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Abstract If Y is a standard Fleming–Viot process with constant mutation rate (in the
infinitely many sites model) then it is well known that for each t > 0 the measure
Yt is purely atomic with infinitely many atoms. However, Schmuland proved that
there is a critical value for the mutation rate under which almost surely there are
exceptional times at which the stationary version of Y is a finite sum of weighted Dirac
masses. In the present work we discuss the existence of such exceptional times for
the generalized Fleming–Viot processes. In the case of Beta-Fleming–Viot processes
with index α ∈ ]1, 2[ we show that—irrespectively of the mutation rate and α—the
number of atoms is almost surely always infinite. The proof combines a Pitman–
Yor type representation with a disintegration formula, Lamperti’s transformation for
self-similar processes and covering results for Poisson point processes.
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1 Main result

The measure-valued Fleming–Viot diffusion processes were first introduced by Flem-
ing and Viot [20] and have become a cornerstone of mathematical population genetics
in the last decades. It is a model which describes the evolution (forward in time) of
the genetic composition of a large population. Each individual is characterized by a
genetic type which is a point in a type-space E . The Fleming–Viot process is a Markov
process (Yt )t≥0 on

M1
E = {

ν : ν is a probability measure on E
}

for which we interpret Yt (B) as the proportion of the population at time t which
carries a genetic type belonging to a Borel set B of types. In particular, the number of
(different) types at time t is equal to the number of atoms of Yt with the convention
that the number of types is infinite if Yt has absolutely continuous part.

Fleming–Viot superprocesses can be defined through their infinitesimal generators

(Lφ)(μ)=
∫

E

∫

E

μ(dv)(δv(dy)−μ(dy))
δ2φ(μ)

δμ(v)δμ(y)
+
∫

E

μ(dv)A

(
δφ(μ)

δμ(·)
)
(v),

(1.1)

acting on smooth test-functions where δφ(μ)/δμ(v) = limε→0+ ε−1{φ(μ+ εδv) −
φ(μ)) and A is the generator for a Markov process in E which represents the effect of
mutations. Here δv is the Dirac measure at v. It is well known that the Fleming–Viot
superprocess arises as the scaling limit of a Moran-type model for the evolution of a
finite discrete population of fixed size if the reproduction mechanism is such that no
individual gives birth to a positive proportion of the population in a small number of
generations. For a detailed description of Fleming–Viot processes and discussions of
variations we refer to the overview article of Ethier and Kurtz [19] and to Etheridge’s
lecture notes [17].

The first summand of the generator reflects the genetic resampling mechanism
whereas the second summand represents the effect of mutations. Several choices for
A have appeared in the literature. In the present work we shall work in the setting of
the infinitely-many-alleles model where each mutation creates a new type never seen
before. Without loss of generality let the type space be E = [0, 1]. Then the following
choice of A gives an example of an infinite site model with mutations:

(A f )(v) = θ

∫

E

( f (y)− f (v))dy, (1.2)

for some θ > 0. The choice of the uniform measure dy is arbitrary (we could choose the
new type according to any distribution that has a density with respect to the Lebesgue
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measure), all that matters is that the newly created type y is different from all other
types. With A as in (1.2), mutations arrive at rate θ and create a new type picked at
random from E according to the uniform measure, therefore the corresponding process
is sometimes called the Fleming–Viot process with neutral mutations.

Let us briefly recall two classical facts concerning the infinite types Fleming–Viot
process described above. For any initial condition Y0:

(i) If there is no mutation, then, for all t > 0 fixed, the number of types is almost
surely finite.

(ii) If the mutation parameter θ is strictly positive, then, for all t > 0 fixed, the number
of types is infinite almost surely.

This can be deduced e.g. from the explicit representation of the transition function
given in Ethier and Griffiths in [18].

A beautiful complement to (i) and (ii) was found by Schmuland for exceptional
times that are not fixed in advance:

Theorem 1.1 (Schmuland [35]) For the stationary infinitely-many-alleles model

P
(∃ t > 0 : #{types at time t} < ∞) =

{
1 if θ < 1,
0 if θ ≥ 1.

Schmuland’s proof of the dichotomy is based on analytic arguments involving the
capacity of finite dimensional subspaces of the infinite dimensional state-space. In
Sect. 6 we reprove Schmuland’s theorem with a simple proof via excursion theory,
that yields the result for arbitrary initial conditions.

In the series of articles [5–7], Bertoin and Le Gall introduced and started the study
of�-Fleming–Viot processes, a class of stochastic processes which naturally extends
the class of standard Fleming–Viot processes. These processes are completely char-
acterized by a finite measure � on ]0, 1] and a generator A. Similarly to the standard
Fleming–Viot process, these processes can be defined through their infinitesimal gen-
erator

(Lφ)(μ) =
1∫

0

y−2�(dy)
∫
μ(da)(φ((1 − y)μ+ yδa)− φ(μ))

+
∫

E

μ(dv)A

(
δφ(μ)

δμ(·)
)
(v), (1.3)

and the sites of atoms are again called types. For A = 0, the generator formulation
only appeared implicitly in [6] and is explained in more details in Birkner et al. [10]
and for A as in (1.2) it can be found in Birkner et al. [9]. The dynamics of a generalized
Fleming–Viot process (Yt )t≥0 are as follows: at rate y−2�(dy) a point a is sampled at
time t > 0 according to the probability measure Yt−(da) and a point-mass y is added
at position a while scaling the rest of the measure by (1 − y) to keep the total mass at
1. The second term of (1.3) is the same mutation operator as in (1.1). For a detailed
description of�-Fleming–Viot processes and discussions of variations we refer to the
overview article of Birkner and Blath [8].
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In the following we are going to focus only on the choice� = Beta(2 −α, α), the
Beta distribution with density

f (u) = Cαu1−α(1 − u)α−1du, Cα = 1

	(2 − α)	(α)
,

forα ∈ ]1, 2[, and mutation operator A as in (1.2). The corresponding�-Fleming–Viot
process (Yt )t≥0 is called Beta-Fleming–Viot process or (α, θ)-Fleming–Viot process
and several results have been established in recent years. The (α, θ)-Fleming–Viot
processes converge weakly to the standard Fleming–Viot process as α tends to 2. It
was shown in [10] that a �-Fleming–Viot process with A = 0 is related to measure-
valued branching processes in the spirit of Perkin’s disintegration theorem precisely
if � is a Beta distribution (this relation is recalled and extended in Sect. 2.3 below).

If we chose α ∈ ]1, 2[ and Y0 uniform on [0, 1], then we find the same properties (i)
and (ii) for the one-dimensional marginals Yt unchanged with respect to the classical
case (1.1), (1.2). In fact, for a general �-Fleming–Viot process, (i) is equivalent to
the requirement that the associated �-coalescent comes down from infinity (see for
instance [2]). Here is our main result: contrary to Schmuland’s result, (α, θ)-Fleming–
Viot processes with α ∈ ]1, 2[ and θ > 0 never have exceptional times:

Theorem 1.2 Let (Yt )t≥0 be an (α, θ)-Fleming–Viot superprocess with mutation rate
θ > 0 and parameter α ∈ ]1, 2[. Then for any starting configuration Y0

P
(∃ t > 0 : #{types at time t} < ∞) = 0

for any θ > 0.

One way one can get a first rough understanding of why this should be true is
by using a heuristic based on the duality between �-Fleming–Viot processes and
�-coalescents. If �-Fleming–Viot processes describe how the composition of a pop-
ulation evolve forward in time, �-coalescents describe how the ancestral lineages of
individuals sampled in the population merge as one goes back in time. The fact that�-
coalescents describe the genealogies of �-Fleming–Viot processes can be seen from
Donelly and Kurtz [14] so-called lookdown construction of Fleming–Viot processes
and was also established through a functional duality relation by Bertoin and Le Gall
in [5].

The coalescent which corresponds to the classical Fleming–Viot process is the
celebrated Kingman’s coalescent. Kingman’s coalescent comes down from infinity at
speed 2/t , i.e. if one initially samples infinitely many individuals in the populations,
then the number of active lineages at time t in the past is Nt and Nt ∼ 2/t almost surely
when t → 0. It is known (see [6] or more recently [28]) that the process (Nt , t ≥ 0)
has the same law as the process of the number of atoms of the Fleming–Viot process.
For a Beta-coalescent (that is a �-coalescent where the measure � is the density of
a Beta(α, 2 − α) variable) with parameter α ∈ (1, 2) we have Nt ∼ cαt−1/(α−1)

almost surely as t → 0 (see [3, Theorem 4]). Therefore Kingman’s coalescents comes
down from infinity much quicker than Beta-coalescents. Since the speed at which the
generalized Fleming–Viot processes looses types roughly corresponds to the speed at
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which the dual coalescent comes down from infinity, it is possible that (α, θ)-Fleming–
Viot processes do not lose types fast enough, and hence there are no exceptional times
at which the number of types is finite.

2 Auxiliary constructions

To prove Theorem 1.2 we construct two auxiliary objects: a particular measure-valued
branching process and a corresponding Pitman–Yor type representation. Those will
be used in Sect. 5 to relate the question of exceptional times to covering results for
point processes. In this section we give the definitions and state their relations to the
Beta-Fleming–Viot processes with mutations. All appearing stochastic processes and
random variables will be defined on a common stochastic basis (
,G,Gt ,P) that is
rich enough to carry all Poisson point processes (PPP in short) that appear in the
sequel.

2.1 Measure-valued branching processes with immigration

We recall that a continuous state branching process (CSBP in short) with α-stable
branching mechanism, α ∈ ]1, 2], is a Markov family (Pv)v≥0 of probability measures
on càdlàg trajectories with values in R+, such that

Ev
(
e−λXt

) = e−v ut (λ), v ≥ 0, λ ≥ 0, (2.1)

where for ψ : R+ �→ R+, ψ(u) := uα , we have the evolution equation

u′
t (λ) = −ψ(ut (λ)), u0(λ) = λ.

See e.g. [27] for a good introduction to CSBP. For α = 2, ψ(u) = u2 is the branching
mechanism for Feller’s branching diffusion, where Pv is the law of the unique solution
to the SDE

Xt = v +
t∫

0

√
2Xs d Bs, t ≥ 0, (2.2)

driven by a Brownian motion (Bt )t≥0. On the other hand, for α ∈ ]1, 2[, ψ(u) = uα

gives the so-called α-stable branching processes which can be defined as the unique
strong solution of the SDE

Xt = v +
t∫

0

X1/α
s− d Ls, t ≥ 0, (2.3)

driven by a spectrally positive α-stable Lévy process (Lt )t≥0, with Lévy measure
given by
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1(x>0) cα x−1−α dx, cα := α(α − 1)

	(2 − α)
.

Note that strong existence and uniqueness for (2.3) follows from the fact that the func-
tion x �→ x1/α is Lipschitz outside zero, and hence strong existence and uniqueness
holds for (2.3) until X hits zero. Moreover X , being a non-negative martingale, stays
at zero forever after hitting it. For a more extensive discussion on strong solutions for
jumps SDEs see [22] and [32].

The main tool that we introduce is a particular measure-valued branching process
with interactive immigration (MBI in short). For a textbook treatment of this subject
we refer to Li [31]. Following Dawson and Li [12], we are not going to introduce
the MBIs via their infinitesimal generators but as strong solutions of a system of
stochastic differential equations instead. On (
,G,G�,P), let us consider a Poisson
point process N = (ri , xi , yi )i∈I on (0,∞) × (0,∞) × (0,∞) adapted to G� and
with intensity measure

ν(dr, dx, dy) := 1(r>0) dr ⊗ cα 1(x>0) x−1−α dx ⊗ 1(y>0) dy. (2.4)

Throughout the paper we adopt the notation

Ñ := N − ν,

i.e. Ñ is the compensated version of N . It was shown in [12] that the solution to (2.3)
has the same law as the unique strong solution to the SDE

Xt = X0 +
∫

]0,t]×R+×R+

1(y<Xr−) x Ñ (dr, dx, dy) (2.5)

with X0 = v.
Now we are going to switch to the measure-valued setting. The real-valued process

X in (2.3), (2.5) describes the evolution of the total mass of the CSBP starting at
time zero at the mass X0 = v. We are going to consider all initial masses v ∈ [0, 1]
simultaneously, constructing a process (Xt )t≥0 taking values in the space MF[0,1] of
finite measures on [0, 1], endowed with the narrow topology, i.e. the trace of the weak-
∗ topology of (C[0, 1])∗. Assume that at time t = 0, X0 is a finite measure on [0, 1]
with cumulative distribution function (F(v), v ∈ [0, 1]), and denote

Xt (v) := Xt ([0, v]), t ≥ 0, v ∈ [0, 1].

Then the measure-valued branching process (Xt )t≥0 can be constructed in such a way
that for each v, (Xt (v))t≥0 solves (2.5) with X0 = F(v), and with the same driving
noise for all v ∈ [0, 1]. In what follows, we deal with a version of (2.5) including an
immigration term only depending on the total-mass Xt (1):
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⎧
⎪⎨

⎪⎩

Xt (v) = F(v)+ ∫

]0,t]×R+×R+
1(y<Xr−(v)) x Ñ (dr, dx, dy)+ I (v)

t∫

0
g(Xs(1)) ds,

v ∈ [0, 1], t ≥0,

(2.6)

where (I (v), v ∈ [0, 1]) is the cumulative distribution function of a finite measure on
[0, 1] and we assume

(G) g : R+ �→ R+ is monotone non-decreasing, continuous and locally Lipschitz
continuous away from zero.

Definition 2.1 An MF[0,1]-valued process (Xt )t≥0 on (
,G,Gt ,P) is called a solution
to (2.6) if

• it is càdlàg P-a.s.,
• for all v ∈ [0, 1], setting Xt (v) := Xt ([0, v]), (Xt (v))v∈[0,1],t≥0 satisfies P-a.s.

(2.6).

Moreover, a solution (Xt )t≥0 is strong if it is adapted to the natural filtration Ft

generated by N . Finally, we say that pathwise uniqueness holds if

P
(
X1

t = X2
t , ∀t ≥ 0

) = 1,

for any two solutions X1 and X2 on (
,G,Gt ,P) driven by the same Poisson point
process.

Here is a well-posedness result for (2.6):

Theorem 2.2 Let F and I be as above. For any immigration mechanism g satisfying
Assumption (G), there is a strong solution (Xt )t≥0 to (2.6) and pathwise uniqueness
holds until T0 := inf{t ≥ 0 : Xt ([0, 1]) = 0}.

The proof of Theorem 2.2 relies on ideas from recent articles on pathwise unique-
ness for jump-type SDEs such as Fu and Li [22] or Dawson and Li [12]. Our equation
(2.6) is more delicate since all coordinate processes depend on the total-mass Xt (1).
The uniqueness statement is first deduced for the total-mass (Xt (1))t≥0 and then for
the other coordinates interpreting the total-mass as random environment. To construct
a (weak) solution we use a (pathwise) Pitman–Yor type representation as explained in
the next section.

2.2 A Pitman–Yor type representation for interactive MBIs

Let us denote by E the set of càdlàg trajectoriesw : R+ �→ R+ such thatw(0) = 0,w
is positive on a bounded interval ]0, ζ(w)[ and w ≡ 0 on [ζ(w),+∞[. We recall the
construction of the excursion measure of the α-stable CSBP (Pv)v≥0, also called the
Kuznetsov measure, see [30, Section 4] or [31, Chapter 8]: For all t ≥ 0, let Kt (dx)
be the unique σ -finite measure on R+ such that
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∫

R+

(
1 − e−λ x) Kt (dx) = ut (λ) =

(
λ1−α + (α − 1)t

) 1
1−α

, λ ≥ 0,

where we recall that the function (ut (λ))t≥0 is the unique solution to the equation

ut (λ)+
t∫

0

(us(λ))
α ds = λ, t ≥ 0, λ ≥ 0.

We also denote by Qt (x, dy) the Markov transition semigroup of (Pv)v≥0. Then there
exists a unique Markovian σ -finite measure Q on E with entrance law (Kt )t≥0 and
transition semigroup (Qt )t≥0, i.e. such that for all 0 < t1 < · · · < tn , n ∈ N,

Q(wt1 ∈ dy1, . . . , wtn ∈ dyn, tn < ζ(w))

= Kt1(dy1) Qt2−t1(y1, dy2) · · · Qtn−tn−1(yn−1, dyn). (2.7)

By construction

∫

E

(
1 − e−λws

)
Q(dw) = us(λ) =

(
λ1−α + (α − 1)s

) 1
1−α

, s ≥ 0, λ ≥ 0,

(2.8)

and under Q, for all s > 0, conditionally on σ(wr , r ≤ s), (wt+s)t≥0 has law Pws .
The σ -finite measure Q is called the excursion measure of the CSBP (2.3). By (2.8),
it is easy to check that for any s > 0

∫

E
ws Q(dw) = ∂

∂λ
us(λ)

∣
∣
∣
∣
λ=0

= lim
λ↓0

(
1 + λα−1(α − 1)s

) α
1−α = 1. (2.9)

In Duquesne–Le Gall’s setting [15], under the σ -finite measure Q with infinite total
mass, w has the distribution of (�a(e))a≥0 under n(de), where n(de) is the excursion
measure of the height process H and �a is the local time at level a. For the more
general superprocess setting see for instance Dynkin and Kuznetsov [16].

We need now to extend the space of excursions as follows:

D := {w : R+ �→ R+ : ∃s ≥ 0, w ≡ 0 on [0, s], w·−s ∈ E},

i.e. D is the set of càdlàg trajectories w : R+ �→ R+ such that w is equal to 0 on
[0, s(w)], w is positive on a bounded interval ]s(w), s(w) + ζ(w)[ and w ≡ 0 on
[s(w) + ζ(w),+∞[. For s ≥ 0, we denote by Qs(dw) the σ -finite measure on D
given by

∫

D
�(w)Qs(dw) :=

∫

E
�
(
1(·≥s) w·−s

)
Q(dw), (2.10)
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i.e. Qs is the image measure of Q under the map

w �→ (γt := 1(t≥s) wt−s, )t≥0. (2.11)

Let us consider a Poisson point process (si , ui , ai , w
i )i∈I on R+ × R+ × D with

intensity measure

	(ds, du, da, dw) := (δ0(ds)⊗ δ0(du)⊗ F(da)+ ds ⊗ du ⊗ I (da))⊗ Qs(dw)

(2.12)

where F and I are the cumulative distribution functions appearing in (2.6). An atom
(si , ui , ai , w

i ) is a population that has immigrated at time si whose size evolution
is given by wi and whose genetic type is given by ai . The coordinate ui is used for
thinning purposes, to decide whether or not this particular immigration really happened
or not.

Theorem 2.3 Suppose g : R+ �→ R+ satisfies Assumption (G). Then, for all v ∈
[0, 1], there is a unique càdlàg process (Zt (v), t ≥ 0) on (
,G,Gt ,P) satisfying
P-a.s.
{

Zt (v) = ∑
si =0 w

i
t 1(ai ≤v) +∑

si>0 w
i
t 1(ai ≤v)1(ui ≤ g(Zsi −(1))), t > 0,

Z0(v) = F(v).

(2.13)

Moreover, we can construct on (
,G,Gt ,P) a PPP N with intensity ν given by (2.4)
such that Z solves (2.6) with respect to N .

If I (1) = 1, then in the special case of branching mechanism ψ(λ) = λ2 and
constant immigration rate g ≡ θ , the total-mass process Xt = Xt (1) for (2.6) also
solves

{
d Xt = √

2Xt d Bt + θ dt, t ≥ 0,

X0 = F(1).

for which Pitman and Yor obtained the excursion representation in their seminal
paper [34].

Remark 2.4 The recent monograph [31] by Zenghu Li contains a full theory of this
kind of Pitman–Yor type representations for measure-valued branching processes, see
in particular Chapter 10. We present a different approach below which shows directly
how the different Poisson point processes in (2.6) and in (2.13) are related to each
other. The most important feature of our construction is that it relates the excursion
construction and the SDE construction on a pathwise level.

Observe that an immediate and interesting corollary of Theorem 2.3 is the following:

Corollary 2.5 Let g be an immigration mechanism satisfying assumption (G) and let
(Xt )t≥0 be a solution to (2.6). Then almost surely, Xt is purely atomic for all t ≥ 0.
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In the proof of our Theorem 1.2 we make use of the fact that the Pitman–Yor type
representation is well suited for comparison arguments. If g can be bounded from
above or below by a constant, then the righthand side of (2.6) can be compared to an
explicit PPP for which general theory can be applied.

2.3 From MBI to Beta-Fleming–Viot processes with mutations

Let us first recall an important characterization started in [6] and completed in [12]
which relates Fleming–Viot processes, defined as measure-valued Markov processes
by the generator (1.3), and strong solutions to stochastic equations.

Theorem 2.6 (Dawson and Li [12]) Let � be the Beta distribution with parameters
(2 − α, α). Suppose θ ≥ 0 and M is a non-compensated Poisson point process on
(0,∞)× [0, 1] × [0, 1] with intensity ds ⊗ y−2�(dy)⊗ du. Then there is a unique
strong solution (Yt (v))t≥0,v∈[0,1] to
⎧
⎪⎨

⎪⎩

Yt (v) = v + ∫

]0,t]×[0,1]×[0,1]
y
[
1(u≤Ys−(v)) − Ys−(v)

]M(ds, dy, du)+ θ
t∫

0
[v − Ys(v)]ds,

v ∈ [0, 1], t ≥ 0,

(2.14)

and the measure-valued process Yt ([0, v]) := Yt (v) is an (α, θ)-Fleming–Viot process
started at uniformly distributed initial condition.

Existence and uniqueness of solutions for this equation was proved in Theorem 4.4
of [12] while the characterization of the generator of the measure-valued process Y is
the content of their Theorem 4.9.

We next extend a classical relation between Fleming–Viot processes and measure-
valued branching processes which is typically known as disintegration formula. With-
out mutations, for the standard Fleming–Viot process this goes back to Konno and
Shiga [26] and it was shown in Birkner et al. [10] that the relation extends to the
generalized�-Fleming–Viot processes without immigration if and only if� is a Beta-
measure. Our extension relates (α, θ)-Fleming–Viot processes to (2.6) with immigra-
tion mechanism g(x) = α(α−1)	(α)θx2−α and for θ = 0 gives an SDE formulation
of the main result of [10].

Theorem 2.7 Let F(v) = I (v) = v and let g : R+ �→ R+ be defined by g(x) =
α(α − 1)	(α)θx2−α for some α ∈ (1, 2). Let then (Xt )t≥0 be the unique solution of
to (2.6) (in the sense of Definition 2.1) such that

Xt (1) = 0, ∀ t ≥ T0 := inf{s > 0 : Xs(1) = 0}.
Define

S(t) = α(α − 1)	(α)

t∫

0

Xs(1)
1−α ds

and
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Yt (dv) = XS−1(t)(dv)

X S−1(t)(1)
, t ≥ 0. (2.15)

Then
(
Yt
)

t≥0 is well-defined, i.e. S−1(t) < T0 for all t ≥ 0, and is an (α, θ)-Fleming–
Viot process, i.e. a strong solution to (2.14) with � = Beta(2 − α, α).

The proof of the theorem is different from the known result for θ = 0. To prove
that X S−1(t)(1) > 0 for all t ≥ 0, Lamperti’s representation for CSBPs was crucially
used in [10]. This idea breaks down in our generalized setting since the total-mass
process Xt (1) is not a CSBP. Our proof uses instead the fact that for all θ ≥ 0 the
total-mass process is self-similar and an interesting cancellation effect of Lamperti’s
transformation for self-similar Markov processes and the time-change S.

In [1] we study (a generalized version of) the total mass process (Xt (1), t ≥ 0) and
we show that the extinction time T0 = inf{t ≥ 0 : Xt (1) = 0} is finite almost surely
if and only if θ < 	(α). Otherwise T0 = ∞ almost surely. We will see in the proof of
Theorem (2.7) that in both cases

lim
t→∞ S−1(t) = T0 a.s.

Theorem 2.7 thus gives some partial information on the behavior of
(
Xt
)

t≥0 near the
extinction time T0:

Corollary 2.8 As t → ∞ the probability-valued process

(
XS−1(t)(dv)

XS−1(t)(1)

)

t≥0
converges

weakly to the unique invariant measure of (Yt , t ≥ 0).
As t → T0, almost surely, there exists a (random) sequence of times t1 < t2 <

. . . < T0 tending to T0 such that the sets

Ai = support of Xti

are pairwise disjoints.

This corollary is a direct consequence of the result, due to Donnelly and Kurtz [13,14],
that the (α, θ)-Fleming–Viot process (as well as its lookdown particle system) is
strongly ergodic and of Theorem 2.7. For the sake of self-containdeness, a sketch of
the proof is given in Sect. 7 which specialize and explicits the arguments of Donelly
and Kurtz to our case.

3 Proof of Theorems 2.2 and 2.3

Recall that (si , ui , ai , w
i )i∈I is a Poisson point process on R

3+ × D with intensity
measure 	 given as in (2.12), and that we use the notation (2.11). We are going to
show that for all v ∈ [0, 1] there exists a unique càdlàg process (Zt (v), t ≥ 0) solving

{
Zt (v) = ∑

si =0 w
i
t 1(ai ≤v) +∑

si>0 w
i
t 1(ai ≤v)1(ui ≤g(Zsi −(1))), t > 0,

Z0 = F(v).

(3.1)
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Fig. 1 Definition of N . On the left-hand side we represent the point process (si , w
i , ai ). Observe that

s4 = 0 while s1, s2, s3 > 0. On the right-hand side we show how the wi are combined to construct the
noise N

Then we are going to construct a PPP N with intensity dr⊗cα 1(x > 0) x−1−α dx⊗dy
such that, for all v ∈ [0, 1], Z is solution of (2.6) .

3.1 The Pitman–Yor type representation with predictable random immigration

We start by replacing the immigration rate (g(Zs−(1)))s>0 in the right-hand side of
(3.1) with a generic (Ft )-predictable process (Vs)s≥0, that we assume to satisfy

Vt ≥ 0 and

t∫

0

E(Vs) ds < +∞ ∀t ≥ 0; (3.2)

this will be useful when we perform a Picard iteration in the proof of existence of
solutions to (2.6) and (3.1). Then we consider

{
Zt (v) := ∑

si =0 w
i
t 1(ai ≤v) +∑

si>0 w
i
t 1(ai ≤v)1(ui ≤Vsi )

, t > 0, v ∈ [0, 1],
Z0(v) := F(v), v ∈ [0, 1].

(3.3)

Then we want to show that there is a noise N on (
,G,G�,P) such that Z is a
solution of an equation of the type (2.6).

3.1.1 Definition of N

Let us consider a family of independent random variables (Ui j )i, j∈N such that Ui j

is uniform on [0, 1] for all i, j ∈ N. We also assume that (Ui j )i, j∈N is independent
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of the PPP (si , ui , ai , w
i ). Then, for all atoms (si , ui , ai , w

i ) in the above PPP, we
define the following point process N i := (r i

j , xi
j , yi

j ) j∈J i :

(1) (r i
j ) j∈J i is the family of jump times of r �→ wi

r ;

(2) for each r i
j we set

xi
j := wi

r i
j
− wi

r i
j −
, yi

j := wi
r i

j −
· Ui j . (3.4)

We note that N i is not expected to be a Poisson point process. For each k ∈ N we
set

Lk
0 := F(ak) and Lk

t :=
∑

ai<ak ,ui ≤Vsi

wi
t−, t > 0,

L∞
t := sup

k
Lk

t , t ≥ 0. (3.5)

We consider a PPP N ◦ = (r◦
j , x◦

j , y◦
j ) j with intensity measure ν given by (2.4) and

independent of ((si , ui , ai , w
i )i , (Ui j )i, j∈N, (Vt )t≥0). We set for any non-negative

measurable f = f (r, x, y)

∫
f dN :=

∑

k

1(uk≤Vsk )

∫
f (r, x, y + Lk

r )N k(dr, dx, dy)

+
∫

f (r, x, y + L∞
r )N ◦(dr, dx, dy). (3.6)

The filtration we are going to work with is

Ft := σ
(
(si , ui , ai , w

i
r ,Ui j , Vr ), (r

◦
i , x◦

i , y◦
i )i :

r ≤ t, si ≤ t, r◦
i ≤ t, i, j ∈ N), t ≥ 0.

We are going to prove the following

Proposition 3.1 N is a PPP with intensity ν(dr, dx, dy) = dr ⊗ cα x−1−α dx ⊗ dy.

Proof For f = f (r, x, y) ≥ 0 we now set

I (t) :=
∑

k

1(uk≤Vsk )

∫

]0,t]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy).

Since wi
t = 0 if si ≥ t , V is predictable and we can write

Lk
t :=

∑

si =0

1(ai<ak ) w
i
t− +

∑

si>0,ui ≤Vsi

1(ai<ak ) w
i
t−,

then we obtain that (Lk· )k is predictable. Hence, I (t) is Ft -measurable and for 0 ≤
t < T
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E ( I (T )− I (t) | Ft ) = E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

= E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )
1(sk<t)

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

+E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )
1(sk≥t)

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

We will need the following two facts:

(1) Conditionally on wk
t and sk < t the process wk·+t has law Pwk

t
(this follows for

instance from (2.7)).
(2) Let (wt , t ≥ 0) be a CSBP started fromw0 with law Pw0 . Let M = (ri , xi , yi ) be

a point process which is defined fromw and a sequence of i.i.d. uniform variables
on [0, 1] as N k is constructed from wk and (Ui j )i, j∈N. Then for any positive
function f = f (r, x, y)

E

⎡

⎢
⎣

∫

[0,T ]×R+×R+

f (r, x, y)M(dr, dx, dy)

⎤

⎥
⎦

= Ew0

⎡

⎢
⎣

∫

[0,T ]×R+×R+

f (r, x, y)1y≤wr−ν(dr, dx, dy)

⎤

⎥
⎦ .

Let us start with the case sk < t . Using the above facts we see that

E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )
1(sk<t)

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣
Ft

⎞

⎟
⎠

= E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )
1(sk<t)E

⎡

⎢
⎣

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k(dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣
wk

t , Lk
.

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
Ft

⎞

⎟
⎠

= E

⎛

⎜
⎝
∑

k

1(uk≤Vsk )
1(sk<t)

∫

]t,T ]×R+×R+

1[Lk
r ,L

k
r +wk

r−[(y) f (r, x, y) dr
cα

x1+α dx dy

∣
∣
∣
∣
∣
∣
∣
Ft

⎞

⎟
⎠
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Let us now consider the case sk > t.

E

⎛

⎜
⎝
∑

k

1(uk ≤Vsk )
1(sk ≥t)

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )N k (dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

= lim
ε→0

E

⎛

⎜
⎝
∑

k

1(uk ≤Vsk )
1(sk ≥ t)

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )1(sk +ε<r) N k (dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

= lim
ε→0

E

⎛

⎜
⎝
∑

k

1(uk ≤Vsk )
1(sk ≥ t)E

⎡

⎢
⎣

∫

]t,T ]×R+×R+

f (r, x, y + Lk
r )1(sk +ε<r) N k (dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣
wk

sk +ε , Lk
.

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

= lim
ε→0

E

⎛

⎜
⎝
∑

k

1(uk ≤Vsk )
1(sk ≥t)

∫

]t,T ]×R+×R+

1[Lk
r ,L

k
r +wk

r−[(y) f (r, x, y)1(sk +ε<r) dr
cα

x1+α dx dy

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

= E

⎛

⎜
⎝
∑

k

1(uk ≤Vsk )
1(sk ≥t)

∫

]t,T ]×R+×R+

1[Lk
r ,L

k
r +wk

r−[(y) f (r, x, y) dr
cα

x1+α dx dy

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠

where we need to introduce the indicator that r > sk + ε to get a sum of CSBP started
from a positive initial mass and thus be in a position to apply the above fact.

We conclude that

E ( I (T )− I (t) | Ft ) = E

⎛

⎜
⎝

∫

]t,T ]×R+×R+

1]0,supk Lk
r [(y) f (r, x, y) dr

cα
x1+α dx dy

∣
∣
∣
∣
∣
∣
∣

Ft

⎞

⎟
⎠ ,

Therefore by the Definition (3.6) of N

E

⎛

⎜
⎝

∫

]t,T ]×R+×R+

f (r, x, y)N (dr, dx, dy)

∣
∣
∣
∣
∣
∣
∣
Ft

⎞

⎟
⎠

= E

⎛

⎜
⎝

∫

]t,T ]×R+×R+

(
1]0,L∞

r [(y)+ 1]L∞
r ,∞[(y)

)
f (r, x, y) dr

cα
x1+α dx dy

∣
∣
∣
∣
∣
∣
∣
Ft

⎞

⎟
⎠ .

=
∫

]t,T ]×R+×R+

f (r, x, y) dr
cα

x1+α dx dy.

By [23, Theorem II.6.2], a point process with deterministic compensator is necessarily
a Poisson point process, and therefore the proof is complete. ��

Proposition 3.1 tells us how to construct a Poisson noise N from the (si , ui , ai , w
i ).

Let us now show that Z solves (2.6) with this particular noise.
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Proposition 3.2 Let Z satisfy (3.3). Then for all v ≥ 0, (Z(v),N ) satisfies P-a.s.

Zt (v) = F(v)+
∫

]0,t]×R+×R+

1(y<Zr−(v)) x Ñ (dr, dx, dy)+ I (v)

t∫

0

Vs ds, t ≥ 0.

Proof Using an idea introduced by Dawson and Li [11], we set for n ∈ N
∗

Zn
t (v) :=

∑

ai ≤v,ui ≤Vsi

wi
t 1(si + 1

n ≤t). (3.7)

Note that Q({w1/n > 0}) < +∞ for all n ≥ 1, so that Zn
t is P-a.s. given by a finite

sum of terms. Moreover, by the properties of PPPs, ((si , ui , ai , w
i ) : wi

1/n > 0) is a
PPP with intensity (δ0(ds)⊗δ0(du)⊗ F(da)+ds ⊗du ⊗ I (da))⊗1(w1/n>0) Q(dw).
Moreover Zn

t ↑ Zt as n ↑ +∞ for all t ≥ 0. Now we can write

Zn
t (v) = Mn

t (v)+ J n
t (v),

with

Mn
t (v) :=

∑

ai ≤v,ui ≤Vsi

(wi
t − wi

si + 1
n
)1(si + 1

n ≤t),

J n
t (v) :=

∑

ai ≤v,ui ≤Vsi

wi
si + 1

n
1(si + 1

n ≤t). (3.8)

Let us concentrate on Mn first. We can write, for si + 1
n ≤ t ,

wi
t − wi

si + 1
n

=
∫

[si + 1
n ,t]×R+×R+

1(y<wi
r−) x Ñ i (dr, dx, dy)

where N i is defined in (3.4) and Ñ i (dr, dx, dy) is the compensated version of N i :

Ñ i (dr, dx, dy) := N i (dr, dx, dy)− 1(y<wi
r−) ν(dr, dx, dy),

with ν defined in (2.4). We set

Ai,n :=
{
(y, r) : Li

r ≤ y < Li
r + wi

r− 1(si + 1
n ≤r)

}
, Bvn :=

⋃

ai ≤v , ui ≤Vsi

Ai,n .

Since Q({w1/n > 0}) < +∞, only finitely many {Ai,n}i such that ui ≤ Vsi are
non-empty P-a.s and, moreover, the {Ai,n}i are disjoint. Then by (3.6)
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∫

]0,t]×R+×R+
1Ai,n (y, r) x Ñ (dr, dx, dy)

= 1(si + 1
n ≤t)

∫

[si + 1
n ,t]×R+×R+

1(y<wi
r−) x Ñ i (dr, dx, dy)

=
(
wi

t − wi
si + 1

n

)
1(si + 1

n ≤t)

so that

∫

]0,t]×R+×R+
1Bvn (y, r) x Ñ (dr, dx, dy) =

∑

ai ≤v , ui ≤Vsi

(
wi

t − wi
si + 1

n

)
1(si + 1

n ≤r)

= Mn
t (v).

We need first the two following technical lemmas. ��
Lemma 3.3 For a (Ft )-predictable bounded process ft : R+ �→ R we set

Mt :=
∫

]0,t]×R+×R+

fr (y) x Ñ (dr, dx, dy), t ≥ 0.

Then we have

E

(

sup
t∈[0,T ]

|Mt |
)

≤ C

(
√ ∫

[0,T ]×R+
E( f 2

r (y)) dr dy + ∫

[0,T ]×R+
E(| fr (y)|) dr dy

)

.

Proof Recall that να(dx) = cαx−1−α dx . We set

J1,t :=
∫

]0,t]×R+×R+

fr (y)1(x≤1) x Ñ (dr, dx, dy), t ≥ 0,

J2,t :=
∫

]0,t]×R+×R+

fr (y)1(x>1) x Ñ (dr, dx, dy), t ≥ 0.

Then, by Doob’s inequality,

(

E

(

sup
t∈[0,T ]

|J1,t |
))2

≤ E

(

sup
t∈[0,T ]

|J1,t |2
)

≤ 4
∫

]0,1]
cα x1−α dx

∫

[0,T ]×R+

E( f 2
r (y)) dr dy
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while

E

(

sup
t∈[0,T ]

|J2,t |
)

≤ 2
∫

]1,∞[
cα x−α dx

∫

[0,T ]×R+
E(| fr (y)|) dr dy.

��
Lemma 3.4 (1) limn→∞

∫

E
(z 1

n
)2 1(z 1

n
≤1) Q(dz) = 0.

(2) limn→∞
∫

E
z 1

n
1(z 1

n
≥1) Q(dz) = 0.

Proof First recall from (2.9) that
∫

E
z 1

n
Q(dz) = 1 for all n. The proof of (1) is based

on the estimate 1
e x ≤ 1 − e−x for x ∈ [0, 1] which follows from differentiating both

sides. Of course, the inequality also implies that

x21(x≤1) ≤ ex(1 − e−x ), x ≥ 0.

We apply this estimate to the excursion measure:

∫

E
(z 1

n
)2 1(z 1

n
≤1) Q(dz) ≤ e

∫

E
z 1

n
(1 − e

−z 1
n )Q(dz)

= e

⎛

⎝
∫

E
z 1

n
Q(dz)−

∫

E
z 1

n
e
−z 1

n Q(dz)

⎞

⎠ . (3.9)

Next, by (2.8),

∫

E
z 1

n
e
−z 1

n Q(dz) = d

dλ
u1/n(λ)

∣
∣
∣
λ=1

= 1
(
1 + (α − 1) 1

n

)α/(α−1)
n→∞→ 1,

so that (3.9) combined with
∫

E
z 1

n
Q(dz) = 1 proves (1). For (2) we use that x1(x>1) ≤

e
(e−1) x(1 − e−x ) to get

∫

E
z 1

n
1(z 1

n
>1) Q(dz) ≤ e

e − 1

∫

E
z 1

n
(1 − e

−z 1
n )Q(dz)

which goes to zero as argued above. ��
Lemma 3.5 For all v ≥ 0 and T ≥ 0 we have

lim
n→∞ E

(

sup
t∈[0,T ]

|Zt (v)− Zn
t (v)|

)

= 0,
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(Zt (v))t≥0 is P-a.s. càdlàg and P-a.s.

Zt (v) = F(v)+
∫

]0,t]×R+×R+

1(y<Zr−(v)) x Ñ (dr, dx, dy)+ I (v)

t∫

0

Vs ds.

Proof We have obtained above the representation

Zn
t (v) =

∫

]0,t]×R+×R+

1Bvn (y, r) x Ñ (dr, dx, dy)+ J n
t (v). (3.10)

First, let us note that

Bvn ⊂ Bv :=
⋃

ai ≤v , ui ≤Vsi

Ai , Ai :=
{
(y, r) : Li

r ≤ y < Li
r + wi

r−
}
,

and moreover

Bv \ Bvn =
⋃

ai ≤v

{
(y, r) : Li

r ≤ y < Li
r + wi

r− 1(si + 1
n>r)

}

and the latter union is disjoint. If we set

Mt (v) :=
∫

]0,t]×R+×R+

1Bv (y, r) x Ñ (dr, dx, dy),

then

Mt (v)− Mn
t (v) = ∫

]0,t]×R+×R+
1Bv\Bvn (y, r) x Ñ (dr, dx, dy)

and by Lemma 3.3

1

C
E

(

sup
t∈[0,T ]

|Mt − Mn
t |
)

≤

√√
√
√
√

T∫

0

E(1Bv\Bvn (y, r)) dr dy +
T∫

0

E(1Bv\Bvn (y, r)) dr dy

=

√√
√
√
√
√
√E

⎛

⎜
⎜
⎝

∑

ai ≤v,ui ≤Vsi

(si + 1
n )∧T∫

si ∧T

wi
r dr

⎞

⎟
⎟
⎠+ E

⎛

⎜
⎜
⎝

∑

ai ≤v,ui ≤Vsi

(si + 1
n )∧T∫

si ∧T

wi
r dr

⎞

⎟
⎟
⎠ . (3.11)
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Then we get

E

⎛

⎜
⎝

∑

ai ≤v,ui ≤Vsi

(si + 1
n )∧T∫

si ∧T

wi
r dr

⎞

⎟
⎠

= E

⎛

⎜
⎝
∑

ai ≤v
1(si =0)

(si + 1
n )∧T∫

si ∧T

wi
r dr

⎞

⎟
⎠+ E

⎛

⎜
⎝

∑

ai ≤v,ui ≤Vsi

1(si>0)

(si + 1
n )∧T∫

si ∧T

wi
r dr

⎞

⎟
⎠

=
T ∧ 1

n∫

0

F(v)
∫

E
wr Q(dw)dr +

T∫

0

E (Vs I (v))

(s+ 1
n )∧T∫

s

∫

E
wr−sQ(dw)drds

= F(v)

(
T ∧ 1

n

)
+

T∫

0

E (Vs I (v))

(
T ∧

(
s + 1

n

)
− s

)
ds,

where the last equality follows by (2.9). By our assumptions on V the right hand side
in the above display converges to 0, as n → ∞. Hence (3.11) also converges to 0, as
n → ∞. Let us now deal with (J n

t )≥0. Note that we can write

J n
t+ 1

n
(v) =

∑

ai ≤v,ui ≤Vsi

wi
si + 1

n
1(si ≤t) = An

t +
∑

ai ≤v
wi

1
n
1(si =0) + I (v)

t∫

0

Vs ds,

where

An
t :=

∑

0<si ≤t

wi
si + 1

n
1(ai ≤v,ui ≤Vsi )

− I (v)

t∫

0

Vs ds,

and (An
t )t≥0 is a martingale such that An

0 = 0. We have by an analog of Lemma 3.3
and its proof

E

(

sup
t∈[0,T ]

|An
t |
)

≤ 2

√√
√
√KV

∫

E
(z 1

n
)2 1(z 1

n
≤1) Q(dz)+ 2KV

∫

E
z 1

n
1(z 1

n
>1) Q(dz),

where KV := I (v)
T∫

0
E(Vs) ds. The righthand side tends to zero as n → ∞ by Lemma

3.4. Analogously

E

(∣∣
∣
∣
∣

∑

ai ≤v
wi

1/n 1(si =0) − F(v)

∣
∣
∣
∣
∣

)
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≤ 2

√√
√
√F(1)

∫

E
(z 1

n
)2 1(z 1

n
≤1) Q(dz)+ 2F(1)

∫

E
z 1

n
1(z 1

n
>1) Q(dz),

which again tends to 0 as n → ∞ by Lemma 3.4. Therefore

E
[

sup
t∈[0,T ]

|Zt (v)− Zn
t (v)|

] → 0.

and, passing to a subsequence, we see that a.s.

sup
t∈[0,T ]

|Zt (v)− Znk
t (v)| → 0 (3.12)

(observe that in fact we don’t need to take a subsequence since Zn
t is monotone non-

decreasing in n).
In particular, a.s. (Zt (v), t ≥ 0) is càdlàg and we obtain

Zt (v) = F(v)+
∫

]0,t]×R+×R+

1Bv (y, r) x Ñ (dr, dx, dy)+ I (v)

t∫

0

Vs ds.

It remains to prove that a.s. Bv = {(y, r) : y < Zr−(v)}. By definition a.s.

Zr−(v) =
∑

ai ≤v,ui ≤Vsi

wi
r−, r ≥ 0.

If ai ≤ v and ui ≤ Vsi , then Li
r +wi

r− ≤ Zr−(v), so that Bv ⊂ {(y, r) : y < Zr−(v)}.
On the other hand, if y < Yr−(v), then there is one j such that

∑

ai<a j ,ui ≤Vsi

wi
r− = L j

r ≤ y < L j
r + w

j
r−.

Therefore we have obtained the desired results. ��

The proof of Proposition 3.2 is complete.

3.2 Proof of Theorem 2.3

With a localisation argument we can suppose that g is globally Lipschitz. Let us first
show uniqueness of solutions to (3.1). Let v = 1. If (Zi

t , t ≥ 0) for i = 1, 2 is a càdlàg
process satisfying (3.1) with v = 1, then taking the difference we obtain
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E(|Z1
t − Z2

t |) ≤ I (1)

t∫

0

ds
∫

E
zt−s Q(dz)E(|g(Z1

s )− g(Z2
s )|)

= I (1)

t∫

0

ds E(|g(Z1
s )− g(Z2

s )|),

where the second equality follows by (2.9). By the Lipschitz-continuity of g and the
Gronwall Lemma we obtain Z1 = Z2 a.s., i.e. uniqueness of solutions to (3.1).

The next step is to use an iterative Picard scheme in order to construct a solution
of (3.1) (and thus of (2.6)). Let v := 1, and let us set Z0

t := 0 and for all n ≥ 0

Zn+1
t :=

∑

si =0

wi
t 1(ui ≤1) +

∑

si>0

wi
t 1(ui ≤g(Zn

si −))
, t ≥ 0.

By recurrence and monotonicity of g, Zn+1
t ≥ Zn

t and therefore a.s. there exists the
limit Zt := limn Zn

t .
To show that Z is actually the solution of (3.1) we show first that it is càdlàg

(by proving that the convergence holds in a norm that makes the space of càdlàg
processes on [0, T ] complete) and then by proving that (3.1) holds almost surely
for each fixed t ≥ 0. Let us first show that Zn is a Cauchy sequence for the norm
‖Z‖ = E(supt∈[0,T ] |Zt |) for which first we set

Zn,k
t := Zn+k+1

t − Zn+1
t =

∑

si>0

wi
t 1(g(Zn

si −)<ui ≤g(Zn+k
si − ))

.

By an analog of Proposition 3.2 we can construct a PPP N n,k with the intensity
measure 1(r>0) dr ⊗ cα 1(x>0) x−1−α dx ⊗ 1(y>0) dy such that for all t ≥ 0

Zn,k
t =

t∫

0

1
(y<Zn,k

r− )
x Ñ n,k(dr, dx, dy)+ I (1)

t∫

0

[
g(Zn+k

s )− g(Zn
s )
]

ds.

Then by the Lipschitz-continuity of g with the Lipschitz constant L , and by Lemma
3.3

E

(

sup
t∈[0,T ]

∣
∣
∣Zn,k

t

∣
∣
∣

)

≤

√√
√
√
√

T∫

0

E

(
Zn,k

s

)
ds +

T∫

0

E

(
Zn,k

s

)
ds + I (1)L

T∫

0

E

(
Zn−1,k

s

)
ds.

We show now that the right hand side in the latter formula vanishes as n → +∞
uniformly in k. Indeed
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E(Z0
t ) = 0, 0 ≤ E(Zn+1

t ) = F(1)+
t∫

0

E(g(Zn
s )) ds ≤ C + L

t∫

0

E(Zn
s ) ds.

Then by recurrence E(Zn+1
t ) ≤ Cet L and by monotone convergence we obtain that

E(Zn+1
t ) ↑ E(Zt ) ≤ Cet L . By dominated convergence it follows that

T∫

0

E(Zn
s ) ds →

T∫

0

E(Zs) ds,

i.e. the sequence
T∫

0
E(Zn

s ) ds is Cauchy and we conclude that Zn → Z in the sense

of the above norm and therefore Z is almost surely càdlàg. The above argument also
show that

Zt =
∑

si =0

wi
t 1(ui ≤1) +

∑

si>0

wi
t 1(ui ≤g(Zsi −)),

holds almost surely for each fixed t and therefore for all t ≥ 0, i.e. Z is a solution
of (3.1) for v = 1. Setting Vs := g(Zs−(1)) and applying Proposition 3.2, we obtain
(3.1) and the proof of Theorem 2.3 is complete.

3.3 Proof of Theorem 2.2

Let us start from existence of a weak solution to (2.6); by Theorem 2.3 we can build
a process (Zt (v), t ≥ 0, v ∈ [0, 1]) and a Poisson point process N (dr, dx, dy) such
that (3.1) and (2.6) hold. Now, we set

Xt :=
∑

si =0

wi
t δui +

∑

si>0

wi
t 1(g(Zsi −(1))>0) δui /g(Zsi −(1)),

where δa denote the Dirac mass at a; by construction it is clear that Xt (v) := Xt ([0, v]),
for all v ∈ [0, 1], is a solution to (2.6). It remains to prove that (Xt )t≥0 is càdlàg in
the space of finite measures on the space [0, 1]. By Lemma 3.5, for all v ∈ [0, 1],
(Xt (v))t≥0 is càdlàg; by countable additivity, a.s. (Xt (v))t≥0 is càdlàg for all v ∈
Q ∩ [0, 1]; then, by the compactness of [0, 1], it is easy to see that (Xt )t≥0 is càdlàg:
for instance, a.s. any limit point of Xtn , for tn ≥ t and tn → t , is equal on each interval
]a, b], a, b ∈ Q ∩ [0, 1], to Xt (b)− Xt (a) = Xt (]a, b]). Therefore, we have proved
that (Xt )t≥0 is a solution to (2.6) in the sense of Definition 2.1.

It remains to prove pathwise uniqueness. Let (Xi
t )t≥0, i = 1, 2, be two solutions

to (2.6) driven by the same Poisson noise N and let us set Xi
t (v) := Xi

t ([0, v]),
v ∈ [0, 1]. Let us first consider the case v = 1: then (Xi

t (1), t ≥ 0), i = 1, 2, solves
a particular case of the equation considered by Dawson and Li [12, (2.1)]; therefore,
by [12, Theorem 2.5], P(X1

t (1) = X2
t (1), ∀ t ≥ 0) = 1.
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Let us now consider 0 ≤ v < 1; in this case the equation satisfied by (Xi
t (v), t ≥ 0)

depends on (Xi
t (1), t ≥ 0) and therefore the uniqueness result by Dawson and Li

does not apply directly. Instead, we consider the difference Dt := X1
t (v) − X2

t (v)

so that the drift terms cancel since X1(1) = X2(1). Hence, (Dt , t ≥ 0) can be
treated as if g were identically equal to 0. The same proof as in [12] shows that
P(X1

t (v) = X2
t (v), ∀ t ≥ 0) = 1. Finally, since a.s. the two finite measures X1

t and
X2

t are equal on each interval ]a, b], a, b ∈ Q ∩ [0, 1], they coincide. Therefore,
pathwise uniqueness holds for (2.6).

Finally, in order to obtain existence of a strong solution, we apply the classical
Yamada-Watanabe argument, for instance in the general form proved by Kurtz [25,
Theorem 3.14].

4 Proof of Theorem 2.7

We consider the immigration rate function g(x) = α(α − 1)	(α)θx2−α , x ≥ 0. Now
g is not Lipschitz-continuous, so that Theorem 2.3 does not apply directly. However,
by considering gn(x) = α(α − 1)	(α)θ(x ∨ n−1)2−α , we obtain a monotone non-
decreasing and Lipschitz continuous function for which Theorem 2.3 yields existence
and uniqueness of a solution (Xn

t (v), t ≥ 0, v ≥ 0) to (2.6). We now define T 0 := 0,
T n := inf{t > 0 : Xn

t (1) = n−1} and

Xt (v) :=
∑

n≥1

Xn
t (v)1(T n−1≤t<T n).

Since (Xt (1))t≥0 has no downward jumps, it follows that T0 := supn T n is equal
to inf{s > 0 : Xs(1) = 0}, and moreover Xt (1) = 0 for all t ≥ T0. By pathwise
uniqueness, if n ≥ m then Xn

t (v) = Xm
t (v) on {t ≤ T m}, and therefore (Xt (v), t ≥

0, v ≥ 0) is a solution to (2.6) for g(x) = α(α − 1)	(α)θx2−α with the desired
properties. Pathwise uniqueness follows from the same localisation argument.

To prove that the right-hand side of (2.15) is well-defined, i.e. the denominator
is always strictly positive, we are going to apply Lamperti’s representation for self-
similar Markov process. A positive self-similar Markov process of indexw is a strong
Markov family (Px )x>0 with coordinate process denoted by (Ut )t≥0 in the Skorohod
space of càdlàg functions with values in [0,+∞[, satisfying

the law of (cUc−1/w t )t≥0 under P
x is given by P

cx (4.1)

for all c > 0. Lamperti has shown in [29] that this property is equivalent to the existence
of a Lévy process ξ such that, under P

x , the process (Ut∧T0)t≥0 has the same law as(
x exp

(
ξA−1(t x−1/w)

))
t≥0, where

A−1(t) := inf{s ≥ 0 : As > t} and A(t) :=
t∫

0

exp

(
1

w
ξs

)
ds.
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We now use Lamperti’s representation to find a surprisingly simple argument for the
well-posedness of (2.15).

Lemma 4.1 The right-hand side of (2.15) is well-defined for all v ∈ [0, 1] and t ≥ 0.

Proof In Lemma 1 of [1] it was shown that, if L is a spectrally positive α-stable Lévy
process as in (2.3), solutions to the SDE

Xt = X0 +
t∫

0

X1/α
s− d Ls + α(α − 1)	(α)θ

t∫

0

X2−α
s ds (4.2)

trapped at zero induce a positive self-similar Markov process of index 1/(α− 1). The
corresponding Lévy process ξ has been calculated explicitly in [1, Lemma 2.2], but for
the proof here we only need that ξ has infinite lifetime and additionally a remarkable
cancellation effect between the time-changes. Since, by Lemma 1 of Fournier [21],
the unique solution to the SDE (4.2) for X0 = 1 coincides in law with the unique
solution to

Xt = 1 +
∫

]0,t]×R+×R+

1(y<Xs−) x Ñ (ds, dx, dy)+ α(α − 1)	(α)θ

t∫

0

X2−α
s ds,

we see that the total-mass process (Xt (1))t≥0 and
(
exp

(
ξA−1(t)

))
t≥0 are equal in law

up to first hitting 0. Applying the Lamperti transformation for t < T0 yields

S̄(t) :=
t∫

0

Xs(1)
1−α ds

=
t∫

0

exp((1 − α)ξA−1(s)) ds

=
A−1(t)∫

0

exp((1 − α)ξs) exp((α − 1)ξs) ds

= A−1(t)

so that S̄ and A are reciprocal for t < T0. Plugging this identity into the Lamperti
transformation yields

0 = XT0(1) = lim
t↑T0

Xt (1) = lim
t↑T0

exp(ξA−1(t)) = lim
t↑T0

exp(ξS̄(t)). (4.3)

For the second equality we used left-continuity of X (1) at T0 which is due to Sect. 3
of [29] because the Lévy process ξ does not jump to −∞. Using that ξt > −∞ for
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any t ∈ [0,∞), from(4.3) we see that S̄ explodes at T0, that is S̄(T0) = ∞. Since S
and S̄ only differ by the factor α(α − 1)	(α), it also holds that S(T0) = ∞ so that
X S−1(t)(1) > 0 for all t ≥ 0. ��

We can now show how to construct on a pathwise level the Beta-Fleming–Viot
processes with mutations the measure-valued branching process.

Proof of Theorem 2.7 Suppose N is the PPP with compensator measure ν that drives
the strong solution of (2.6) with atoms
(ri , xi , yi )i∈I ∈ (0,∞) × (0,∞) × (0,∞). Then we define a new point process

on (0,∞)× (0,∞)× (0,∞) by

M(ds, dz, du) :=
∑

i∈I

δ{
S(ri ),

xi
Xri −(1)+xi 1(yi ≤Xri −(1))

,
yi

Xri −(1)
}(ds, dz, du).

If we can show that the restriction M| of M to (0,∞) × (0, 1) × (0, 1) is a PPP
with intensity measure M′|(ds, dz, du) = ds ⊗ Cαz−2z1−α(1 − z)α−1dz ⊗ du and
furthermore that

(
Rt (v) := X S−1(t)(v)

X S−1(t)(1)

)

t≥0,v∈[0,1]

is a solution to (2.14) with respect to M|, then the claim follows from the pathwise
uniqueness of (2.14).
Step 1: We have

Rt (v) = XS−1(t)(v)

XS−1(t)(1)
=

= X0(v)

X0(1)
+

S−1(t)∫

0

∞∫

0

∞∫

0

[
Xr−(v)+ x1(y≤Xr−(v))
Xr−(1)+ x1(y≤Xr−(1))

− Xr−(v)
Xr−(1)

]
(N − ν)(dr, dx, dy)

+
S−1(t)∫

0

∞∫

0

∞∫

0

[
Xr−(v)+ x1(y≤Xr−(v))
Xr−(1)+ x1(y≤Xr−(1))

− Xr−(v)
Xr−(1)

− x1(y≤Xr−(v))
Xr−(1)

+ x1(y≤Xr−(1))Xr−(v)
Xr−(1)2

]
ν(dr, dx, dy)

+ α(α − 1)	(α)θv

S−1(t)∫

0

1

Xr (1)
Xr (1)

2−α dr − θ

S−1(t)∫

0

Xr (v)

Xr (1)2
Xr (1)

2−α dr

= v +
S−1(t)∫

0

∞∫

0

∞∫

0

[
Xr−(v)+ x1(y≤Xr−(v))
Xr−(1)+ x1(y≤Xr−(1))

− Xr−(v)
Xr−(1)

]
N (dr, dx, dy)

+ α(α − 1)	(α)θv

S−1(t)∫

0

Xr (1)
1−α dr − θ

S−1(t)∫

0

Xr (v)

Xr (1)
Xr (1)

1−α dr.
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To verify the third equality, first note that due to Lemma II.2.18 of [24] the
compensation can be split from the martingale part and then can be canceled
by the compensator integral since integrating-out the y-variable yields

S−1(t)∫

0

∞∫

0

∞∫

0

[
− x1(y≤Xr−(v))

Xr−(1)
+ x1(y≤Xr−(1))Xr−(v)

Xr−(1)2

]
cαx−1−αdr dx dy = 0.

To replace the jumps governed by the PPP N by jumps governed by M note
that by the definition of M we find, for measurable non-negative test-functions
h for which the first integral is defined, the almost sure transfer identity

S−1(t)∫

0

∞∫

0

∞∫

0

h

(
S(r),

x

Xr−(1)+ x1(y≤Xr−(1))
,

y

Xr−(1)

)
N (dr, dx, dy)

=
t∫

0

1∫

0

∞∫

0

h(s, z, u)M(ds, dz, du) (4.4)

or in an equivalent but more suitable form

S−1(t)∫

0

∞∫

0

∞∫

0
h

(
r, x

XS−1(r−)(1)+x1(y≤X
S−1(r−)(1))

,
y

XS−1(r−)(1)

)
N (dr, dx, dy)

=
t∫

0

1∫

0

∞∫

0
h
(
S−1(s), z, u

)M(ds, dz, du). (4.5)

Since the integrals are non-compensated we actually defined M in such a way
that the integrals produce exactly the same jumps.
Let us now rewrite the equation found for R in such a way that (4.5) can be
applied:

Rt (v) = v +
S−1(t)∫

0

∞∫

0

∞∫

0

[
x1(y≤Xr−(v))Xr−(1)− Xr−(v)x1(y≤Xr−(1))

(Xr−(1)+ x1(y≤Xr−(1)))Xr−(1)

]

× N (dr, dx, dy)+ α(α − 1)	(α)θ

S−1(t)∫

0

×
[
vXr (1)

1−α − Xr (v)

Xr (1)
Xr (1)

1−α] dr

= v +
S−1(t)∫

0

∞∫

0

∞∫

0

x

Xr−(1)+ x1(y≤Xr−(1))
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×
[

1(y≤Xr−(v)) − Xr−(v)
Xr−(1)

1(y≤Xr−(1))

]
N (dr, dx, dy)

+ α(α − 1)	(α)θ

S−1(t)∫

0

[
vXr (1)

1−α − Xr (v)

Xr (1)
Xr (1)

1−α] dr.

The stochastic integral driven by N can now be replaced by a stochastic
integral driven by M via (4.5):

Rt (v) = v +
t∫

0

1∫

0

∞∫

0

z

[
1(u XS−1(s)−(1)≤X S−1(s)−(v))−

− RS−1(s)−(v)1(u XS−1(s)−(1)≤X S−1(s)−(1))

]
M(ds, dz, du)

+ θ

t∫

0

[
v − Rs(v)

]
ds

= v +
t∫

0

1∫

0

∞∫

0

z

[
1(u≤Rs−(v)) − Rs−(v)1(u≤1)

]
M(ds, dz, du)

+ θ

t∫

0

[
v − Rs(v)

]
ds.

By monotonicity in v, Rt (v) ≤ 1 so that the du-integral in fact only runs up
to 1 and the second indicator can be skipped:

Rt (v) = v +
t∫

0

1∫

0

1∫

0

z

[
1(u≤Rs−(v)) − Rs−(v)

]
M|(ds, dz, du)

+θ
t∫

0

[
v − Rs(v)

]
ds.

This is precisely the equation we wanted to derive.
Step 2: The proof is complete if we can show that the restriction M| of M to (0,∞)×

[0, 1] × [0, 1] is a PPP with intensity M′(ds, dz, du) = ds ⊗ Cαz−1−α(1 −
z)α−1dz⊗du. For this sake, we choose a non-negative measurable predictable
function W : 
× (0,∞)× (0, 1)× (0, 1) → R bounded in the second and
third variable and compactly supported in the first, plug-in the definition of
M| and use the compensator measure ν of N to obtain via (4.4)
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E

⎛

⎝
t∫

0

1∫

0

1∫

0

W (s, z, u)M|(ds, dz, du)

⎞

⎠

= E

⎛

⎝
t∫

0

1∫

0

∞∫

0

1(u≤1)W (s, z, u)M(ds, dz, du)

⎞

⎠

= E

( S−1(t)∫

0

∞∫

0

∞∫

0

1( y
Xr−(1)≤1

)

× W

(
S(r),

x

Xr−(1)+ x1(y≤Xr−(1))
,

y

Xr−(1)

)
N (dr, dx, dy)

)

which, by predictable projection and change of variables, equals

E

( S−1(t)∫

0

∞∫

0

∞∫

0

1( y
Xr (1)

≤1
)

× W

(
S(r),

x

Xr (1)+ x1( y
Xr (1)

≤1)
,

y

Xr (1)

)
cαx−1−α dr dx dy

)
.

Now we substitute the three variables r, x, y (in this order), using Cα = 1
α(α−1)	(α)cα

for the substitution of r and the identity

∞∫

0

g

(
x

a + x

)
x−1−α dx = a−α

1∫

0

g(z)z−1−α(1 − z)α−1 dz

for the substitution of x to obtain

E

(
t∫

0

1∫

0

1∫

0
W (s, z, u)M|(ds, dz, du)

)

= E

(
t∫

0

1∫

0

1∫

0
W (s, z, u)Cαz−1−α(1 − z)α−1ds dz du

)

.

It now follows from Theorems II.4.8 of [24] and the definitions of cα,Cα that M| is
a PPP with intensity ds ⊗ Cαz−2z1−α(1 − z)α−1dz ⊗ du. �� ��

5 Proof of Theorem 1.2

Let us briefly outline the strategy for the proof: In order to show that the measure-
valued process Y, P-a.s., does not possess times t for which Yt has finitely many atoms,
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by Theorem 2.7 it suffices to show that P-a.s. the same is true for the measure-valued
branching process X. In order to achieve this, it suffices to deduce the same property
for the Pitman-Yor type representation up to extinction, i.e. we need to show that

P
(
#{v ∈ ]0, 1] : Zt (v)− Zt (v−) > 0} = ∞, ∀ t ∈ ]0, T0[

) = 1. (5.1)

The upshot of working with Z instead of Y is that things are easier due to a com-
parison property that is not available for Y. More precisely, we are going to prove
that with probability 1, the number of immigrated types alive is infinite at all times,
therefore proving that the result in Theorem 1.2 is indeed independent of the starting
configuration Y0.

We start the proof with a technical result on the covering of a half line by the
shadows of a Poisson point process defined on some probability space (
,G,Gt , P).
Suppose (si , hi )i∈I are the points of a Poisson point process � on (0,∞) × (0,∞)

with intensity dt ⊗�′(dh). For a point (si , hi ) we define the shadow on the half line
R

+ by (si , si + hi ) which is precisely the line segment covered by the shadow of the
line segment connecting (si , 0) and (si , hi ) with light shining in a 45 degrees angle
from the above left-hand side. Shepp proved that the half line R

+ is almost surely
fully covered by the shadows induced by the points (si , hi )i∈I if and only if

1∫

0

exp

⎛

⎝
1∫

t

(h − t)�′(dh)

⎞

⎠ dt = ∞. (5.2)

The reader is referred to the last remark of [36]. For our purposes we need the following
variant:

Lemma 5.1 Suppose � is a PPP with intensity dt ⊗ �′(dh) and Shepp’s condition
(5.2) holds, then

P
(
#
{
si ≤ t : (si , hi ) ∈ � and si + hi > t

} = ∞, ∀ t > 0
) = 1,

i.e. almost surely every point of R
+ is covered by the shadows of infinitely many line

segments.

Proof The proof is an iterated use of Shepp’s result for the sequence of restricted
Poisson point processes �k obtained by removing all the atoms (si , hi ) with hi >

1
k

from �, i.e. restricting the intensity measure to [0, 1
k ]. Since Shepp’s criterion (5.2)

only involves the intensity measure around zero, the shadows of all point processes�k

cover the half line. Consequently, if there is some t > 0 such that t is only covered by
the shadows of finitely many points (si , hi ) ∈ �, then t is not covered by the shadows
generated by�k′ for some k′ large enough. But this is a contradiction to Shepp’s result
applied to �k′ . ��
Now we want to apply Shepp’s result to the Pitman-Yor type representation. We want
to prove that (5.1) holds for any θ > 0. Let us set for all ε > 0

Tε := inf{t > 0 : Zt (1) ≤ ε}.
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Then it is clearly enough to prove that for all ε > 0

P
(
#{v ∈ ]0, 1] : Zt (v)− Zt (v−) > 0} = ∞, ∀ t ∈ ]0, Tε[

) = 1.

In order to connect the covering lemma with the question of exceptional times, we
use the comparison property of the Pitman-Yor representation to reduce the problem
to the process Z ε explicitly defined by

Z εt (v) =
∑

si>0

wi
t 1(ui ≤v α(α−1)	(α)θε2−α), v ∈ [0, 1], t ≥ 0. (5.3)

Setting

Nt := #
{
v ∈ ]0, 1] : Zt (v)− Zt (v−) > 0

}
,

N ε
t := #

{
v ∈ ]0, 1] : Z εt (v)− Z εt (v−) > 0

}
,

it is obvious by the definition of Z and Z ε that

P(Nt ≥ N ε
t , ∀ t ∈ ]0, Tε[}) = 1. (5.4)

We are now prepared to prove our main result.

Proof of Theorem 1.2 Due to (5.4) we only need to show that almost surely v �→
Z εt (v) has infinitely many jumps for all t > 0 and arbitrary ε > 0. To verify the latter,
Lemma 5.1 will be applied to a PPP defined in the sequel. If � denotes the Poisson
point process with atoms (si , w

i , ui )i∈I from which Z εt (v) is defined, then we define
a new Poisson point process �l via the atoms

(si , hi , ui )i∈I := (si , �(w
i ), ui )i∈I ,

where �(w) := inf{t > 0 : wt = 0} denotes the length of the trajectory w. In order
to apply Lemma 5.1 we need the intensity of �l . Using the definition of Q and the
Laplace transform duality (2.8) with the explicit form

∫ (
1 − e−λwt

)
Q(dw) =

(
λ1−α + (α − 1)t

) 1
1−α

,

we find the distribution

Q(�(w) > h) = Q(wh > 0) = lim
λ→+∞ Q(1 − e−λwh )

= lim
λ→+∞ uh(λ) = ((α − 1)h)

1
1−α . (5.5)
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Differentiating in h shows that�l is a Poisson point process on R
+ × R

+ × R
+ with

intensity measure

�′
l(dt, dh, du) = dt ⊗ ((α − 1)h)

α
(1−α) dh ⊗ du.

Plugging-in the new definitions leads to

N ε
t = (

number of non-zero summands of Z εt (1)
)

t≥0

= (
#
{
si ≤ t : (si , wi , ui ) ∈ � and wi

t−si
1(ui ≤α(α−1)	(α)θε2−α) > 0

})
t≥0

= (
#
{
si ≤ t :(si , wi , ui )∈� and �(wi )> t−si , ui ≤ α(α−1)	(α)θε2−α})

t≥0

= (
#
{
si ≤ t :(si , hi , ui )∈�l and si +hi > t, ui ≤ α(α−1)	(α)θε2−α})

t≥0.

(5.6)

There is one more simplification that we can do. Let us define�l,ε as a Poisson point
process on (0,∞)× (0,∞) with intensity measure

�′
l,ε(dt, dh) = α(α − 1)	(α)θε2−α dt ⊗ (α − 1)α/(1−α)h

α
(1−α) dh, (5.7)

then by the properties of Poisson point processes we have the equality in law

{(si , hi ) : (si , hi , ui ) ∈ �l and ui ≤ α(α − 1)	(α)θε2−α} (d)= �l,ε .

Then (5.6) yields

(
N ε

t

)
t≥0

(d)= (
#
{
si ≤ t : (si , hi ) ∈ �l,ε and si + hi > t

})
t≥0.

Now we are precisely in the setting of Shepp’s covering results and the theorem follows
from Lemma 5.1 if (5.2) holds. Shepp’s condition can be checked easily for �l,ε for
(5.7) independently of θ and ε. ��

6 A Proof of Schmuland’s Theorem

In this section we sketch how our lines of arguments can be adopted for the continuous
case corresponding to α = 2. The proofs go along the same lines (reduction to a
measure-valued branching process and then to an excursion representation for which
the covering result can be applied) but are much simpler due to a constant immigration
structure. The crucial difference, leading to the possibility of exceptional times, occurs
in the final step via Shepp’s covering results.

Proof of Schmuland’s Theorem 1.1 We start with the continuous analogue to Theorem
2.2. Suppose W is a white-noise on (0,∞)×(0,∞), then one can show via the standard
Yamada-Watanabe argument that there is a unique strong solution to
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⎧
⎨

⎩

Xt (v) = v + √
2

∫

]0,t]×R+
1(u≤Xs (v)) W (ds, du)+ θvt,

v ∈ [0, 1], t ≥ 0.
(6.1)

In fact, since the immigration mechanism g is constant, pathwise uniqueness holds.
For every v ∈ [0, 1], (Xt (v))t≥0 satisfies

Xt (v) = v +
t∫

0

√
2Xs(v) d Bs + vθ t

for a Brownian motion B. Recalling (2.2), we see that (6.1) is a measure-valued process
with branching mechanism ψ(u) = u2 and constant-rate immigration.

The Pitman-Yor type representation corresponding to Theorem 2.3 looks as follows:
in the setting of Sect. 2.2, we consider a Poisson point process (si , ui , w

i )i on R+ ×
R+ × D with intensity measure (δ0(ds)⊗ F(du) + ds ⊗ I (du))⊗ Qs(dw), where
the excursion measure Q is defined via the law of the CSBP (2.2) with branching
mechanism ψ(λ) = λ2. Then the analog of Theorem 2.3 is the following:

{
Zt (v) = ∑

si =0 w
i
t 1(ui ≤v) +∑

0<si ≤t w
i
t−si

1(ui ≤vθ),
v ∈ [0, 1], t ≥ 0,

(6.2)

can be shown to solve (6.1); this result, for fixed v, goes back to Pitman and Yor [34].
The calculation (5.5), now using that ut (λ) = (

λ−1 + t
)−1

is the unique non-negative
solution to

∂t ut (λ) = −(ut (λ))
2, u0(λ) = λ,

yields Q(�(w) ∈ dh) = 1
h2 dh.

For the analogue for Theorem 2.7 we define now the process

Rt (v) = X S−1(t)(v)

X S−1(t)(1)
,

with S(t) =
t∫

0
Xs(1)−1 ds. It then follows again from the self-similarity that R is

well-defined and from Itō’s formula that R is a standard Fleming–Viot process on
[0, 1]. The arguments here involve a continuous SDE which has been studied in [12]:

⎧
⎪⎨

⎪⎩

Yt (v) = v +
t∫

0

1∫

0

[
1(u≤Ys (v)) − Ys(v)

]
W (ds, du)+ θ

t∫

0

[
v − Ys(v)

]
ds,

v ∈ [0, 1], t ≥ 0,

(6.3)

where W is a white-noise on (0,∞) × (0, 1). It was shown in Theorem 4.9 of [12]
that the measure-valued process Y associated with (Yt (v), t ≥ 0, v ∈ [0, 1]) solves
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the martingale problem for the infinitely many sites model with mutations, i.e. Y has
generator (1.1) with the choice (1.2) for A.

Finally, in order to prove Schmuland’s Theorem 1.1 on exceptional times it suffices
to prove the same result for (6.2). We proceed again via Shepp’s covering arguments
as we did in Sect. 5. The crucial difference is that the immigration is already constant
θ so that (5.3) becomes superfluous. The role of the Poisson point process �l,ε is
played by �θ,l with intensity measure

�′
θ,l(dt, dh) = dt ⊗ θ

h2 dh.

Plugging into Shepp’s criterion (5.2), by Lemma 5.1 and

1∫

0

exp
(

− θ log(t)
)

dt =
1∫

0

t−θ dt (6.4)

we find that there are no exceptional times if θ ≥ 1. Conversely, let us assume θ < 1.
Recalling that for θ = 0 the Fleming–Viot process has almost surely finitely many
atoms for all t > 0, we see that the first term in (6.2) almost surely has finitely non-
zero summands for all t > 0. Hence, it suffices to show the existence of exceptional
times for which the second term in (6.2) vanishes. Arguing as before, this question is
reduced to Shepp’s covering result applied to�θ,l : (6.4) combined with (5.2) leads to
the result. ��

7 Proof of Corollary 2.8

The fact that the (α, θ)-Fleming–Viot process (Yt , t ≥ 0) converges in distribution to
its unique invariant distribution and that this invariant distribution is not trivial (i.e. it
charges measures with at least two atoms) is proven by Donelly and Kurtz in [14] at
the end of Sect. 5.1 and [13] Sect. 4.1. Here we re-sketch their argument that relies on
the so-called lookdown construction of (Yt , t ≥ 0) which was introduced in the same
papers. Let us very briefly describe how the lookdown construction works (for more
details we refer to [9,14]).

The idea is to construct a sequence of processes (ξi (t), t ≥ 0), i = 1, 2, . . . which
take their values in the type-space E (here E = [0, 1]). We say that ξi (t) is the type
of the level i at time t . The types evolve by two mechanisms :

– lookdown events: with rate x−2�(dx) a proportion x of lineages are selected by
i.i.d. Bernoulli trials. Call i1, i2, . . . the selected levels at a given event at time t .
Then, ∀k > 1, ξik (t) = ξi1(t−), that is the levels all adopt the type of the smallest
participating level. The type ξik (t−)which was occupying level ik before the event
is pushed up to the next available level.

– mutation events: On each level i there is an independent Poisson point process
(t (i)j , j ≥ 1) of rate θ of mutation events. At a mutation event t (i)j the type ξi (t

(i)
j −)
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is replaced by a new independent variable uniformly distributed on [0, 1] and the
previous type is pushed up by one level (as well as all the types above him).

The point is then that

�t := lim
n→∞

1

n

n∑

i=1

δξi (t)

exists simultaneously for all t ≥ 0 almost surely and that (�t , t ≥ 0) = (Yt , t ≥ 0)
in distribution.

Fix n ∈ N, and define a process (πt , t ≥ 0)with values in the partitions of {1, 2, . . .}
by saying that i ∼ j for π(n)t if and only ξi (t) = ξ j (t). It is well known that this is an
exchangeable process. Recall from Corollary 2.5 that for each t ≥ 0 fixed,�t is almost
surely purely atomic. Alternatively this can be seen from the lookdown construction
since at a fixed time t > 0, the level one has been looked down upon by infinitely
many level above since the last mutation event on level one. We can thus write

�t =
∑

ai (t)δxi (t),

where the ai are enumerated in decreasing order. It is also known that the sequences
(ai (t), i ≥ 1) of atom masses and (xi (t), i ≥ 1) of atom locations are indepen-
dent. The ai (t) are the asymptotic frequencies of the blocks of π(t) which are
thus in one-to-one correspondence with the atoms of �t . Furthermore the sequence
(xi (t), i ≥ 1) converges in distribution to a sequence of i.i.d random variables
with common distribution I because all the types that were present initially have
been replaced by immigrated types after some time. To see this note that after the
first mutation on level 1, the type ξ1(0) is pushed up to infinity in a finite time
which is stochastically dominated by the fixation time of the type at level 1 in
a Beta-Fleming–Viot without mutation. This also proves the second point of the
corollary.

For each n ≥ 1, let us consider π(n)(t) = π|[n](t) the restriction to {1, . . . , n}
of π(t). Then, for all n ≥ 1, the process (π(n)t , t ≥ 0) is an irreducible Markov
process on a finite state-space and thus converges to its unique invariant distribution.
This now implies that (π(t), t ≥ 0) must also converges to its invariant distribution.
By Kingman continuity Theorem (see [33, Theorem 36] or [4, Theorem 1.2]) this
implies that the ordered sequence of the atom masses (ai (t)) converges in distribution
as t → ∞. Because (xi (t), i ≥ 1) also converges in distribution this implies that �t

itself converges in distribution to its invariant measure. (Alternatively, this second part
of the Corollary could be deduced from Theorem 2 in [28])

Furthermore it is also clear that the invariant distribution of (π(n)t , t ≥ 0) must
charge configurations with at least two non-singleton blocks. Since π is an exchange-
able process, so is its invariant distribution. Exchangeable partitions have only two
types of blocks: singletons and blocks with positive asymptotic frequency so this
proves that the invariant distribution of π charges partition with at least two blocks of
positive asymptotic frequency.
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