose K such that (1 − ρ)K ≤ δ/2, and let B be the event that at least K

particles ever reach L. Define the event A by

AN := {ZN(t (logN)3)/N(logN)2 > A} (12)

for some A > 0 to be defined later. Intuitively, we want to take A > 0 large enough that
P(B|AN) > 1−δ/2, for then we know by Lemma 14 that survival will occur with probability
at least 1 − δ. Let R be the number of particles that hit L between times t (logN)3 and
(t + 1)(logN)3. Note first that if F = Ft (logN)3 ,

P(R ≥ 1|F ) ≥ E(R|F )2

E(R2|F )
.

Lemma 20 of [4] establishes that YN(t (logN)3)/(N(logN)3) converges to 0 in probability
as N → ∞. Therefore, by applying Lemma 8 and writing V = ZN(t (logN)3)/(N(logN)2),
we get

P(R ≥ 1|F ) ≥ π2V 2

CV 2 + CV + δN

,
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where δN → 0 in probability as N → ∞. Let GN be the event that δN ≤ 1. Choose 0 < 2η <

π2/(2C + 1). If A ≥ 1, then π2V 2/(CV 2 + CV ) ≥ π2/(2C + 1) on the event AN ∩ GN , so

P(R ≥ 1|AN) ≥ E(2η1AN ∩GN
)

P(AN)
.

Because P (GN) → 1 as N → ∞ but lim infN→∞ P (AN) > 0 by Theorem 2 of [4], it follows
that P(R ≥ 1|A) ≥ η for sufficiently large N .

Let (B1,B2, . . .) be a sequence of i.i.d. Bernoulli random variables with success proba-
bility η. Choose r ≥ 1 so that P(

∑r

i=1 Bi ≥ K) ≥ 1 − δ/2. Observe that there is a universal
constant D > 1 such that the largest contribution to ZN from any given particle is at most
DN(logN)2. Now choose A = (D + 1)r . Then the population of particles can be broken
into at least r = A/(D + 1) groups of particles, corresponding to index sets I1, . . . , Ir , such
that for all 1 ≤ j ≤ r , we have

∑
i∈Ij

eμXi (t (logN)3) sin

(
πXi(t (logN)3)

L

)
≥ N(logN)2.

If 1 ≤ j ≤ r , let Rj denote the number of descendants of a particle in Ij at time t (logN)3 that
hit L before time (t + 1)(logN)3. Then it was shown above that for sufficiently large N , we
have P(Rj ≥ 1|A) ≥ η for all 1 ≤ j ≤ r . Moreover by the branching property, the variables
(R1, . . . ,Rr) are conditionally independent given F . This leads to the desired inequality

P(B|A) ≥ 1 − δ/2. (13)

Now,

P(EN |A) ≤ P(Bc|A) + P(EN |A ∩ B). (14)

Note that the first term in the right-hand side is smaller than δ/2 by (13), while by the
branching property, and by Lemma 14,

P(EN |A ∩ B) ≤ (1 − ρ)K ≤ δ/2

by choice of K . This finishes the proof of Lemma 15. �

Conversely, we need a result which tells us that if ZN(t) < εN(logN)2 then the process
is likely to die out. This is done in the following simple lemma.

Lemma 16 Consider branching Brownian motion with drift μ whose initial configurations
satisfy the conditions of Proposition 6. For all δ > 0 there is ε > 0 such that for all t > 0, if
D = {ZN(t (logN)3) < εN(logN)2}, then P(EN |D) ≥ 1 − δ.

Proof We may assume that t = 0 and that all particles are initially to the left of L − 1
(because if there were one particle to the right of L−1 then YN(t (logN)3) would be greater
than eμ(L−1)), an event which has probability tending to zero by Lemma 20 of [4]. Let

Z̄(s) = ∑M̄N (s)

i=1 eμX̄i (s) sin(πX̄i(s)/L), where X̄i(s) is the position of the ith particle when
particles are killed upon hitting L. Then Z̄ is a nonnegative martingale, and thus converges
almost surely (and is hence almost surely bounded). It is easy to see that this limit may only
be zero, i.e., that all particles eventually die out, either by hitting L or by hitting 0. (Indeed,
otherwise, there is some η > 0 such that the interval [η,L−η] has particles at an unbounded



844 J. Berestycki et al.

set of times. An application of the strong Markov property then shows that the number of
particles in this interval eventually exceeds any number, which contradicts the almost sure
boundedness of Z̄ as a function of time.) We now claim that with overwhelming probability,
all particles must die by hitting 0. Indeed, let τx = inf{t ≥ 0 : Z(t) ≤ xN(logN)2} and let
τ ′
x = inf{t ≥ 0 : Zt ≥ xN(logN)2}. Since Z̄ is a martingale which makes bounded jumps (so

that (Z̄t∧τ ′
x∧τ0

, t ≥ 0) is bounded), by the optional stopping theorem,

P(τ ′
x < τ0|D) ≤ ε/x. (15)

Assume that at least one particle hits L. On this event, then an ancestor of this particle must
have hit level L− 1 since initially all particles are to the left of L− 1. But at that point, Z̄(s)

is at least eμ(L−1) sin(π/L) ≥ cN(logN)2, where c > 0 is a positive constant. Therefore, on
this event τ ′

c < τ0. Thus the probability of this event is, by (15), at most ε/c. Thus it suffices
to choose ε > 0 such that ε/c < δ and the statement of the lemma holds. �

Proof of Proposition 6 Let δ > 0. Choose ε > 0 small enough that Pε(E ) ≥ 1 − δ and small
enough that the conclusion of Lemma 16 holds. Choose A > 0 large enough that Lemma 15
holds. By Lemmas 8 and 9 we may now fix t such that |Pν(E ) − Pν(Zt < ε)| ≤ 3δ and also
such that Pν(Zt ∈ [ε,A]) ≤ δ.

Note that, letting VN(t) = Z(t (logN)3)/(N(logN)2),

P(EN) = P(EN ;VN(t) < ε) + P(EN ;VN(t) ∈ [ε,A]) + P(EN ;VN(t) > A)

and thus

|P(EN) − Pν(E )| ≤ |Pν(E ) − Pν(Zt < ε)| + |P(EN ;VN(t) < ε) − Pν(Zt < ε)|
+ P(EN ;VN(t) ∈ [ε,A]) + P(EN ;VN(t) > A). (16)

We bound these four terms separately. By Lemma 15 the fourth term is smaller than δ, and
the first one is smaller than 3δ by choice of t . The third term is smaller than 2δ for N large
enough: indeed by Proposition 1 in [4], ZN(t (logN)3)/N(logN)2 converges in distribution
towards Zt started from ν, and the set [ε,A] is closed. Hence, the limsup of the probability
in the third term is at most Pν(Zt ∈ [ε,A]), which is at most δ by choice of t .

It remains to deal with the second term. We observe that on the one hand,

P(EN ;VN(t) < ε) − Pν(Zt < ε) ≤ P(VN(t) < ε) − Pν(Zt < ε) (17)

which converges to 0 again by Proposition 1 in [4] and the fact that Pν(Zt = ε) = 0. Thus
the left-hand side is smaller or equal to δ for N large enough. On the other hand, by choice
of ε (and Lemma 16),

P(EN ;VN(t) < ε) − Pν(Zt < ε) ≥ P(VN(t) < ε)(1 − δ) − Pν(Zt < ε). (18)

The right-hand side converges to −δPν(Zt < ε) ≥ −δ. Hence for N large enough, it is
greater or equal to −2δ. Putting together (17) and (18), we conclude that for N large enough

|P(EN ;VN(t) < ε) − Pν(Zt < ε)| ≤ 2δ.

Plugging back into (16), we obtain that

|P(EN) − Pν(E )| ≤ 8δ

for N large enough, which proves Proposition 6. �
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Proof of Theorem 1 Recall that yN is a sequence tending slowly to infinity. As before, we
often drop the subscript N and just write y instead of yN . Denote by QN

m(EN) the probability
of extinction when we start from a configuration of particles whose positions are encoded in
an atomic measure m, and let E

N
m(·) denote the corresponding expectation. We want to com-

pute the probability QN
δ(L+x)(EN) = 1 − Qμ(L + x) of extinction starting with one particle

at L + x, where δ(x) denotes the unit Dirac mass at x. Let Ny be the number of particles
that hit L − y when particles are killed at L − y. Then because each of these particles must
eventually become extinct for the whole process to die out, we have that

1 − Qμ(L + x) = E
N
δ(L+x)

[
QN

Nyδ(L−y)(EN)
]
. (19)

Indeed, for extinction it is irrelevant that these Ny particles reach L − y at different times.
Therefore, we may consider a sequence of random initial configurations consisting of Ny

particles at position L − y. Using Lemma 11 we see that

Nyye−√
2y →d e

√
2xW, (20)

where W is the limiting random variable in (6). We claim that this sequence of initial con-
figurations satisfies almost surely the conditions of Proposition 6 (which are those of Propo-
sition 1 in [4]). This will establish the first part of Theorem 1. Indeed, we have

ZN(0)

N(logN)2
= Ny sin(πy/L)eμ(L−y)

N(logN)2
→d π

√
2e

√
2xW. (21)

Moreover,

YN(0)

N(logN)3
= Nye

μ(L−y)

N(logN)3
= eμL

N(logN)3
· Nyye−μy · 1

y
→p 0 (22)

because the first factor converges to 1, the third converges to 0, and the second converges in
distribution to e

√
2xW. This proves the first half of the theorem.

According to Proposition 6 and Lemma 7, if we take a sequence of initial configurations
such that

ZN(0)

N(logN)2
→ cW

in distribution, where c is a constant, and YN(0)/(N(logN)3) converges to 0 in probability,
then

lim
N→∞

QN
m(EN) = Pν(E ) = E(e−cαW ) (23)

where m is the atomic measure representing the initial configuration of particles that satisfies
the above conditions, ν is the law of cW , and α = exp(−a/2π2).

Therefore, by (19), (23), and (20) we conclude

lim
N→∞

QN
δ(L+x)(EN) = E

[
e−απ

√
2e

√
2xW

] = E
[
e−e

√
2(x+β)W

]

where β = log(απ
√

2)/
√

2 = (log(π
√

2) − a/2π2)/
√

2.
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It was shown in [14] (see also Proposition 24 in [4]) that

E[e−e
√

2uW ] = ψ(u), (24)

where ψ : R → (0,1) solves Kolmogorov’s equation

1

2
ψ ′′ − √

2ψ ′ = ψ(1 − ψ). (25)

Thus

lim
N→∞

QN
δ(L+x)(EN) = ψ(x + β).

Letting θ(x) = 1 − ψ(x + β), we get

lim
N→∞

1 − QN
δ(L+x)(EN) = θ(x),

and from (25) it is easily verified that θ satisfies (1). This finishes the proof of Theo-
rem 1. �

3 Proof of Theorem 2

Throughout this section, we consider branching Brownian motion with a drift to the left of
μ started with a single particle at x, where x depends on ε and therefore on N . The proof
of Theorem 2 will follow directly from the next three lemmas. Fix α > 0. Let R be the total
number of particles that hit L − α when particles are killed upon hitting this barrier. (Note
that

√
2α corresponds to the parameter A in [4].) The first lemma controls the expectation

of this number.

Lemma 17 For each α > 0 fixed,

E[R] = e
√

2α

π
√

2α
eμx sin

(
πx

L − α

)
1

N(logN)2
(1 + CN)

where CN → 0 as N → ∞.

Proof of Lemma 17 Start with a particle at x. By Lemma 15 of [4] with A = √
2α, the “rate”

at which particles are hitting L − α at time t , for t � L2, is approximately

ρ(N)(t) = 2πe
√

2αe(1−μ2/2−2π2/(L−α)2)t eμx sin

(
πx

L − α

)
1

N(logN)5
.

More precisely, define R(N)([t, t +δ]) to be the number of particles that reach L−α between
times t and t + δ. Then we have the bounds

δρ(N)(t)(1 + EN,t )(1 + C
(1)
N,δ) ≤ E[R(N)([t, t + δ])] ≤ δρ(N)(t)(1 + EN,t )(1 + C

(2)
N,δ), (26)

where EN,t is the constant defined by (16) in [4] which satisfies

|EN,t | ≤
∞∑

n=2

n2e−π2(n2−1)t/2(L−α)2
, (27)
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and

lim
δ→0

lim
N→∞

C
(i)
N,δ = 0

for i = 1,2. Note that it can be seen from the proof of Lemma 15 in [4] that the constants
C

(i)
N,δ do not depend on t .

Let τN = θN(logN)2, where 1 
 θN 
 logN as N → ∞. We have

E[R(N)([τN ,∞))]

≥
∞∑

k=0

E[R(N)([τN + kδ, τN + (k + 1)δ])]

≥ δ(1 + C
(1)
N,δ)

(
1 −

∞∑
n=2

n2e−π2(n2−1)τN /2(L−α)2

) ∞∑
k=0

ρ(N)(τN + kδ)

= δ(1 + C
(1)
N,δ)

(
1 −

∞∑
n=2

n2e−π2(n2−1)τN /2(L−α)2

)
ρ(N)(τN)

1 − e(1−μ2/2−2π2/(L−α)2)δ

and likewise

E[R(N)([τN ,∞))]

≤ δ(1 + C
(2)
N,δ)

(
1 +

∞∑
n=2

n2e−π2(n2−1)τN /2(L−α)2

)
ρ(N)(τN)

1 − e(1−μ2/2−2π2/(L−α)2)δ
.

As N → ∞, we have (see (39) of [4])

1 − μ2

2
− π2

2(L − α)2
∼ −2

√
2π2α

(logN)3

and therefore, since τN 
 (logN)3,

ρ(N)(τN) ∼ 2πe
√

2αeμx sin

(
πx

L − α

)
1

N(logN)5
.

By letting N → ∞ and comparing the upper and lower bounds, then taking δ → 0, we get

E[R(N)([τN ,∞))] ∼ e
√

2α

π
√

2α
eμx sin

(
πx

L − α

)
1

N(logN)2
. (28)

To complete the proof of Lemma 17, it suffices to show that E[R(N)([0, τN ])] is much
smaller than the right-hand side of (28). We do this by following the argument at the begin-
ning of the proof of Proposition 16 in [4]. Recall from Lemma 6 of [4] that

V (t) =
M(t)∑
i=1

Xi(t)e
μXi (t)+(μ2/2−1)t
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defines a martingale for branching Brownian motion with particles killed at the origin. Fur-
thermore, we see that because μ2/2 − 1 < 0, this process remains a supermartingale if par-
ticles are stopped, but not killed, when reaching L − α. Therefore,

V (t) = R(N)([0, t])(L − α)eμ(L−α)+(μ2/2−1)t +
M(t)∑
i=1

Xi(t)e
μXi (t)+(μ2/2−1)t

defines a supermartingale. It follows that

xeμx = V (0) ≥ E[V (τN)] ≥ E[R(N)([0, τN ])](L − α)eμ(L−α)+(μ2/2−1)τN .

Now since −(μ2/2 − 1)(logN)2 is bounded by some constant C, we get the bound

E[R(N)([0, τN ])] ≤ xeμx

L − α
e−μ(L−α)eCθN ≤ C ′xeμxeμαeCθN

N(logN)4
(29)

for some other constant C ′. This expression will be much smaller than the right-hand side
of (28) as N → ∞ provided that

xeCθN

(logN)2

 sin

(
πx

L − α

)
.

Because L−x � 1, this can be arranged by making sure that θN → ∞ sufficiently slowly. �

The second lemma tells us that the expectation above is not dominated by a very small
probability of a large number of particles reaching L − α.

Lemma 18 Assume α ≥ 1. There exists C > 0 not depending on α and a sequence CN,α

tending to zero as N → ∞ for each fixed α such that

E(R2) ≤ (C + CN,α)E(R).

Proof of Lemma 18 We follow the proof of Proposition 18 in [4]. Here we have the slightly
simpler decomposition R2 = R + 2Y x where Y x is the number of distinct pairs of particles
that ever hit L − α.

Define qt (x, y) so that if there is initially one particle at x, the expected number of par-
ticles in a set B ⊂ (0,L − α) at time t is given by

∫
B

qt (x, y) dy. Let h(y) be the expected
number of offspring of a single particle at y that hit L−α. Note that if at time t a branching
event causes a particle at y to split into two particles, then there will be on average h(y)2

distinct pairs of particles that hit L − α and have their most recent common ancestor at time
t . It follows that

E[Y x] =
∫ ∞

0

∫ L−α

0
qt (x, y)h(y)2 dy dt

=
∫ (logN)2

0

∫ L−α

0
qt (x, y)h(y)2 dy dt +

∫ ∞

(logN)2

∫ L−α

0
qt (x, y)h(y)2 dy dt

= T1 + T2.
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To bound h(y), we use (28) and (29) with y in place of x and θN = 1 for all N . In this case,
EN,t is still bounded by a constant, and we get

h(y) ≤ C

N(logN)2
· e

√
2α

π
√

2α
· eμy sin

(
πy

L − α

)
+ Cyeμyeμα

N(logN)4
, (30)

where here and throughout the proof, the value of the constant C may change from line to
line. Define vt (x, y) so that if a Brownian particle (without drift or branching) is started at
x and is killed upon reaching 0 or L − α, then the probability that the particle is in a set
B ⊂ (0,L − α) at time t is given by

∫
B

vt (x, y) dy. To bound T1, we use the fact (see (28)
of [4]) that qt (x, y) ≤ Ceμ(x−y)vt (x, y) for t ≤ (logN)2 to get

T1 ≤
∫ (logN)2

0

∫ L−α

0
eμ(x−y)vt (x, y)

(
C

N(logN)2
· e

√
2α

π
√

2α
· eμy sin

(
πy

L − α

)

+ Cyeμyeμα

N(logN)4

)2

dy dt

≤ Ceμx

∫ L−α

0

(∫ (logN)2

0
vt (x, y) dt

)
eμye2

√
2α

N2(logN)4

(
1

α2
sin

(
πy

L − α

)2

+ y2

(logN)4

)
dy.

Now using that
∫ ∞

0 vt (x, y) dt ≤ 2x(L − α − y)/(L − α) from standard Green’s function
results for Brownian motion (see Sect. 2 of [4]), we get

T1 ≤ Ceμxe2
√

2α

N2(logN)4

∫ L−α

0

x(L − α − y)

L − α
eμy

(
1

α2
sin

(
πy

L − α

)2

+ y2

(logN)4

)
dy.

The integral is dominated by values of y near L − α, for which the term in parentheses
contributes 1/(logN)2 and (L − α − y)/(L − α) contributes another 1/(logN). Therefore,
the integral is of the order xeμ(L−α)/(logN)3 ≤ CxNe−√

2α , and we get

T1 ≤ Cxeμxe
√

2α

N(logN)4
. (31)

It remains to bound T2. For this we use that for t ≥ (logN)2, we have

qt (x, y) ≤ C

L
e−2

√
2π2αt/(logN)3

eμx sin

(
πx

L − α

)
e−μy sin

(
πy

L − α

)

(see Lemma 5 and (39) of [4]). We write T2 ≤ C(T2,a +T2,b), where T2,a comes from bound-
ing h(y)2 by the square of the first term on the right-hand side of (30) and T2,b comes from
bounding h(y)2 by the square of the second term on the right-hand side of (30). Now

T2,a ≤ C

N2(logN)4

(
e

√
2α

π
√

2α

)2

· 1

L
eμx sin

(
πx

L − α

)

×
∫ ∞

0

∫ L−α

0
eμy sin

(
πy

L − α

)3

e−2
√

2π2αt/(logN)3
dy dt
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≤ C

N2(logN)5

(
e

√
2α

π
√

2α

)2

eμx sin

(
πx

L − α

)
· (logN)3

α
· eμ(L−α)

(logN)3

≤ C

N(logN)2
· e

√
2α

α3
· eμx sin

(
πx

L − α

)
(32)

and

T2,b ≤ C

N2(logN)8
e2μα · 1

L
eμx sin

(
πx

L − α

)

×
∫ ∞

0

∫ L−α

0
eμyy2 sin

(
πy

L − α

)
e−2

√
2π2αt/(logN)3

dy dt

≤ C

N2(logN)9
e2μα · eμx sin

(
πx

L − α

)
· (logN)3

α
· N(logN)3 · (logN)2e−μα

logN

= C

N(logN)2
· eμα

α
· eμx sin

(
πx

L − α

)
. (33)

Recall that Lemma 17 gives the expected number of particles that reach L − α. By com-
paring this expectation with the bounds in (32), and (33), we get that T2 ≤ CE[R]. Note
that all the constants in the bounds of T1 and T2 above are independent of α over the range
α ≥ 1. Furthermore, because L − x � 1, it follows from (31) that T1/E[R] → 0 as N → ∞
for each fixed α. These observations imply the statement of the lemma. �

When α is large, the probability that an individual particle at L − α has descendants that
survive forever is small, meaning the number of such particles will likely either be 0 or 1
and the bound from Markov’s Inequality should be precise. Therefore we have the following
lemma.

Lemma 19 We have

Qμ(x) = e
√

2α

π
√

2α
· eμx sin

(
πx

L

)
· 1

N(logN)2
· Qμ(L − α)(1 + CN,α + o(α−1)),

where o(α−1) denotes a term that tends to zero as α → ∞ and does not depend on N while
for each fixed α,CN,α → 0 as N → ∞.

Proof of Lemma 19 Consider the particles that reach L−α when particles are stopped upon
reaching this level, and let S be the number of these particles that have an infinite line of
descent. Since each particle that reaches L − α has probability Qμ(L − α) of having an
infinite line of descent, we have E(S) = E(R)Qμ(L − α), and more generally, conditional
on R the random variable S is binomial (R,q) with q = Qμ(L − α). It follows that

0 ≤ E(S) − P(S > 0) = E(Rq − (1 − (1 − q)R)) ≤ E(R2q2) ≤ (C + CN,α)q
2
E(R)

= (C + CN,α)qE(S),

where we have used Rq − (1 − (1 − q)R) ≤ R2q2 for the second inequality and Lemma 18
for the third inequality. It follows that

E(S)(1 − (C + CN,α)q) ≤ P(S > 0) ≤ E(S).



Survival of Near-Critical Branching Brownian Motion 851

Because q → 0 as α → ∞, we have

P(S > 0) = E(R)q(1 + CN,α + o(α−1)). (34)

The martingale argument in the proof of Lemma 16 implies that almost surely the process
survives if and only if S > 0. Consequently, (34) and Lemma 17 imply the result. �

Proof of Theorem 2 We now use Lemma 19 to prove Theorem 2. Indeed letting N → ∞
and using Theorem 1, we get that

Qμ(x) ∼ e
√

2αθ(−α)

π
√

2α
· eμx sin

(
πx

L

)
· 1

N(logN)2
· (1 + o(α−1)).

Since the left-hand side does not depend on α, it follows that as α → ∞, the expression
α−1e

√
2αθ(−α) must tend to a limiting constant, which implies the result. �

4 Proof of Proposition 3

In order to simplify the proof we choose α = 0 (all arguments are easily adapted for a generic
value of α). Let a > 0 be arbitrary and let T = a(logN)2. Since α = 0, we are assuming that
there is initially one particle at x = L. Fix y ≥ 0, and let Ny be the number of particles ever
touching L − y, if particles are killed upon touching this level. Let t1 ≤ · · · ≤ tNy denote the
respective times at which these particles hit L − y. Let F be the σ -field generated by Ny

and t1, . . . , tNy . Observe that, conditionally on F , on the event V that tNy ≤ T , we have that
ZN(T ) and YN(T ) are the sum of Ny independent random variables. More precisely, for
1 ≤ i ≤ Ny , let (Xi

j (t))1≤j≤Mi(t) denote the positions of the descendants of the ith particle
hitting L − y, at time t + ti . Let

Zi(t) =
Mi(t)∑
j=1

e
μXi

j
(t) sin

(
πXi

j (t)

L

)
1{Xi

j
(t)≤L} (35)

and likewise, let

Y i(t) =
Mi(t)∑
j=1

e
μXi

j
(t)

.

Then we may write, on the event V ,

ZN(T ) =
Ny∑
i=1

Zi(T − ti ), YN(T ) =
Ny∑
i=1

Y i(T − ti ),

and observe that, given F , the summands are independent (but not identically distributed)
random variables. Our first lemma shows that between times tNy and T , with high probability
no particle hits L.

Reasoning as in the proof of Lemma 11, we may choose y = yN in such a way that
yN → ∞ but slowly enough that

tNy /(logN)2 → 0 (36)

in probability.
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Lemma 20 Let R denote the number of particles touching L between times tNy and T .
Then P(R ≥ 1) → 0.

Proof This follows from the same sort of arguments as in Lemma 10. More precisely, for
1 ≤ i ≤ Ny let Ri(t) denote the number of descendants of the ith particle hitting L − y

that touch L between times ti and ti + t if particles are killed when touching L. Then R =∑Ny

i=1 Ri(T − ti ) ≤ ∑Ny

i=1 Ri(T ). Note that, conditionally given F , the random variables
Ri(T ), 1 ≤ i ≤ Ny , are independent and identically distributed. Reasoning as in (68) in [4]
(or simply by using directly (68) if a = 1), we get

E(R|F ) ≤ C

∑Ny

i=1 Y i(0)

N(logN)3
= CNy

eμ(L−y)

N(logN)3
≤ CNye

−μy.

By Lemma 11, there exists a random variable W such that ye−√
2yNy → W in distribution.

Fix δ > 0. Choose K ≥ 0 large enough that P(W > K) ≤ δ. Thus for N large enough,
P(V0) ≥ 1 − 2δ where V0 = {Ny ≤ Ke

√
2y/y}. On V0, we see that

E(R|F ) ≤ CKy−1.

Thus by Markov’s inequality, P(R ≥ 1) ≤ P(V �
0 ) + CKy−1 ≤ 3δ for N sufficiently large.

This proves Lemma 20. �

Let V1 = {R = 0}. Then on V1, we may identify Zi(t) for each 1 ≤ i ≤ Ny with the
random variable Ẑi(t), where Ẑi(t) is defined as Zi(t) in (35) except that the sum is
only over those particles whose ancestors between times ti and ti + t never hit L. Like-
wise, Y i(t) is equal to Ŷ i(t), where Ŷ i is defined in the analogous fashion. Let ẐN (T ) =∑

1≤i≤Ny
Ẑi(T − ti ), and define ŶN (T ) analogously. Observe that, conditionally given F ,

Ẑi(t) is a martingale for each 1 ≤ i ≤ Ny . Thus we deduce that

E(Ẑi(T − ti )|F ) = Zi(0) = eμ(L−y) sin

(
π(L − y)

L

)
. (37)

Moreover,

Var(Ẑi(T − ti )|F ) ≤ E((Ẑi(T − ti ))
2|F ),

so using Lemma 9 in [4], we deduce, on the event V2 = {tNy ≤ (a/2)(logN)2}, that

Var(Ẑi(T − ti )|F ) ≤ Ceμ(L−y)eμL 1

L2
≤ CN2L4e−μy.

Since the variables Ẑi(T − ti ) are conditionally independent given F , we obtain that on V2,

Var(ẐN(T )|F ) ≤ CNyN
2L4e−μy.

Fix η > 0. Let Vη = V2 ∩ {W(1 − η) ≤ ye−μyNy ≤ W(1 + η)}. Then on Vη , we get that

Var(ẐN(T )|F ) ≤ CW
N2L4

y
; E(ẐN(T )|F ) = π

√
2WN(logN)2q, (38)
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where q ∈ (1 − η,1 + η) almost surely on Vη . Since yN → ∞ and P(Vη) → 1 (due to (36))
it is now easy to deduce from Chebyshev’s inequality that

ẐN (T )

N(logN)2
→ π

√
2W

in distribution. Because P(V1) → 1 by Lemma 20 and ZN(T ) = ẐN (T ) on V1, it follows
that

ZN(T )

N(logN)2
→ π

√
2W (39)

in distribution.
Likewise, using (18) from [4], we see that on the event V2, since tNy ≤ (a/2)(logN)2,

so that T − ti ≥ (a/2)(logN)2 for each 1 ≤ i ≤ Ny (and thus the term E2 in (18) of [4] is
bounded),

E(ŶN (T )|F ) ≤ CNye
μ(L−y) sin

(
π(L − y)

L

)

and therefore we deduce that

YN(T )

N(logN)3
→ 0 (40)

in probability. Since N(logN)3 = exp(
√

2L) = exp(
√

2πε−1/2), this proves (3). Likewise,
(2) follows from (39) since N(logN)2 ∼ √

2L exp(
√

2L) = π
√

2ε−1/2 exp(
√

2πε−1/2). The
proof of Proposition 3 is finished.
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