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Coalescents with multiple collisions, also known as Λ-coalescents,
were introduced by Pitman and Sagitov in 1999. These processes de-
scribe the evolution of particles that undergo stochastic coagulation
in such a way that several blocks can merge at the same time to form
a single block. In the case that the measure Λ is the Beta(2− α,α)
distribution, they are also known to describe the genealogies of large
populations where a single individual can produce a large number of
offspring. Here, we use a recent result of Birkner et al. to prove that
Beta-coalescents can be embedded in continuous stable random trees,
about which much is known due to the recent progress of Duquesne
and Le Gall. Our proof is based on a construction of the Donnelly–
Kurtz lookdown process using continuous random trees, which is of
independent interest. This produces a number of results concerning
the small-time behavior of Beta-coalescents. Most notably, we recover
an almost sure limit theorem of the present authors for the number of
blocks at small times and give the multifractal spectrum correspond-
ing to the emergence of blocks with atypical size. Also, we are able
to find exact asymptotics for sampling formulae corresponding to the
site frequency spectrum and the allele frequency spectrum associated
with mutations in the context of population genetics.

1. Introduction and preliminaries. Consider the following simple popu-
lation model. Assume that the size of the population stays constant, equal
to a fixed integer n ≥ 1, where individuals are numbered 1, . . . , n. In this
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population, each individual reproduces at rate (n− 1)/2. When individual
i reproduces, she gives birth to two children. One of them is again called
individual i and the other replaces individual j for a randomly chosen label
j #= i with 1 ≤ j ≤ n. If t > 0 is a fixed time, we may define an ancestral
partition (Πt

s,0 ≤ s ≤ t) for this population model by saying that i and j
are in the same block of Πt

s if and only if the corresponding individuals at
time t have the same ancestor at time t− s. It is elementary to check that
the dynamics of the process (Πt

s,0 ≤ s ≤ t) are governed by the rules of a
process called Kingman’s coalescent. This is a Markov process characterized
by the fact that the only transitions are those where pairs of blocks merge
and any given pair of blocks merges at rate 1 independently of everything
else. In fact, even for more realistic population models, it is often the case
that the genealogy of a small sample of a population may be effectively de-
scribed by Kingman’s coalescent; the introduction of this tool by Kingman
[33, 34] was a major development in population genetics. One of the great
advantages of this theory is that it is well adapted to the statistical analysis
of molecular population samples since, for instance, in this framework, one
can deal with a population sample rather than the population as a whole.
Moreover, molecular and genetic data convey much information about an-
cestral relationships in a population sample. Much background material on
the use of coalescent models in the field of population genetics can be found
in the recent book [29] or in the review paper [25].

However, recent work (see, e.g., [21, 40, 49, 51]) has shown that Kingman’s
coalescent is not very well suited when we deal with populations where
individuals may give birth to a large number of offspring or when we consider
the genealogy of a population affected by repeated beneficial mutations [20].
In these cases, it is more appropriate to model the merging of ancestral
lines by coalescent processes that allow multiple collisions, that is, several
blocks may merge at once, although only one of those events may occur at a
given time. These processes, called Λ-coalescents , have been introduced and
studied by Pitman [45] and Sagitov [49]. As shown by Pitman [45], they are
Markov processes in which any given number of blocks may merge at once
and are characterized by a finite measure Λ on [0,1]. The Λ-coalescent has
the property that whenever the process has b blocks, any given k-tuple of
blocks merges at a rate given by

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx);

see the next section for a more precise definition. For instance, Schweins-
berg [51] showed that Λ-coalescents arise as the rescaled genealogies of some
population models where individual offspring distributions have infinite vari-
ance. More precisely, let 1 < α < 2 and let X be a random variable such that
P (X > k)∼Ck−α for some C > 0. Consider the following population model.



BETA-COALESCENTS AND CONTINUOUS STABLE RANDOM TREES 3

As before, the size of the population is kept constant, equal to n. The model
is formulated in discrete time. At each generation, each individual produces a
random number of offspring (distributed like X) independently of other indi-
viduals and of the past. Then n of them are randomly chosen to survive and
the others are discarded. One of the main results of [51] is that the ancestral
partitions, suitably rescaled, converge to the Beta(2−α,α)-coalescent, that
is, a Λ-coalescent such that the measure Λ is the Beta(2−α,α) distribution.

This connection with population genetics has served both as a motiva-
tion for studying these processes and also as a source of inspiration for a
rich theory that is only now starting to emerge, starting with the series of
seminal papers by Bertoin and Le Gall [10, 11, 12, 13]. In these papers,
Λ-coalescents are obtained as duals of measure-valued processes called gen-
eralized Fleming–Viot processes. In simple cases (viz., the cases of quadratic
branching and stable branching mechanisms), these processes describe the
composition of a population (Zt, t ≥ 0) undergoing continuous branching
(i.e., Z is a continuous-state branching process, or CSBP for short; defini-
tions will be given below). This stream of ideas has led Birkner et al. [14]
to prove that one can obtain Beta-coalescents by suitably time-changing
the ancestral partitions associated with the genealogy of (Zt, t≥ 0). In this
continuous context, it is technically nontrivial to make rigorous sense of the
notion of genealogy, but this is achieved through the use of a process called
the (modified) lookdown process associated with (Zt, t≥ 0), a powerful tool
introduced by Donnelly and Kurtz [16].

In parallel, it has been known for some time that CSBPs can be viewed
as local time processes of a process (Ht, t ≤ Tr) called the height process,
in a way that is analogous to the classical theorem of Ray and Knight for
Brownian motion relating the Feller diffusion, the solution of

dZt =
√

Zt dWt,

where (Wt)t≥0 is Brownian motion, to the local times of a reflecting Brow-
nian motion. This connection has been formalized by Le Gall and Le Jan
[36]. The height process itself encodes a continuous random tree, analogous
to the Brownian tree of Aldous [1, 2], and can be viewed as the scaling limit
of suitably normalized Galton–Watson trees. A careful exposition of this rich
theory can be found in [17].

In this paper, we have two main goals. The first is to describe another
way of thinking about the genealogy of a Beta-coalescent. This is achieved
by embedding a Beta-coalescent into a continuous random tree with stable
branching mechanism. To prove this result, we show that one can obtain
the Donnelly–Kurtz lookdown process from a continuous random tree in
a very simple fashion. This is valid for a general (sub)critical branching
mechanism and is of independent interest. From this, and careful analysis,
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it follows that the coalescent tree can be thought of as what is perhaps
the simplest genealogical model: a Galton–Watson tree with a continuous
time parameter. Our second goal is to use this connection to discuss results
about the small-time behavior of Beta-coalescents and related processes.
This study was initiated in [8] without the help of continuous random trees.
In particular, we apply these ideas to a problem of interest in population
genetics.

Organization of the paper. After recalling the necessary definitions and
results about coalescent processes, CSBPs and continuous random trees in
Section 2, we state our results in Section 3. In Section 4, we explain our
construction of the Donnelly–Kurtz lookdown process from a continuous
random tree. In Section 5, we prove our results related to the small-time be-
havior of Beta-coalescents, giving asymptotics for the number of blocks and
the multifractal spectrum. Finally, results concerning biological applications
are proved in Section 6.

2. Preliminaries.

2.1. The Λ-coalescent. Let Pn denote the set of all partitions of the set
{1, . . . , n} and P denote the set of all partitions of N = {1,2, . . .} (in this
paper, it is always assumed that the set N does not contain 0). It turns
out that the simplest way to define a coalescent process is by looking at a
version of this process taking its values in the space P . For all partitions
π ∈ P , let Rnπ be the restriction of π to {1, . . . , n}, meaning that Rnπ ∈ Pn

and that two integers i and j are in the same block of Rnπ if and only
if they are in the same block of π. A Λ-coalescent (or a coalescent with
multiple collisions) is a P-valued Markov process (Π(t), t ≥ 0) such that,
for all n ∈N, the process (RnΠ(t), t≥ 0) is a Pn-valued Markov chain with
the property that whenever RnΠ(t) has b blocks, any particular k-tuple of
blocks of this partition merges at a rate equal to λb,k, these being the only
possible transitions. The rates λb,k depend neither on n nor on the numbers
of integers in the b blocks. Pitman [45] showed that the transition rates must
satisfy

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx)(1)

for some finite measure Λ on [0,1]. The laws of the processes RnΠ are con-
sistent and this allows one to consider a process Π such that the restriction
RnΠ has the above description. A coalescent process such that (1) holds for
a particular measure Λ is called the Λ-coalescent.

To better understand the role of the measure Λ, it is useful to have in
mind the following Poissonian construction of a Λ-coalescent, also due to
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Pitman [45]. Suppose Λ does not put any mass on {0}. Let (ti, xi)i∈I be the
atoms of a Poisson point process on R+× [0,1] with intensity measure dt⊗
x−2Λ(dx). Observe that although Λ is a finite measure, x−2Λ(dx) is not finite
in general, but only sigma-finite. Hence, (ti, xi)i∈I may have countably many
atoms on any time interval [t1, t2], so in order to make rigorous sense of the
following description, one should again work with restrictions to {1, . . . , n}.
The coalescent only evolves at times t such that t = ti for some i ∈ I . For
each cluster present at time t−i , we flip an independent coin with probability
of heads xi, where (ti, xi) is the corresponding atom of the point process.
We merge all the clusters for which the coin came up heads and do nothing
with the other clusters. Hence, we see that in a Λ-coalescent where Λ has no
mass at 0, x−2Λ(dx) is the rate at which a proportion x of the blocks merge
(such an event is generally called an x-merger). On the other hand, when
Λ is a unit mass at zero, each transition involves the merger of exactly two
blocks and each such transition occurs at rate 1, so this is just Kingman’s
coalescent.

Kingman’s theory of exchangeable partitions provides us with a way of
looking at this process as taking its values in the space S = {x1 ≥ x2 ≥ · · ·≥
0,

∑∞
i=1 xi ≤ 1}, which is perhaps a bit more intuitive since the notion of

mass is apparent in this context. The resulting process is called the ranked
Λ-coalescent. Briefly, partitions of N defined by the above procedure are
exchangeable, so this implies that for each block of the partition, there exists
a well-defined number called the frequency or mass of the block, which is the
almost sure limiting proportion of integers in this block. Therefore, given a
measure Λ and a Λ-coalescent Π = (Πt, t ≥ 0), one can define a process
X = (X(t), t > 0) with values in the space S by taking for each t > 0 the
frequencies of Π(t) ranked in decreasing order. When S is endowed with the
topology that it inherits from $1, the law at time t of this process Qt defines a
Markov semigroup with an entrance law : the process enters at time 0+ from
a state called dust, that is, the largest frequency vanishes as t→ 0+. These
technical points are carefully explained in the original paper of Pitman [45],
Theorem 8. The process X is said to have proper frequencies if

∑∞
i=1 Xi(t) =

1 for all t > 0. Pitman has shown that this is equivalent to
∫ 1
0 x−1Λ(dx) <∞.

This is also equivalent to the fact that almost surely Π(t) does not contain
any singleton, or that all blocks are infinite. Another notion which plays an
important role in this theory is that of coming down from infinity. Pitman
[45] has shown that only two situations occur, depending on the measure Λ.
Let E be the event that for all t > 0, there are infinitely many blocks and let
F be the event that for all t > 0, there are only finitely many blocks. Then,
if Λ({1}) = 0, either P (E) = 1 or P (F ) = 1. When P (F ) = 1, the process X
or Π is said to come down from infinity. For instance, Kingman’s coalescent
comes down from infinity, while if Λ(dx) = dx is the uniform measure on
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(0,1), the Λ coalescent does not come down from infinity. This particular
choice of Λ corresponds to the so-called Bolthausen–Sznitman coalescent
which first arose in connection with spin glasses [15]. For a necessary and
sufficient condition on Λ for coming down from infinity, see [13, 50] and the
forthcoming [7]. Note also that a coalescent that comes down from infinity
must have proper frequencies.

In this paper, we will be concerned with the one-parameter family of co-
alescent processes called Beta-coalescents. These are the Λ-coalescent pro-
cess obtained when the measure Λ is the Beta(2− α,α) distribution with
1 < α < 2,

Λ(dx) =
1

Γ(2−α)Γ(α)
x1−α(1− x)α−1 dx.

The reason we restrict our attention to 1 < α < 2 is that this corresponds
to the case where the coalescent process comes down from infinity (a conse-
quence of Schweinsberg’s [50] criterion). When α = 1, the Beta(1, 1) distri-
bution is simply the uniform distribution on (0, 1), so this the Boltahusen–
Sznitman coalescent, which stays infinite. When α→ 2, it can be checked
that the Beta(2− α,α) distribution converges weakly to the unit mass at
zero, so, formally, the case α = 2 corresponds to Kingman’s coalescent. This
family of processes enjoys some remarkable properties, as can be seen from
[14, 51] and results in the present work. This partly reflects the fact that the
continuous-state branching processes with stable branching mechanism, with
which they are associated (see below), enjoy some strong scale-invariance
properties, just like Brownian motion.

2.2. Continuous-state branching processes. Continuous-state branching
processes have been introduced and studied by, among others, Lamperti
[35] and Grey [27]. They are Markov processes (Zt, t≥ 0) taking their values
in [0,∞] and we think of Zt ≥ 0 as the size of a continuous population at
time t. Continuous-state branching processes are the continuous analogues
of Galton–Watson processes as well as their scaling limits. They are charac-
terized by the following branching property: if pt(x, ·) denotes the transition
probabilities of Z started with Z0 = x, then for all x, y ∈R+,

pt(x + y, ·) = pt(x, ·) ∗ pt(y, ·),(2)

which means that the process started from x+y individuals has the same law
as the sum of a process started from x and one started from y independently.
The interpretation of (2) is that if individuals live and reproduce indepen-
dently, then a population started from x+y individuals should evolve as the
sum of two independent populations, one started with x individuals and one
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with y individuals. Lamperti [35] has shown that a continuous-state branch-
ing process is characterized by a function ψ : [0,∞)→R called the branching
mechanism, such that for all t≥ 0, the Laplace transform of Zt satisfies

E[e−λZt |Z0 = a] = e−aut(λ),(3)

where the function ut(λ) solves the differential equation

∂ut(λ)

∂t
=−ψ(ut(λ)), u0(λ) = λ.(4)

Moreover, the branching mechanism ψ is the Laplace exponent of some
spectrally positive Lévy process (i.e., Lévy process with no negative jumps).
That is, there exists a measure ν on (0,∞) and some numbers a ∈ R and
b≥ 0 such that for all q ≥ 0,

ψ(q) = aq + bq2 +
∫ ∞

0
(e−qx − 1 + qx1{x<1})ν(dx)(5)

and
∫ ∞
0 (1 ∧ x2)ν(dx) <∞. Furthermore, if (Yt, t ≥ 0) is the Lévy process

with Laplace exponent ψ, that is,

E[e−λ(Yt−Y0)] = etψ(λ),

then the distributions of (Zt, t≥ 0) and (Yt, t≥ 0) are related by a simple
time-change (sometimes called the Lamperti transform). Let

Ut =
∫ t

0
Ỹ −1

s ds,

where (Ỹt, t≥ 0) is the process (Yt, t≥ 0) stopped when it first hits zero, and
call U−1

t the inverse càdlàg of Ut. (YU−1
t

, t≥ 0) then has the same law as Z.

We refer the reader to, for instance, [9] for more information about this.
When ψ(q) = qα for some α ∈ (0,2], we say that the CSBP has a stable

branching mechanism. When α = 2, the process Z is Feller’s diffusion and
the Lévy process in Lamperti’s transformation is standard Brownian motion.
When 1 < α < 2, this branching mechanism arises by taking a = b = 0 and

ν(dx) =
α(α− 1)

Γ(2−α)
x−1−α dx

in (5). The Lévy process in Lamperti’s transformation is an α-stable Lévy
process having the scaling property

(Yλt, t≥ 0) =d (λ1/αYt, t≥ 0).
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2.3. The height process and continuous random trees. Le Gall and Le
Jan [36] have introduced a new way of thinking about CSBPs, which was
further carefully explored by Duquesne and Le Gall in [17]. It is inspired
by the well-known result of Ray and Knight on the local times of Brownian
motion and is related to the construction of the Brownian continuum random
tree of Aldous [1, 2]. Recall that if B is a reflecting Brownian motion, (Lx

t , t≥
0, x ≥ 0) is a jointly continuous version of its local times and (Tr, r ≥ 0) is
the càdlàg inverse of L0

t , then for fixed r > 0, the process (Lx
Tr

, x≥ 0) is a
Feller diffusion started with initial population r. Le Gall and Le Jan have
introduced a process (Ht, t≥ 0) which generalizes the Ray–Knight theorem
to continuous branching process with (sub)critical branching mechanism.

More precisely, consider a Laplace exponent ψ(q) and a ψ-CSBP (Zt, t≥
0). We will assume that ψ is subcritical, that is, a.s. there exists some time
0 < τ <∞ such that Zτ = 0. Grey has shown that this is equivalent to the
condition that the branching mechanism ψ satisfies

∫ ∞

1

dq

ψ(q)
<∞.

In particular, this is the case when ψ(q) = q2/2 or when ψ(q) = qα for
1 < α < 2. Lamperti [35] has shown that there exists a sequence of offspring
distributions µn such that if we consider (Zn

k , k = 1,2, . . .), a discrete Galton–
Watson process with offspring distribution µn and started with n individu-
als, then (n−1Zn

γnt, t≥ 0) converges in the sense of finite-dimensional distri-
butions to (Zt, t≥ 0), where the γn are suitable time-scaling constants. If we
ask for finer limit theorems about the genealogy of (Zt, t≥ 0), then Duquesne
and Le Gall have shown that the discrete height process (Hn

k , k = 0,1, . . .),
where Hn

k is the generation of the kth individual, converges when suitably
normalized to a process (Ht, t ≥ 0) called the height process. One may di-
rectly construct this process (Ht, t ≥ 0) from a Lévy process with Laplace
exponent ψ. Thus, informally, the height process plays the same role as the
depth-first search process on a discrete tree, but in a continuous setting. An
important result of Duquesne and Le Gall [17] is that, even though H is, in
general, neither a semi-martingale nor a Markov process, that is, H admits
a local time process, that is, almost surely, there exists a jointly continuous
process (La

s , s≥ 0, a≥ 0) such that for all t≥ 0,

lim
ε→0

E
[

sup
0≤s≤t

∣∣∣∣
1

ε

∫ s

0
1{a<Hr≤a+ε} dr−La

s

∣∣∣∣

]
= 0.

They were also able to prove that the process H has a continuous modifica-
tion provided the branching mechanism is subcritical.

The importance of the process H stems primarily from the generalized
Ray–Knight theorem, which we now state (see [17, 36]). Let Tr = inf{t >
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0,L0
t > r} be the inverse local time at 0. For all t≥ 0, define

Zt = Lt
Tr

.(6)

Then (Zt, t≥ 0) is a ψ-CSBP started at Z0 = r. If ψ(q) = q2/2, then (Ht, t≥
0) has the law of a reflecting Brownian motion and (Zt, t≥ 0) is the Feller
diffusion, as the classical Ray–Knight theorem states.

3. Main results.

3.1. The Beta-coalescent in the continuous stable random tree. Our first
result is the embedding of a Beta(2−α,α)-coalescent for 1 < α < 2 in the tree
coded by the α-stable height process. Let Z be an α-stable CSBP obtained in
the fashion of Duquesne and Le Gall from the height process (Ht,0≤ t≤ Tr)
associated with ψ(q) = qα for a given 1 < α < 2, that is, Zt = Lt

Tr
. Consider,

for all t, the random level

Rt = α(α− 1)Γ(α)
∫ t

0
Z1−α

s ds(7)

and let R−1(t) = inf{s :Rs > t}. It follows from [14] that R−1(t) <∞ a.s. for
all t and that limt→∞ R−1(t) = ζ , where ζ is the lifetime of the CSBP.

Let (Vi, i = 1,2, . . .) be a sequence of variables in (0, Tr) defined such that
for all i ∈N, Vi is the left endpoint of the ith highest excursion of the height
process H above the level R−1(t). Next, we define a process (Πs,0≤ s≤ t)
which takes its values in the space P of partitions of N as follows:

i
Πs∼ j ⇐⇒

(
inf

r∈[Vi,Vj ]
Hr

)
> R−1(t− s).

That is, i and j are in the same block of Πs if and only if Vi and Vj are in
the same excursion of H above level R−1(t− s).

Theorem 1. The process (Πs,0≤ s≤ t) is a Beta(2− α,α)-coalescent
run for time t.

Another way of looking at this result is to consider the ranked coalescent.
Let (X(s),0≤ s≤ t) be the process with values in S defined by the following
procedure. For each s ≤ t, X(s) has as many nonzero coordinates as there
are excursions of the height process above R−1(t− s) that reach the level
R−1(t). To each such excursion we associate a mass given by the local time
of that excursion at level R−1(t), normalized by ZR−1(t) so that the sum
is equal to 1. Then X(s) is defined as the nonincreasing rearrangement of
these masses.

Corollary 2. (X(s),0≤ s≤ t) has the same distribution as the ranked
Beta(2− α,α)-coalescent run for time t.
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Fig. 1. A Beta-coalescent is obtained by coalescing excursions of (Ht, t ≤ Tr) above
R−1(t− s) that reach R−1(t). Thus each excursion corresponds to a block of the coalescent
and its mass is given by its local time at level R−1(t).

We picture the coalescent as the following process. As s increases from 0
to t, the level R−1(t− s) decreases from R−1(t) to 0. The excursions of H
above level R−1(t− s) coalesce because if s1 < s2, then several excursions
of H above the level R−1(t− s1) could be part of the same excursion of H
above the level R−1(t− s2). This will happen, for example, if the excursion
of H above the level R−1(t− s1) has a local minimum at the level R−1(t−
s2). Then, in the corresponding coalescent process, we observe a merging
of masses at time s2 corresponding to the fraction of local time at R−1(t)
contained by each of those excursions.

Remark 3. Recall the definition of an R-tree associated with a nonneg-
ative function H defined on an interval [0, Tr]. If dH(u, v) = H(u) + H(v)−
2 infu≤t≤v H(t), then dH is a pseudodistance on [0, Tr]. Equipped with dH ,
the quotient of [0, Tr] by the relation dH(u, v) = 0 is an R-tree. For the func-
tion (Hs, s ≤ Tr), this gives a Poissonian collection of scaled stable trees
joined at the root. In this context, the Vi are certain vertices at distance
R−1(t) from the root and the state of the coalescent at time s can be de-
scribed as the partition obtained by declaring i∼ j if and only if their most
recent common ancestor is at distance greater than R−1(t−s) from the root,
that is, if dH(Vi, Vj) < 2(R−1(t)−R−1(t− s)). In other words, if we define

a new distance d(t)
Π on N by

d(t)
Π (i, j) = inf{s :R−1(t)−R−1(t− s) = dH(Vi, Vj)/2},
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then the classes of Πs are the balls of radius s for the metric d(t)
Π .

3.2. Small-time behavior and multifractal spectrum. We now use Theo-
rem 1 to obtain several results about the small-time behavior of the Beta
coalescents.

Let N(t) be the number of blocks at time t of a Beta-coalescent Π(t). Our
first application gives the almost sure limit behavior of N(t) and has already
been shown in [8] using methods based on the analysis of CSBP with stable
branching mechanisms.

Theorem 4.

lim
t→0

t1/(α−1)N(t) = (αΓ(α))1/(α−1) a.s.

For an exchangeable random partition, the number of blocks is related to
the typical block size. For instance, suppose Π is an exchangeable random
partition and that |Π| denotes the number of blocks of Π. Using equation
(2.27) in [46], we see that if X1 is the asymptotic frequency of the block
of Π containing 1, then E(|Π|) = E(X−1

1 ). Hence, here, at least informally,
we see that the frequency of the block which contains 1 at time t must be
of the order of 1/N(t) ∝ t1/(α−1) (this result was proved rigorously in [8]).
Put another way, this says that almost all of the fragments emerge from the
original dust by growing like t1/(α−1). We say that 1/(α − 1) is the typical
speed of emergence.

However, some blocks clearly have a different behavior. Consider, for in-
stance, the largest block and denote by W (t) its frequency at time t. It was
shown in [8], Proposition 1.6, that

(αΓ(α)Γ(2−α))1/αt−1/αW (t)→d X as t ↓ 0,

where X has the Fréchet distribution of index α. Hence, the size of the
largest fragment is of the order of t1/α.

This suggests studying the existence of fragments that emerge with an
atypical rate γ #= 1/(α− 1). To do so, it is convenient to consider a random
metric space (S,d) which completely encodes the coalescent Π (this space
was introduced by Evans [23] in the case of Kingman’s coalescent). The
space (S,d) is the completion of the space (N, d), where d(i, j) is the time
at which the integers i and j coalesce. In particular, completing the space
{1,2, . . .} with respect to this distance in particular adds points that belong
to blocks behaving atypically. In this framework, we are able to associate
with each point x ∈ S and each t > 0 a positive number η(x, t) which is equal
to the frequency of the block at time t corresponding to x. (This is formally
achieved by endowing S with a mass measure η.) In this setting, we can
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reformulate the problem as follows: are there points x∈ S such that the block
Bx(t) that contains x at time t behaves as tγ when t→ 0 or, more formally,
such that η(x, t) 1 tγ? [Here, f(t)1 g(t) means that log f(t)/ log g(t)→ 1.]
Also, how many such points typically exist?

We define, for γ ≤ 1/(α− 1),

S(γ) =
{

x ∈ S : lim inf
t→0

log(η(x, t))

log t
≤ γ

}

and, similarly, when γ > 1/(α− 1),

S(γ) =
{

x ∈ S : lim sup
t→0

log(η(x, t))

log t
≥ γ

}
.

When γ ≤ 1/(α − 1), S(γ) is the set of points which correspond to large
fragments. On the other hand, when γ ≥ 1/(α− 1), S(γ) is the set of points
which correspond to small fragments. In the next result, we answer the
question raised above by computing the Hausdorff dimension (with respect
to the metric of S) of the set S(γ).

Theorem 5.

1. If 1
α ≤ γ < 1

α−1 , then

dimH S(γ) = γα− 1.

If γ < 1/α, then S(γ) = ∅ a.s. but S(1/α) #= ∅ almost surely.
2. If 1

α−1 < γ ≤ α
(α−1)2 , then

dimH S(γ) =
α

γ(α− 1)2
− 1.

If γ > α
(α−1)2 , then S(γ) = ∅ a.s. but S( α

(α−1)2 ) #= ∅ almost surely.

Remark 6. The maximal value of dimH S(γ) is obtained when γ =
1/(α − 1), in which case the dimension of S(γ) is also equal to 1/(α − 1).
This was to be expected since this is the typical exponent for the size of a
block. The value of the dimension then corresponds to the full dimension of
the space S, as was proved in [8], Theorem 1.7.

Remark 7. We recover part of Proposition 1.6 in [8] that the largest
block has size of order t1/α since this is the smallest γ for which S(γ) #= ∅.
It may be a bit more surprising that there is such a thing as a notion of
smallest block, whose size is of order tγ , where γ = α/(α− 1)2.
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Fig. 2. Multifractal spectrum map γ #→ dimH S(γ). The left-derivative at the critical
point is α while the right-derivative is −α.

Remark 8. This is reminiscent of the problem considered in [6], in
which the long-time asymptotic behavior of homogeneous fragmentations
was studied. More precisely, it was shown there that if F (t) is a homoge-
neous fragmentation of the interval (0,1) and Ix(t) denotes the fragment
that contains x at time t, then there is a typical speed of fragmentation v0,
in the sense that if U is uniform on (0,1), then almost surely |IU (t)|∼ e−v0t.
However, for v #= v0 in some range, the random set of exceptional points
S(v) := {x ∈ (0,1) : |Ix(t)|∼ e−vt} is nonempty and has zero Lebesgue mea-
sure. The main result in [6] gives an explicit expression of the multifractal
spectrum map v 2→ dimH(S(v)) where dimH(S) denotes the Hausdorff di-
mension of S. However, we emphasize that in [6], this Hausdorff dimension
is computed with respect to the metric δ induced by the Lebesgue measure
on (0,1). In that case, the fact that the diameter of a block is equal to its
mass plays a significant role. By contrast, here, we compute dimensions with
respect to the metric d, which should rather be understood as a genealogical
distance.

3.3. Frequency spectra for mutation models. We now describe a result
concerning Beta-coalescents which has some applications to a question aris-
ing in population genetics. The question is concerned with the quantification
of polymorphism in a sample of given size taken from a population. Sup-
pose we sample n individuals from a population at a certain time. Due to
mutations, at a given locus, not all individuals in this sample will have the
same allele. Moreover, mutations also affect different sites. We may ask sev-
eral questions. In the sample of size n, how many different alleles should we
observe at a given locus (site)? On how many sites should we expect to see
different alleles? With which frequency should each of the different alleles be
represented? As we will see, the answers to these questions depend heavily
on the nature of the population, particularly on its reproduction mechanism,
in addition to the mutation rate.
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Fig. 3. In the infinite sites model, each mark stands for a mutation that affects a different

locus. In this example, there are four families: {1,4}, {4}, {2,3,5,6} and {2,5,6}. On the
other hand, in the infinite alleles model, the allelic partition Πθ also has four blocks: {1},
{2,5,6}, {3} and {4}.

To make the problem mathematically tractable, we will consider two sim-
plified models. The rate at which mutations occur will always be assumed
to be a positive number θ, constant with time. In the first model, called the
infinite alleles model, introduced by Kimura and Crow [32] in 1964, we study
a given locus in the sample and assume that each mutation has resulted in
a new allele. This means that the descendants of an individual affected by
a mutation all carry the same allele except those later affected by another
mutation. In the second model, called the infinite sites model, introduced by
Kimura [31] in 1969, we look at the number of sites where we expect individ-
uals to show polymorphism. In this model, we assume that each mutation
occurs at a new site. In particular, if an individual is affected by a mutation,
all the descendants of this individual carry this mutation. See Figure 3 for
an illustration of these two models.

In the infinite alleles model, one can define the so-called allelic partition.
That is, one may divide the sample into groups of individuals having the
same allele at the observed locus. For a sample of size n, quantities of interest
include the number of different groups (which we will also refer to as clusters
or also sometimes blocks), N(n), as well as typical sizes of groups: we denote
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by Nk(n) the number of blocks in the allelic partition of size k. In the infinite
sites model, one cannot define a partition of the sample because a given indi-
vidual in the sample may have been affected by several mutations. However,
we can still define M(n) to be the total number of mutations and Mk(n) to be
the number of these mutations affecting exactly k individuals in the sample.
For example, in Figure 3, N(n) = 4, N1(n) = 3,N2(n) = 0,N3(n) = 1, while
M(n) = 4 and M1(n) = M2(n) = M3(n) = M4(n) = 1. The whole sequence
(M1(n), . . . ,Mn(n)) is called the site frequency spectrum and the sequence
(N1(n), . . . ,Nn(n)) is called the allele frequency spectrum.

A fundamental result in this domain is the celebrated Ewens sampling
formula [24]. This result gives an explicit formula for the distribution of
the allelic partition, under some standard assumptions on the reproduction
mechanism of the population. The result is perhaps best explained through
the theory of Kingman’s coalescent. Based on this process, Kingman [33] was
able to find a simpler proof of Ewens’ sampling formula. Assume that the
genealogy of the population may be described by the dynamics of Kingman’s
coalescent, that is, each pair of lineages coalesces at rate 1. Assuming the
rate of mutations is θ/2 along every lineage, the Ewens sampling formula
states that the probability that the allelic partition has ai blocks of size i
for i = 1, . . . , n is

P (N1(n) = a1, . . . ,Nn(n) = an) = p(a1, . . . , an) =
n!

θ(n)

n∏

i=1

θai

iaiai!
,(8)

where θ(n) = θ(θ + 1) · · · (θ + n − 1). This formula has since played an im-
portant role in many different areas of probability theory, sometimes fairly
distant from the original application to population genetics. Among many
others, we refer the reader to [4] and to [28] for different proofs of (8).

Unfortunately, the methods used to prove (8) do not seem to apply to the
more general framework of Λ-coalescents. In fact, there are very few explicit
results studying the structure of a sample of the population in this context.
Let us mention, in particular, the work of Möhle [39], Theorem 3.1, who gets
a recursive formula for the allele frequency spectrum. However, this may be
so intricate that this recursion is difficult to use in practice for moderately
large sample sizes.

We present here an asymptotic formula for the frequency spectrum, both
in the infinite alleles and the infinite sites models, as the sample size n→∞.
We work under the convention that the genealogy of the population can be
described by a Λ-coalescent (Πt, t ≥ 0). We focus on the case where the
measure Λ is the Beta(2−α,α) distribution and 1 < α < 2. We assume that
mutations occur at constant rate θ > 0.
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Theorem 9. Assume that Λ has the Beta(2−α,α) distribution with 1 <
α < 2. Fix a positive integer k. Then

nα−2Mk(n)→p θα(α− 1)2
Γ(k + α− 2)

k!

and

nα−2Nk(n)→p θα(α− 1)2
Γ(k + α− 2)

k!
,

where →p denotes convergence in probability as n→∞.

Remark 10. To understand where these results come from, recall that
in Theorem 1.9 of [8], we showed that

nα−2M(n)→p θ
α(α− 1)Γ(α)

2−α
.(9)

In Section 5, we will show that for small times, the Beta(2−α,α)-coalescent
can be approximately described by the genealogy of a continuous-time branch-
ing process in which individuals live for an exponential amount of time with
mean 1 and then have a number of offspring distributed according to χ,
where P (χ = 0) = P (χ = 1) = 0 and where, for k ≥ 2, we have

P (χ = k) =
α(2−α)(3− α) · · · (k− 1−α)

k!
=

αΓ(k−α)

k!Γ(2− α)
.(10)

This offspring distribution is supercritical with mean 1 + 1/(α− 1). We will
show that if τ is an independent exponential random variable with mean
1/c, where c = (2−α)/(α− 1) > 0, and k is a positive integer, then

Mk(n)∼M(n)P (ξτ = k),(11)

where

P (ξτ = k) =
(2− α)Γ(k + α− 2)

Γ(α− 1)k!
.

This result, and the analogous result for Nk(n), will imply Theorem 9.

Remark 11. One can only observe Mk(n) from biological data if the an-
cestral type is known. Otherwise, it is necessary to work with the “wrapped
frequency spectrum” M̂k(n) = Mk(n) + Mn−k(n). For fixed k ≥ 1, one can
see from (11) that as n→∞, these two quantities have the same asymp-
totics because the limiting values of Mk(n)/M(n) sum to one and therefore
Mn−k(n)/M(n) goes to zero in probability as n→∞.
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Remark 12. It is natural that the distribution (10) arises in this context
because when the Beta(2 − α,α)-coalescent has b blocks, the probability
that its next merger involves k blocks converges to P (χ = k) as b→∞ (see
[8, 13]). Of course, an individual having k offspring in the Galton–Watson
process corresponds to a merger of k blocks in the corresponding coalescent
process going backward in time.

Remark 13. The limiting behavior described in Theorem 9 also arises
in the theory of exchangeable partitions. Following Lemma 3.11 in Pitman
[46], let Π be an exchangeable random partition whose ranked asymptotic
frequencies Pi satisfy

Pi ∼Zi−1/(2−α)(12)

almost surely for some random variable Z such that 0 < Z <∞. Then if
|Πn| (resp., |Πn,j|) is the number of blocks (resp., number of blocks of size
j) of Π restricted to {1, . . . , n}, we have

|Πn|∼ Sαn2−α(13)

almost surely for a random variable Sα determined explicitly from Z. More-
over,

|Πn,j|

|Πn|
∼

(2− α)Γ(k + α− 2)

Γ(α− 1)k!
.(14)

In fact, it follows from an unpublished work of Hansen and Pitman [26] that
(13) implies (12), which, in turn, using Lemma 3.11 of [46], implies (14). Note
that the distribution on the right-hand side of (14) previously appeared in
the context of urn schemes in the work of Karlin [30]. See also [48], and see
[43, 44], where this distribution occurs in the context of Brownian motion
and related processes.

To connect these results to Theorem 9, let Π be the allelic partition ob-
tained by superimposing mutation marks at rate θ on the tree associated
with a Beta-coalescent, started at time 0 with infinitely many individuals.
Then Π is an exchangeable partition and the restriction Πn of Π to {1, . . . , n}
has the same distribution as the partition described in Section 3.3. From this
and (9), one can show (see, e.g., Lemma 34) that nα−2|Πn|→p sα, where sα

is the constant on the right-hand side of (9). If one could show that this con-
vergence holds almost surely, then this would supply an alternative proof of
Theorem 9. Also, this would presumably work for coalescent processes sat-
isfying the condition of Theorem 1.9 in [8]. However, we note that proving
almost sure convergence is difficult due to the randomness of the asymptotic
frequencies Pi.
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4. The lookdown process in a continuous random tree.

4.1. Branching processes obtained from superprocesses. The lookdown
process is a powerful tool introduced (and subsequently modified) by Don-
nelly and Kurtz [16] to encode the genealogy of a superprocess by a countable
system of particles. We will describe it in a more general context than the
one strictly needed for the applications we have in mind in this paper be-
cause we believe that this construction is of independent interest. However,
the lookdown process can be defined even more generally than how we will
do here (e.g., we will not treat the case where the particles are allowed to
have some spatial motion and interact). The setting for this part is the fol-
lowing. We let ψ be a branching mechanism with no Brownian component
and no drift term, that is, there exists a ∈R and a Lévy measure ν such
that

ψ(q) = aq +
∫ ∞

0
(e−qx − 1 + qx1{x≤1})ν(dx).(15)

Rather than associating with ψ a CSBP with this branching mechanism,
we first construct a superprocess Mt taking its values in the space of finite
measures on (0,1), which is defined through its generator L: for a function
F acting on measures µ on (0,1),

LF (µ) = a
∫ 1

0
µ(dx)F ′(µ,x)

(16)

+
∫ 1

0
µ(dx)

∫ ∞

0
ν(dh)(F (µ + hδx)−F (µ)− 1{h≤1}hF ′(µ,x)).

The notation F ′(µ,x) stands for limε→0 ε−1(F (µ+εδx)−F (µ)) and accounts
for an infinitesimal modification of F in the direction δx. If ψ had a quadratic
term, then there would be an extra term in the generator; see equation (1.15)
in [14]. Note that for every 0 < r < 1,

Zt = Mt([0, r])

defines a ψ-CSBP started at M0([0, r]). Indeed, applying the generator to a
function F (µ) = ϕ(z), where z = µ([0, r]), directly yields that the generator
L1 of the process Zt is

L1ϕ(z) = a
∫ r

0
µ(dx)ϕ′(x)

+
∫ r

0
µ(dx)

∫ ∞

0
ν(dh)(ϕ(z + h)−ϕ(z)− h1{h≤1}ϕ

′(z))

= zL2ϕ(z)

since the second integral does not depend on x and is equal to L2ϕ(z),
where L2 is the generator of a Lévy process with Lévy exponent ψ(q). By
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Lamperti’s result relating a CSBP to a time-change of a Lévy process [35],
we conclude that Zt is a ψ-CSBP. The interpretation of Mt is as follows.
If we imagine the population represented by Zt as a continuous population
where each individual is endowed with an originally distinct label between
0 and 1 (and where individuals and their descendants have the same label),
then Mt([0, a]) is the total number of individuals at time t descending from
some individual with a label between 0 and a. Another process of interest in
this setting is the so-called ratio process Rt = Mt/Zt, where Zt = Mt([0,1]).
Thus, for every t, Rt is a probability distribution on (0,1) which describes
the composition of the population at a given time: the typical state at time
t > 0 for Rt (at least in the subcritical case, see below) is a linear combination
of Dirac masses

∑
i ρiδxi , subject to

∑
i ρi = 1, where each atom corresponds

to groups of individuals in the population at time t descending from the
same individual at time 0 (whose label was xi) in proportion ρi.

4.2. The lookdown process associated with a CSBP. The purpose of the
Donnelly–Kurtz construction is to give a representation of the ratio pro-
cess Rt as the limit of empirical distributions associated with a countable
system of particles. A major consequence of this construction is a transpar-
ent notion of genealogy for Zt, which is otherwise difficult to grasp in the
context of a continuous population. What follows is largely inspired by [14]
and [22], Chapter 5. To define the (modified) lookdown process, we have a
countable number of individuals who will be identified with their type. Ini-
tially, individual i has type ξi(0). The types ξi(0) for i = 1,2, . . . are given by
uniform i.i.d. random variables on (0,1). At any given time t, ξi(t) will be
the type of the individual occupying level i. The variables ξi(t) may change
due to events called birth events. Suppose we have a countable configuration
of space-time points,

n =
∑

i

δ(ti,yi),

where ti ≥ 0 and 0 ≤ yi ≤ 1, and assume that
∑

ti≤t y
2
i <∞ for all t ≥ 0.

[Later, we will specify a point configuration (ti, yi) associated with a CSBP.]
Each atom (ti, yi) corresponds to a birth event. At such a time, a proportion
yi of levels is said to participate in the birth event: each level flips a coin
with probability of heads yi. Those which come up heads participate in
the birth event. We describe the modification in the levels on the first n
levels. Suppose the levels participating are 1≤ i1 < i2 < · · · < ik ≤ n. Then
at time t = ti, their type is modified by the following rule: for all 1≤ j ≤ k,
ξij (t) = ξi1(t

−). In other words, participating levels take the type of the
smallest level participating. We do not destroy the individuals previously
occupying levels i2, . . . , ik, but, instead, we move ξi2(t

−) to the first level
not participating in a birth event and keep shifting individuals upward, with
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Fig. 4. Representation of the lookdown process. Levels 2, 4 and 5 participate in a birth

event. Other types get shifted upward. The numbers on the left and on the right indicate
the types before and after the birth event, respectively.

each individual taking the first available spot. This is illustrated in Figure
4.

One way to make this construction rigorous is to observe that due to our
assumption

∑
ti≤t y

2
i <∞, only finitely many birth events affect the first n

levels in any compact time-interval. The processes defined by this procedure
are consistent by restriction as n increases, so there is a well-defined process
(ξi(t), t≥ 0, i = 1,2, . . .) by Kolmogorov’s extension theorem.

Having described the construction for a general configuration of space-
time points (ti, yi), we now restrict to the case where (ti, yi) is given by
the following construction. Let Zt(r) be a ψ-CSBP, where ψ has the form
(15) and where we have written the starting point r > 0 as an argument
of Zt. Let τ be the extinction time (which may not be finite a.s., but will
be in the subcritical case in which we are interested). We only define the
lookdown process until time τ−. With each time ti such that ∆Zti > 0,
associate yi = ∆Zti/Zti (observe that 0 ≤ yi ≤ 1). It is then standard to
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check that if t < τ , then
∑

ti≤t

y2
i <∞.

Indeed, one can bound Zti from below by It = inf0≤s≤t Zs > 0 so that this
sum is smaller than

(It)
−2

∑

ti≤t

(∆Zti)
2 <∞

because Z is obtained as a time-change of a Lévy process whose jumps are
square-summable due to the fact that

∫ ∞
0 (1∧x2)ν(dx) <∞ and when t < τ ,

the jumps of Z are the jumps of the Lévy process in some random, but finite,
time-interval.

Thus, there is a well-defined lookdown process (ξi(t), t ≥ 0, i = 1,2, . . .)
associated with this sequence (ti, yi). Observe that for all t ≥ 0, (ξi(t), i =
1,2, . . .) is an exchangeable sequence so that the limit

ρt = lim
n→∞

1

n

∞∑

i=1

δξi(t)

is well defined by De Finetti’s theorem. Then (ρt, t≥ 0) has the same dis-
tribution as the process (Rt, t≥ 0) obtained in the previous section from a
superprocess Mt started from M0 = r1{0≤x≤1} dx (see, e.g., the argument
starting from (2.15) in [14]). To understand heuristically why this is true,
note that when there is a jump in the CSBP, so ∆Zt = x > 0, some individ-
ual in the population has a large number of offspring, causing the proportion
of individuals with the same type as this individual to have a jump of size
x/(Zt− + x) =∆Zt/Zt. This is precisely what happens in the lookdown pro-
cess.

We now specialize to the subcritical case. That is, we assume that ψ is a
branching mechanism as in (15) and that

∫ ∞

1

dq

ψ(q)
<∞.

By a well-known criterion of Grey [27], this ensures that τ <∞ a.s., that
is, the population becomes extinct in finite time. Observe that one of the
nontrivial features of the lookdown process is that since Zt becomes extinct
in finite time, almost surely only finitely many individuals have descendants
alive at time t > 0, which means that the composition of the population is
made of finitely many different types of individuals and that, ultimately,
only one type remains in the population. Note that this can happen in the
lookdown process even though we never kill labels because some labels get
pushed off to infinity due to the successive birth events, thus disappearing
from the visible population. This feature will become apparent from our
construction of the lookdown process in terms of the continuous random
tree.
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4.3. Constructing the lookdown process from a continuous tree. In this
section, we will provide a construction of the lookdown process from a contin-
uous random tree. Once again, we emphasize that the branching mechanism
need not be stable. However, we will always assume subcriticality, that is,

∫ ∞

1

dq

ψ(q)
<∞,

so that there is a continuous version of the height process and its local times
are well defined (see [17]).

Before we start, we need to recall some facts about the height process.
Associated with the process H is an infinite measure N which plays a role
analogous to Itô’s excursion measure for Brownian motion (see [47]). The
excursion property for (Ht, t≤ Tr) will be used on several occasions. It can
be phrased as follows. Let (gi, di), i ∈ I be the excursion intervals of H above
zero, so

⋃

i∈I

(gi, di) = {s≥ 0 :Hs > 0}.

For each i ∈ I , define the function ei by ei(s) = Hgi+s for 0≤ s≤ di− gi and
ei(s) = 0 otherwise. Let C+([0,∞)) be the set of nonnegative real-valued
functions defined on [0,∞). Recall that (La

s , s ≥ 0, a ≥ 0) is the local time
process for H . Then the random measure

∑

i∈I

δ(L0
gi

,ei)(17)

is a Poisson point process on [0,∞) × C+([0,∞)) with intensity measure
dl ×N(dω), where dl denotes Lebesgue measure and N(dω) is the excur-
sion measure, which is a σ-finite measure on C+([0,∞)). More generally, H
(although not a Markov process in general) enjoys a similar excursion prop-
erty above any given level a > 0. For each a > 0, let (ga

i , da
i ), i ∈ Ia, be the

connected components of the open set {s :Hs > a}. For each i ∈ Ia, define

the excursion e(a)
i by e(a)

i (s) = Hga
i +s − a for 0≤ s≤ da

i − ga
i and e(a)

i (s) = 0
otherwise. For each s≥ 0, define

τ̃a
s = inf

{
t :

∫ t

0
1{Hr≤a} dr > s

}
, τa

s = inf
{

t :
∫ t

0
1{Hr>a} dr > s

}
.

Define the processes (H̃a
s , s ≥ 0) and (H

a
s , s ≥ 0) such that H̃a

s = Hτ̃a
s

and

H
a
s = Hτa

s
− a. By Proposition 3.1 of [18], the random measure

∑

i∈Ia

δ
(La

ga
i

,e(a)
i )

(18)

is a Poisson point process on [0,∞) × C+([0,∞)) with intensity measure
dl×N(dω) and is independent of (H̃a

s , s≥ 0). Since H
a

can be recovered from
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the random measure (18), a consequence of this result is that (H
a
s , s ≥ 0)

has the same law as (Hs, s≥ 0) and is independent of (H̃a
s , s≥ 0).

Having recalled this property, we now describe our construction of the
lookdown process in a continuous random tree. Let (Zt, t≥ 0) be a ψ-CSBP
started from Z0 = r > 0 (ψ is assumed to be subcritical) and assume that
Zt is obtained as the local times of the height process (Ht, t ≤ Tr), as in
(6). Let ξ̃ := ((ξ̃j(t)), t ≥ 0, j = 1,2, . . .) be a lookdown process obtained
from (Zt, t≥ 0), as in the previous section. That is, it is obtained from the
configuration of space-time points (ti,∆Zti/Zti). The process ξ̃ will serve
as a reference lookdown process to which we will compare the one we will
construct below.

We will now construct a version ξ of the process ξ̃ that will be entirely
defined in terms of the height process H. We start by introducing some
notation. Consider the height process (Ht, t ≤ Tr). The key point of this
construction is that we choose a specific labeling for the excursions; namely,

we rank the excursions according to their supremum. We denote by e(t)
j the

jth highest excursion above the level t (when t = 0, we sometimes simply

write ej instead of e(0)
j ). We draw a sequence of i.i.d. random variables

(Ui)i∈N with the uniform distribution on (0,1). They will serve as the initial
types in the lookdown construction, so that at any time, ξj(t) is equal to
one of the Ui’s. Thus, let ξj(0) = Uj for all j ≥ 1. Then for each t > 0,

for each j ≥ 1, we let k(j, t) be the unique integer such that e(t)
j , the jth

highest excursion above t, is part of the excursion e(0)
k(j,t), the k(j, t)th highest

excursion above 0, and we let

ξj(t) = Uk(j,t).

We say that the excursion e(t)
j has type Uk(j,t).

Theorem 14. The processes ξ and ξ̃ have the same distribution. That
is, ((ξj(t)), t ≥ 0, j = 1,2, . . .) has the distribution of the modified lookdown
construction associated with the CSBP (Zt, t≥ 0).

Before we start proving this result, here is a description of the dynamics of
the process (ξj(t), t≥ 0). As t increases, the relative ranking of the excursions
above t evolves. If ∆Zt > 0, then this means that with probability one,
H has (infinitely many) local minima at t, resulting in (infinitely many)
additional excursions above t. Indeed, note that by Theorem 4.7 in [18], this
corresponds to a unique excursion above t− splitting into infinitely many
excursions. Moreover, all local minima of (Ht, t≥ 0) are in fact associated
with jumps of Zt (this would not be true if ψ had a quadratic term; see
Theorem 4.7 of [18]). We then say that some birth event happens. We rerank
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all excursions according to their new order (again, given by the rank of their
supremum). Old excursions keep their old type (but might change their level)
and the newly added excursions take the type from their father. If excursion

e(t)
j splits, then this means that many levels k with k ≥ j take the type ξj(t).

Those who do not take this type get shifted upward accordingly. To use the
Donnelly–Kurtz terminology, we say that the levels k ≥ j adopting the type
ξj(t) take part in the birth event.

Let F = (Fa, a ≥ 0) be the filtration such that Fa = σ(H̃b, b ≤ a). The
key observation for the proof of Theorem 14 is summarized by the following
lemma.

Lemma 15. Let a > 0 be a stopping time of the filtration F such that
∆Za > 0 a.s. Define a sequence (εi)i∈N by εi = 1 if the level i takes part in
the birth event at time a for the process ξ (i.e., the ith highest excursion
above a is a newly created excursion) and 0 otherwise. Then the distribution
of the sequence (εi)i∈N is that of a sequence of i.i.d. Bernoulli variables with
parameter ∆Za/Za.

Proof. We know (see Theorem 4.7 in [18]) that if ∆Za > 0, then a
is necessarily a level where exactly one excursion is splitting into infinitely
many smaller ones (i.e., a is a level where H reaches a multiple infimum and
for b < a, all those infima are reached within the same excursion above b).
In other words, if a is a jump time of Z, there is a unique interval (s, t) such
that La−

t = La−
s and La

t −La
s =∆Za. Let us denote x = La

s and y = La
t .

For i ≥ 1, define h(a)
i := max e(a)

i to be the height of the ith highest ex-

cursion above level a and let t(a)
i denote the local time accumulated at level

a when the excursion e(a)
i starts. By applying the strong Markov property

which will be proved at the very end of this section, in Lemma 17 we see
that conditionally on Za, the process H

a
t has the same distribution as H

run until TZa . Hence, the atoms (t(a)
i , h(a)

i ) form a Poisson point process on
[0,Za]×R+ with intensity measure dt×n(dh), where n is absolutely contin-
uous with respect to the Lebesgue measure, n(0,∞) =∞ and n(h,∞) <∞
for h > 0. The measure n is the “law” of the heights of excursions under the
measure N .

Observe that the levels that take part in the birth event are exactly the

levels k which correspond to the rank of a newly created excursion e(a)
k ,

that is, the excursion such that t(a)
k ∈ (x, y), where (x, y) is the new interval

of local time. The statement then amounts to the well-known fact about
Poisson point processes that the tj (observe that tj is the time of the jth
record of the Poisson point process) are i.i.d. uniformly distributed random
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variables over (0,Za) and are independent of the sequence of records h(a)
j .

As the events {tj ∈ (x, y)} and {εj = 1} coincide, the conclusion follows. !

Now, fix ε > 0. Let a1 be the first time t such that ∆Zt/Zt > ε. Observe
that almost surely a1 > 0 and that a1 is a stopping time for F . We may
thus define, inductively, a1 < a2 < . . . , the set of stopping times such that
∆Zt/Zt > ε and for each i≥ 1, ai is a stopping time of F . For i≥ 1, a multiple
infimum is reached at level ai, which corresponds to a single excursion that
splits into an infinite number of descendants at this precise level. Define a

process (ξ(ε)
j (t), t≥ 0, j = 1,2, . . .) as follows:

• if t is not a jump time for Z, then nothing happens for ξ(ε), that is, we
have ξ(ε)(t−) = ξ(ε)(t);

• if t is a jump time for Z, but ∆Zt/Zt < ε, we use an independent coin
flipping with probability of heads y =∆Zt/Zt, and the standard Donnelly–
Kurtz procedure, to obtain ξ(ε)(t) from ξ(ε)(t−);

• if t is a jump time for Z and ∆Zt/Zt ≥ ε (i.e., t = ai for some i), we say
that the levels which take part in the birth event are exactly the relative
ranks of the newly created excursions at level t.

Lemma 16. For each fixed ε > 0, the processes ξ(ε) and ξ̃ have the same
distribution.

Proof. We only need to show that our new rule for the times ai does
not differ from the usual construction. As the ai’s are a sequence of stopping
times, we can apply Lemma 15 to see that we are again deciding who takes
part in the birth event according to a sequence of i.i.d. Bernoulli variables
with parameters ∆Zai/Zai . The strong Markov property also implies that
the sequences used at the successive times ai are independent. Hence, ξ(ε)

has the same distribution as ξ̃. !

Proof of Theorem 14. Let b1, . . . , bm be the times at which there
is a change in the first n levels for the process ξ (the number m of such
times is necessarily at most n − 1 since at each of the bi, the diversity of
types among the first n levels must be reduced at least by 1). Let F be
a bounded functional on the Skorokhod space D(R∞

+ ,R) endowed with the
product topology inherited from D(R+,R) and assume that F only depends
on the first n coordinates (levels) for some arbitrarily fixed number n≥ 1.
Then

|E(F (ξ))−E(F (ξ(ε)))|≤ ‖F‖∞P ({b1, . . . , bm} #⊂ {a1, a2, . . .})(19)

because when {b1, . . . , bm}⊂ {a1, a2, . . .}, the first n coordinates of ξ(ε) and
ξ coincide exactly. Since ξ(ε) and ξ̃ have the same distribution, by Lemma
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16, we deduce that

|E(F (ξ))−E(F (ξ̃))|≤ ‖F‖∞P ({b1, . . . , bm} #⊂ {a1, a2, . . .}).(20)

Note that

lim
ε→0

P ({b1, . . . , bm} #⊂ {a1, a2, . . .}) = 0.

Indeed, there are only finitely many jumps affecting the first n levels, so

η := inf
t∈{b1,...,bm}

∆Zt

Zt
> 0 a.s.

Since {b1, . . . , bm} #⊂ {a1, a2, . . .} is equivalent to η < ε, we see that

P ({b1, . . . , bm} #⊂ {a1, a2, . . .}) = P (η < ε)→ 0

as ε→ 0 because η > 0 a.s. It follows by letting ε→ 0 in (20) that the
restrictions of ξ and ξ̃ to the first n coordinates are identical in distribution.
By the uniqueness in Kolmogorov’s extension theorem, the processes ξ and
ξ̃ are thus identical in distribution. !

It now remains to establish the strong Markov property, which we used
on several occasions. Note that this lemma holds even at stopping times T
such that ∆ZT > 0.

Lemma 17. Let T be a stopping time of F . Conditionally on ZT = z,

the processes H
T
t and H̃T

t are independent. Moreover, H
T
t is distributed as

(Ht, t≤ Tz).

Proof. When T = s is a deterministic stopping time, then this is the
content of Corollary 3.2 in [18]. Suppose we now try to verify the claim when
T is a stopping time of Z which can only take a countable number of values
{tk}, say. Let F , G be two nonnegative functions defined on C([0,∞]) and
assume that they are continuous for the topology of uniform convergence on
compact sets. Since {T = tk} is Ftk -measurable we then have

E[F (H̃T
t , t≥ 0)G(H

T
t , t≥ 0)|ZT = z]

=
∑

k≥0

E[F (H̃tk
t , t≥ 0)G(H

tk
t , t≥ 0)1{T=tk}|Ztk = z]

=
∑

k≥0

E[G(Ht∧Tz , t≥ 0)]E[F (H̃T
t , t≥ 0)1{T=tk}|ZT = z]

= E[G(Ht∧Tz , t≥ 0)]E[F (H̃T
t , t≥ 0)|ZT = z].
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To extend this to stopping times taking a continuous set of values, we use
standard approximations of the stopping time T by

Tn =
∑

k≥0

k + 1

2n
1{k/2n≤T<(k+1)/2n}.

Note that Tn approaches T from above within 2−n. To begin observe that
∫ Tr

0
1{T≤Hu≤Tn} du =

∫ Tn

T
Za da,

which, by (right) continuity of Z at T , is smaller than C2−n for n suffi-

ciently large a.s. To see that H
Tn
s approaches uniformly H

T
s , we think of the

following picture. There are two sources of difference between H
Tn

s and H
T
s .

One is a shift downward for the excursions above 0 because the parts of an

excursion between T and Tn are erased in H
Tn
t . This shift is at most 2−n.

The other source is that there may be some excursions above T that are not
counted as excursions above Tn, or an excursion above T could be split into
two or more excursions above Tn because of a local minimum between T and
Tn. This results in a horizontal shift. The total duration of this horizontal
shift may never exceed the total time spent by H in the strip [T,Tn], which
is not more than C2−n, by the above remark. Hence, by uniform continuity

of H , H
Tn

s approaches uniformly H
T
s . A moment’s thought shows that the

same reasoning applies to H̃Tn
s (and this does not require left continuity of

Z at T ).
Therefore, if F,G are, as above, two bounded, nonnegative and continuous

functions on C([0,∞]) and if ϕ is also a bounded, continuous, nonnegative
function on R, since Tn is a stopping time that takes only countably many
values, we have

E[F (H̃Tn
t , t≥ 0)G(H

Tn
t , t≥ 0)ϕ(ZTn )]

=
∫ ∞

0
P (ZTn ∈ dz)ϕ(z)E[G(Ht∧Tz , t≥ 0)]E[F (H̃Tn

t , t≥ 0)|ZTn = z].

If H ′ is another height process, independent of everything else, and if Ln =
inf{t > 0,L0

t (H
′) > ZTn}, this can be rewritten as

E[F (H̃Tn
t , t≥ 0)G(H

Tn

t , t≥ 0)ϕ(ZTn)]

= E[F (H̃Tn
t , t≥ 0)G(H ′

t∧Ln
, t≥ 0)ϕ(ZTn)].

Note that if L = inf{t > 0,L0
t (H

′) > ZT }, then (H ′
t∧Ln

, t≥ 0)→ (H ′
t∧L, t≥ 0)

uniformly almost surely. Indeed, because ZT is independent of H ′, it suffices
to show, by Fubini’s theorem, that for a given z, (H ′

t∧T ′
z±ε

, t≥ 0) converges

uniformly almost surely as ε→ 0 to (H ′
t∧T ′

z ,t≥0), where T ′
·

is the inverse
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local time at 0 of H ′. To see this, dropping the prime from the notation,
first note that T· is continuous at z almost surely because it is a subordi-
nator and, as such, does not have fixed discontinuities. Moreover, note that
supTz≤s≤Tz+ε

Hs, say, is the supremum of the heights of the excursions be-
tween Tz and Tz+ε. By the excursion theory for H , this can be written as
Sε = supti≤ε h(ei), where (ti, h(ei)) is the Poisson point process of the heights
of the excursions on an interval of duration ε. For any δ > 0, excursions of
height greater than δ have finite measure under N and therefore Sε ≤ δ for
sufficiently small ε. It follows that Sε→ 0 as ε→ 0 almost surely or, in other
words,

‖Ht∧Tz+ε −Ht∧Tz‖∞→ 0

almost surely. Therefore, (Ht∧Tz±ε , t≥ 0) converges uniformly to (Ht∧Tz , t≥
0) a.s.

Since, on the other hand, H̃Tn
t converges uniformly to H̃T

t a.s., and since,

similarly, H
Tn converges a.s. uniformly to H

T
in the left-hand side, we con-

clude, by Lebesgue’s dominated convergence theorem, that

E[F (H̃T
t , t≥ 0)G(H

T
t , t≥ 0)ϕ(ZT )]

= E[F (H̃T
t , t≥ 0)G(H ′

t∧T ′
ZT

, t≥ 0)ϕ(ZT )].

From this, we immediately deduce, by conditioning on ZT = z, the desired
identity,

E[F (H̃T
t , t≥ 0)G(H

T
t , t≥ 0)|ZT = z]

= E[G(Ht∧Tz , t≥ 0)]E[F (H̃T
t , t≥ 0)|ZT = z]. !

4.4. Proofs of Theorem 1 and Corollary 2.

Proof of Theorem 1. By Theorem 2.1 in [14], the time-changed ge-
nealogy of ZR−1(t), as defined from the lookdown process, is a Beta(2−α,α)-
coalescent. It then suffices to show that the notion of genealogy as we have
defined it from the height process coincides with the notion of genealogy for
the lookdown process constructed on the CRT.

There is a natural notion of genealogy associated with the lookdown con-
struction. Namely, for any pair i, j ≥ 1 and any times 0 ≤ t ≤ T , we can
decide if the levels i and j at time T descend from the same level at time
t (more precisely, we can track their labels by going backward from time T
to time t to see if they come from the same label).

When the lookdown construction is obtained (as explained above) from
the process H , this means that levels i and j at time T have the same
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ancestor at time t if and only if the ith and jth highest excursions above T
are descendants of the same excursion above t.

Recall that (Vi, i = 1,2, . . .) is a sequence of variables in [0, Tr] where each
Vi is the left endpoint of the ith highest excursion above R−1(t). It is clear

that if two excursions e(R−1(t))
i and e(R−1(t))

j above R−1(t) descend from
the same excursion above s, then Vi and Vj are straddled by this excursion
above s or, in other words, that minr∈(Vi,Vj) H(r) > s. Hence, we see that the
partition-valued process (Π(s),0≤ s≤ t) such that i and j are in the same
block of Π(s) if and only if minr∈(Vi,Vj) H(r) > R−1(t − s), is exactly the
process of the ancestral partition of the lookdown process ξ between times
R−1(t) and R−1(t− s). By applying Theorem 2.1 in [14], this entails that
when H is the height process associated with the α-stable branching mech-
anism, Π is a Beta(2−α,α)-coalescent—this was the content of Theorem 1.
!

Proof of Corollary 2. Again, observe that the genealogy as defined
from the lookdown process coincides with the following definition: i and
j are in the same block of Πs if the ith and the jth highest excursions
above level R−1(t) are subexcursions of a single excursion above R−1(t−
s). Let Ns be the number of excursions between R−1(t − s) and R−1(t)
and, conditionally on Ns = k, number these excursions in random order
e1, . . . , ek, and let $1, $2, . . . , $k be their respective local times at R−1(t). We
want to show that the asymptotic frequency of the block corresponding to
an excursion is proportional to $. However, reasoning as in Lemma 15, we
see that, conditionally on Ns = k and conditionally on $1, $2, . . . , $k, each
level i in the lookdown process at time R−1(t) falls in excursion i with a
probability that is equal to $i/ZR−1(t). It follows immediately from the law
of large numbers that the asymptotic frequency of the block associated with
ei is $i/ZR−1(t). In other words, the sequence of ranked frequencies of the
ancestral partition defined by the lookdown process is almost surely equal
to the process (X(s),0≤ s≤ t). Corollary 2 immediately follows. !

5. Small-time behavior and multifractal spectrum. In this section, we
use Theorem 1 to prove Theorems 4 and 5. We start by introducing our
main tool, reduced trees.

5.1. Reduced trees as Galton–Watson processes. The key ingredient for
the theorems in this section is the reduced tree associated with a height
process H . For a fixed level a, the reduced tree at level a is a tree such that the
number of branches of the tree at height 0≤ t≤ 1 is the number of excursions
of H above level at that reach level a, with the natural genealogical structure
defined by saying that v is an ancestor of w if the excursion associated with
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w is contained in v. We will deduce from results of Duquesne and Le Gall [17]
that when H is the height process associated with the α-stable branching
mechanism, this tree is a Galton–Watson tree whose reproduction law can
be described explicitly.

When the Beta-coalescent is constructed from the continuous random
tree, the number of blocks N(s) at time s corresponds to the number of
excursions above level s′ that reach level R−1(t), for some s′ and t. We can
deduce the limiting behavior of N(s) when s→ 0 from the limiting behavior
of the reduced tree as s′→R−1(t). However, because the reduced tree is a
Galton–Watson tree, its limiting behavior is described by the Kesten–Stigum
theorem, as stated in (22) below, and this leads to a proof of Theorem 4.
Likewise, Theorem 5 is established by relating the multifractal spectrum
of Beta-coalescents to the multifractal spectrum for Galton–Watson trees
and then applying recent results of Mörters and Shieh [41] on the branching
measure of Galton–Watson trees. An important step in the proof of these
theorems is showing that events concerning the reduced tree at a fixed level
can be carried over to the reduced tree at the random level R−1(t).

We now introduce more carefully the concept of reduced trees. We start
with some notation. If u > 0, let N(u) denote the excursion measure of the
height process, conditioned to hit level u,

N(u)(·) = N
(
·
∣∣∣ sup

s≥0
Hs > u

)
,

which is well defined since N(sups≥0 Hs > u) <∞ for all u > 0. Let (Hs, s≤
ζ) be a realization of N(u) and consider the process (θu(t),0≤ t≤ u) defined
by θu(t) = #exct,u, the number of excursions above level t reaching u of H .
Simple arguments show that almost surely for all t < u, we have θu(t) <∞.

Definition 18. The reduced tree Tu at level u associated with (Hs, s≤
ζ) is the tree encoded by the process (θu(tu),0≤ t≤ 1). In other words, each
branch at level 0≤ t≤ 1 is associated with a unique excursion above level
tu reaching u.

In the context of quadratic branching where the height process is reflecting
Brownian motion, this is a variant of a process already considered by Neveu
and Pitman [42]. We should emphasize that, by a slight abuse of notation
we will sometimes use the notation Tu even when the underlying process
(Hs, s≤ ζ) is not a realization of N(u), but, rather the height process con-
sidered until time Tr, where it has accumulated local time r at zero. In this
case, Tu is, in fact, a forest consisting of a Poisson number of independent
realizations of the tree of Definition 18. The following fact will be a crucial
tool for much of our analysis. It states that up to a deterministic exponential
time-change, the tree Tu is a continuous-time supercritical Galton–Watson
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(discrete) tree. We recall that here the branching mechanism is assumed to
be stable.

Proposition 19. For fixed u > 0, the process (θu(u(1 − e−t)),0 ≤ t <
∞) is a continuous-time Galton–Watson process where individuals reproduce
at rate 1 with a number of offspring χ satisfying

E(rχ) =
(1− r)α − 1 + αr

α− 1
.(21)

More explicitly,

P (χ = k) =
α(2− α)(3− α) · · · (k− 1− α)

k!
, k ≥ 2,

and P (χ = k) = 0 for k ∈ {0,1}.

Proof. We show how this result follows from a result in Duquesne and
Le Gall [17]. To simplify, we will assume that u = 1. By the remark following
Theorem 2.7.1 of [17], the time of the first split γ in θ1(t) is a uniform random
variable on (0,1). Then, conditionally on γ = t and θ1(γ) = k, the process
Zγ+s is distributed as the sum of k independent copies of (θ1−t(s),0≤ s≤
1− t). In particular, if we follow a branch in the tree from level 0 to level
1, we see that the times at which the corresponding individual reproduces
are distributed according to the standard “stick-breaking” construction of
a Poisson–Dirichlet random variable, described as follows. A first cut point
is selected uniformly at random in (0,1) and the left piece is discarded.
Another point is selected uniformly in the right piece. Discarding the left
piece, we proceed further by selecting a point uniformly in the piece left
after the second cut, and so on. It is well known and easy to see that the
image of these points by the map t 2→ − ln(1 − t) is a standard Poisson
process. The distribution of the number of offspring at each branch point is
naturally given by the law of the random variable θ1(γ), whose distribution
is identified in the remark following Theorem 2.7.1 of [17]. This implies the
proposition. !

Remark 20. We also present an intuitive, but less precise, argument for
why (θ1(1− e−t); t≥ 0) is a Galton–Watson process (in the case of a stable
branching mechanism). We recall that the process H

a
t is independent of the

process H̃a, conditionally given the local time at level a = 1− e−t, and the
excursions are given by the points of a Poisson point process with intensity
dl×N(de); see (18) for a precise formulation. In particular, given that k of
them reach level 1, they are k independent realizations of N(e−t). This proves

the independence of θ1(1 − e−(t+s)) with respect to its past, conditionally
given θ1(1− e−t). Moreover, the law of each of these k subtrees is identical
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to that of the whole tree. Indeed, the descendants at level 1− e−(t+s) of
some excursion above 1 − e−t reaching 1 is identical in law, after scaling
the vertical axis by e−t, to the descendants at level 1− e−s of an excursion
above level 0 reaching level 1. [Recall that because the branching mechanism
is stable, the height process has the following scaling property: if (Hs, s≥ 0)
is the height process under the measure N(1), then H(u) = (uHsu−α, s ≥ 0)
is a realization of N(u).] This proves that |T1(1− e−t)| is a Galton–Watson
process. Observe, however, that this scaling argument does not give the
reproduction rate of individuals, nor the exact offspring distribution.

We conclude this section by observing that the Galton–Watson process
[θu(u(1− e−t)), t≥ 0] satisfies the conditions needed to apply the celebrated
Kesten–Stigum theorem. More precisely, we have the following lemma.

Lemma 21. There exists a random variable W with W > 0 almost surely
such that

e−t/(α−1)θu(u(1− e−t))→W a.s. when t→∞.(22)

Proof. It can be checked that the reproduction law χ has mean m =
1 + 1/(α− 1). The Galton–Watson process is thus supercritical. Moreover,
P (χ≥ k) decays like k−α and in particular, E(χ logχ) <∞, so we may apply
to this supercritical Galton–Watson process the Kesten–Stigum theorem (in
continuous time) [5], Theorem 7.1. !

5.2. Proof of Theorem 4 (number of blocks). We will now show that the
variable W in (22) above is a quantity which can be expressed in terms of
the local time at level u. We start by focusing on the case u = 1 and we work
under the measure N(1).

First, we need a simple continuity lemma for the local time at level 1

under N(1). Let Z(1)
t denote the total local time of the process H at level t.

Lemma 22. Under N(1), Z(1)
t is continuous at t = 1, that is, Z(1)

1− = Z(1)
1 ,

N(1)-a.s.

Proof. When Zt is the local time at level t of (Hs, s≤ Tr), then it is
well known that Zt cannot have a discontinuity at level 1 (indeed, Zt is a
CSBP started at Z0 = 1, hence it is a Feller process and so cannot have a
fixed discontinuity). Conditionally on

#exc0,1 = 1,

the excursion that reaches 1 is a realization of N(1) and as #exc0,1 is Pois-
sonian, this event has strictly positive probability. Hence, the result follows.
!
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We now give the interpretation of W in terms of Z(1)
1 .

Lemma 23. Let K = (α−1)−1/(α−1) and let u > 0. Under N(u), we have

ε1/(α−1)θu(u(1− ε))→Ku−1/(α−1)Z(u)
u a.s.

as ε→ 0, where Z(u)
u denotes the local time of H at level u.

Remark 24. This result is thus a generalization of Lévy’s result for the
local time of Brownian motion as the limit of the rescaled “downcrossing
number” (see, e.g., [47]). A similar result on the upcrossing number also
exists and is, in fact, much simpler than the one we prove here due to the
existence of an excursion theory above a fixed level.

Proof. For simplicity, we will prove this result assuming that u = 1,
but the case of general u follows exactly the same arguments. We thus wish
to prove that

ε1/(α−1)θ1(1− ε)→KZ(1)
1 a.s.,

as ε→ 0. We already know, by Lemma 21, that ε1/(α−1)θ1(1− ε) converges
almost surely to W . Hence, it is enough to prove the convergence in proba-

bility here to obtain that W = KZ(1)
1 a.s. and to thereby conclude.

By excursion theory, conditionally on Z(1)
1−ε = zε, the number of excursions

above 1− ε that reach 1 is Poisson distributed with mean zεN(sups≥0 Hs >
ε). Now, recall that by [17], Corollary 1.4.2 applied with ψ(u) = uα,

N
(

sup
s≥0

Hs > ε
)

= (α− 1)−1/(α−1)ε−1/(α−1) = Kε−1/(α−1)

[this is why the factor u−1/(α−1) appears in the limit when u #= 1 since, in
this case, we need to compute N(sups≥0 Hs > uε)]. Let δ > 0 and let us show
that

P (ε1/(α−1)θ1(1− ε) > KZ(1)
1 (1 + δ))→ 0(23)

as ε→ 0. To do this, note that this is smaller than

P (|Z(1)
1 −Z(1)

1−ε|> KZ(1)
1 δ/2)

(24)
+ P (ε1/(α−1)θ1(1− ε) > KZ(1)

1−ε(1 + δ/2)).

The first term converges to 0 by continuity of Z at level 1. On the other
hand, Markov’s inequality implies that if X is a Poisson random variable
with mean m/ε, then for every λ > 0,

P (εX > m(1 + x))≤ exp
[
m

ε
(−1 + eλ − λ(1 + x))

]
.
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By choosing λ > 0 sufficiently close to 0, we can find c > 0 such that

P (εX > m(1 + x))≤ exp(−cm/ε).

Therefore, the second term in (24) is bounded from above by

E(exp(−c′Z(1)
1−εε

−1/(α−1)))→ 0

for some c′ > 0, by Lebesgue’s dominated convergence theorem, since Z(1)
1−ε→

Z(1)
1 , a.s. This gives the convergence in probability for the lemma. !

We note that the case u #= 1 can also be obtained from the case u = 1 by
using scaling properties of the process H : if (Hs, s≥ 0) is the height process
under the measure N(1), then H(u) = (uHsu−α/(α−1) , s≥ 0) is a realization of
N(u) (see, e.g., the remark before Theorem 3.3.3 of [17]).

Lemma 25. Assume that θu(t) is obtained for 0≤ t≤ u from the reduced
tree associated with the process (Ht,0≤ t≤ Tr). Then

lim
t→0

t1/(α−1)θu(1− t)→Ku−1/(α−1)Zu a.s.(25)

Proof. This is a simple extension of Lemma 23. Again, to simplify,
assume that u = 1. There is a slight difference with Lemma 23, because this
was stated under the measure N(1), whereas here, T1 is defined from the
height process (Hs, s≤ Tr) and not a realization of N(1). However, this does
not change the limit result, since the excursions of (Hs, s≤ Tr) reaching 1 are
independent and distributed with law N(1) (note that the result is trivially
true when no excursion reaches level 1). Therefore, the result remains the
same. !

The point of the next lemma is to show that any almost sure property Au

of the tree Tu still holds almost surely when the fixed level u is replaced by
the random level R−1(t) if we choose t outside a deterministic set of Lebesgue
measure 0. By convention, if Tu is empty (i.e., if sup0≤s≤Tr

Hs < u), we
declare any property to be true by default. Since we wish to study the
property Au at level u = R−1(t) for some t and Tu is never empty, this will
never play any role.

Lemma 26. Let Au be a property of the tree Tu such that for every u > 0,
P (Au| sup0≤s≤Tr

Hs > u) = 1. Then the set of t such that P (AR−1(t)) < 1 has
zero Lebesgue measure.

Proof. Let F be the set of t such that At fails. By Fubini’s theorem,

E
∫ ∞

0
1{t∈F} dt = 0.
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Therefore, Leb(F ) = 0 a.s. On the other hand, t 2→ R(t) is almost surely
an absolutely continuous function. Indeed, it has a derivative at all points
where Z is continuous and Z has only countably many discontinuities a.s.
Therefore, R(F ) also has zero Lebesgue measure almost surely. Hence,

∫ ∞

0
1{R−1(t)∈F} dt = 0 a.s.

By taking expectations, we see that
∫ ∞

0
P (R−1(t) ∈ F )dt = 0,

which proves the claim. !

The point is that the set F ′ of t such that A fails at R−1(t) may be chosen
deterministically. If t /∈ F ′, then, with probability one, AR−1(t) holds, even
though a priori we only knew this property for fixed, deterministic levels.

As a consequence of Lemma 26, we may choose a deterministic t such
that the limit theorem for the number of vertices on Tu remains true for the
level u = R−1(t). For simplicity, we will assume that t = 1 is a valid choice,
and we write T0 = TR−1(1) for the tree which has a set of vertices at level t
(0≤ t≤ 1) given by the excursions above R−1(1)t that reach level R−1(1).
Hence,

lim
t→0

t1/(α−1)|T0(1− t)|→K(R−1(1))−1/α−1ZR−1(1) a.s.(26)

The only thing that remains to be considered is the behavior of t 2→
R−1(1− t) when t is small.

Lemma 27. As t→ 0, the following asymptotics hold almost surely:

R−1(1)−R−1(1− t)∼ t
1

α(α− 1)Γ(α)
Zα−1

R−1(1),

meaning that the ratio of the two sides converges to 1 almost surely.

Proof. Let

q =
1

α(α− 1)Γ(α)
Zα−1

R−1(1).(27)

The lemma follows simply from the fact that almost surely the function R(t)
is differentiable at t = R−1(1) since Z is continuous at R−1(1). Its derivative
is given by

α(α− 1)Γ(α)Z1−α
R−1(1) = q−1
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which is nonzero almost surely. Therefore, R−1(t) is also differentiable at
t = 1 and its derivative is q. !

Proof of Theorem 4. Now, to finish the proof, note that for t≤ 1,

N(t) = θR−1(1)(R−1(1− t)).

Since R−1(1 − t) = R−1(1) − tq + o(t), by monotonicity of θR−1(1), we see
that

N(t)∼ θR−1(1)(R−1(1)− tq).

On the other hand, by (26), we have
(

t
q

R−1(1)

)1/(α−1)

θR−1(1)(R−1(1)−tq)→K(R−1(1))−1/(α−1)ZR−1(1) a.s.

After cancellation, we obtain that almost surely

t1/(α−1)N(t)→K(α(α− 1)Γ(α))1/(α−1) = (αΓ(α))1/(α−1) ,

as stated in Theorem 4. !

5.3. Evans’ metric space and multifractal spectrum. We begin with by
a description of the basic setup for this section, which is Evans’ random
metric space S. This space was introduced by Evans in [23] in the case
of Kingman’s coalescent, and some properties of S (such as its Hausdorff
and packing dimensions) were derived in [8] in the case of a Beta(2−α,α)-
coalescent and other coalescents behaving similarly (see [8], Theorem 1.7).
The space S is defined as the completion of N for the distance dS which is
defined on N by

dS(i, j) = inf{t : i∼Π(t) j},

that is, dS(i, j) is the collision time of i and j. Observe that dS is, in fact,
an ultrametric, both on N and S, that is,

dS(x, z)≤ dS(x, y)∨ dS(y, z) ∀x, y, z ∈ S.

The space (S,dS) is complete by definition and hence it is compact as soon
as Π(t) comes down from infinity. Indeed, for each t > 0, one needs only
N(t) <∞ balls of diameter t to cover it, which implies that S is precompact.
Together with completeness, this makes the space S compact. Given B ⊆ S,
we write clB or B̄ for its closure (with respect to dS). Let Ii(t) := min{j ∈
Bi(t)} be the least element of Bi(t). Then the set

Ui(t) = clBi(t)

= cl{j ∈N : j ∼Π(t) Ii(t)}

= cl{j ∈N :d(j, Ii(t))≤ t}

= {y ∈ S :d(y, Ii(t))≤ t}
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is a closed ball with diameter at most t. The closed balls of S are also the
open balls of this space and every ball is of the form Ui(t). In particular, it
is easily seen that the collection of balls is countable. For x ∈ S and t≥ 0,
we write B̄x(t) for the ball of center x and diameter t [observe that in the
case x∈N, this notation is consistent with the blocks convention for Π(t)].

It is possible (see [23]) to define almost surely a random measure η(·) on
S by requiring that for all i ∈ N and all t≥ 0, the measure η(Ui(t)) is the
frequency of the block of Π(t) containing i. We call η the mass-measure or
the size-biased picking measure. Recall that for γ ≤ 1/(α − 1), the subset
S(γ) of S is defined as

S(γ) =
{

x ∈ S : lim inf
r→0

log(η(B̄x(r)))

log r
≤ γ

}
.

Results from [8] suggest that γ = 1/(α− 1) is the typical exponent for the
size of a block as time goes down to 0. Hence, here, we are looking for
existence of blocks whose size is abnormally large compared to the typical
size as time goes down to 0. The next result gives the precise value of the
Hausdorff dimension of this set (with respect to the distance on the space
S).

The key idea for the proof of Theorem 5 is the observation that the space
S, equipped with its mass measure η, can be thought of as the boundary of
some Galton–Watson tree [more precisely, the reduced tree at level R−1(t)]
with the associated branching measure. Hence, the multifractal spectrum
of η in S is the same as the multifractal spectrum of the branching mea-
sure in the boundary of a supercritical Galton–Watson tree. The case where
the offspring distribution is heavy-tailed and has infinite variance has been
recently studied by Mörters and Shieh [41] and we can use their result to
conclude. For basic properties of the branching measure of a Galton–Watson
tree, we recommend the references [37, 38, 41].

Recall that Tu designates the reduced tree at level u, that is, it is the
tree where, for each level 0 ≤ t ≤ 1, each vertex at level t corresponds to
one excursion of H above level ut that reaches level u. For our purposes, we
eventually wish to work under the law of (H(s),0≤ s≤ Tr) (conditionally on
the event sups≤Tr

Hs > u, otherwise the tree is empty), but it will sometimes
be more convenient to use Nu(·), the excursion measure conditioned to hit
level u. The difference is, of course that in the latter case, Tu is a tree with
a single ancestor, while in the former case, Tu is actually a collection of a
Poissonian number of i.i.d. trees joined at the root. These trees have the
distribution of the reduced tree under N(u)(·). We emphasize that for this
study of the multifractal spectrum, this does not create any real difference.

By definition, a ray of Tu is a path (ζ(t),0≤ t≤ 1) such that ζ(0) is the
root, for every t, ζ(t) is a vertex at level t in Tu and for all s≤ t, ζ(s) is an
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ancestor of ζ(t). Then the boundary of the tree Tu, denoted ∂Tu, is just the
set of all rays. The boundary ∂Tu can be equipped with a metric dist∂T by
letting dist∂T(U,V ) = 1− t if t is the height at which U and V diverge. Let
|Tu(t)| := θ(u)(ut) be the size of generation at level t. By Proposition 19, we
see that (|Tu(1− e−t)|, t ≥ 0) is a continuous-time Galton–Watson process
where individuals live for an exponential time with parameter 1 and then
reproduce with offspring distribution χ. Recall from Lemma 21 that there
is a random variable W > 0 almost surely such that

W = lim
t→∞

e−t/(α−1)|Tu(1− e−t)|.

Furthermore, for every vertex v ∈ Tu, we can define Tu(v), the subtree
rooted at v, and W (v), the limit (which exists almost surely) of its associated
martingale. As there are countably many branching points of Tu, this allows
one to build a natural measure µ, called the branching measure on ∂Tu, by
introducing the requirement

µ({ζ ∈ ∂T
u : ζ(1− e−t) = v}) =

W (v)

et/(α−1)
.(28)

Observe that the set on the left-hand side is a ball of radius e−t centered on
any ray ζ such that ζ(1− e−t) = v. Having defined µ on arbitrary balls of
the boundary of the tree ∂Tu, this uniquely extends to a measure µ which is
defined on arbitrary subsets of ∂Tu by Carathéodory’s Extension theorem
(see page 438 of [19]).

When u > 0 is a fixed deterministic level, Tu is a collection of Galton–
Watson trees. The definitions introduced above then coincide with the stan-
dard notions of distance, boundary and branching measure for a collection
of Galton–Watson trees. The lemma below is essentially a reformulation of
Theorems 2.1 and 2.2 in [41] within our framework.

Lemma 28. Conditionally on sup0≤s≤Tr
Hs > u, the multifractal spec-

trum of µ is given as follows: for all 1
α ≤ γ ≤ 1

α−1 ,

dimH

{
V ∈ ∂T

u : lim inf
r→0

log(µ(B(V, r)))

log r
≤ γ

}
= γα− 1

and the set is empty if γ < 1/α. If 1
α−1 < γ ≤ α

(α−1)2 , then

dimH

{
V ∈ ∂T : lim sup

r→0

log(µ(B(V, r)))

log r
≥ γ

}
=

α

γ(α− 1)2
− 1

and the set is empty when γ > α/(α− 1)2.
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Proof. First, we remark that it suffices to prove this result under the
measure N(u). Moreover, it is elementary to check that

{
V ∈ ∂T

u : lim inf
t→∞

log(µ(B(V, e−t)))

−t
= γ

}

=
{

V ∈ ∂T
u : lim inf

n→∞

log(µ(B(V, e−n)))

−n
= γ

}

and that
{

V ∈ ∂T
u : lim sup

t→∞

log(µ(B(V, e−t)))

−t
= γ

}

=
{

V ∈ ∂T
u : lim sup

n→∞

log(µ(B(V, e−n)))

−n
= γ

}
.

Sampling at these discrete times gives us a discrete-time Galton–Watson
process which satisfies the assumptions of Theorems 2.1 and 2.2 of [41]. Its
offspring variable is given by

χdiscrete := |Tu(1− e−1)|.

Observe that, by construction, P (χdiscrete = 0) = 0 and P (χdiscrete = 1) < 1.
Furthermore, it is easily seen that E(χdiscrete) = e1/(α−1). By [5], Corollary
2, Chapter III.6, the offspring variable χdiscrete in discrete time and χ satisfy
the X logX condition simultaneously, so

E(χdiscrete logχdiscrete) <∞.

The last step is to check the values of the two constants

τ :=− log(P (χdiscrete = 1))/ log(E(χdiscrete))

and

r := lim inf
x→∞

− logP (χdiscrete > x)

logx
.

Note that χdiscrete = 1 occurs if the ancestor has not reproduced by time 1.
Since the time at which she reproduces is, on this timescale, an exponential
random variable with mean 1, we see that P (χdiscrete = 1) = e−1, so τ =
−(α − 1) log(e−1) = α − 1. To compute r requires a few more arguments.
Now, it is known (see [37], (3.1) and (3.2)) that r is equal to

sup{a > 0,E(χa
discrete) <∞}.

On the other hand, by [5], Corollary 1, Chapter III.6 for all a > 1, E(χa
discrete) <

∞ if and only if E(χa) <∞. Using (10), we see that χ admits moments of
order up to and excluding α, therefore r = α. Application of Theorems 2.1
and 2.2 of [41] concludes the proof of the lemma. !
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The proof of Theorem 5 is now straightforward. We show that the multi-
fractal spectrum of η in S with respect to the metric dS is necessarily the
same as the multifractal spectrum of µ in ∂T with respect to dist∂T.

Proof of Theorem 5. Let T be the tree whose vertices at level t
consist of those excursions above level R−1(t) that reach level R−1(1). As
above, the boundary ∂T of the tree T is just the set of all “infinite” paths,
that is, of paths (ζ(t),0≤ t≤ 1) such that for every t, ζ(t) is at level t of T .
We may equip ∂T with the following metric: the distance between two rays
ζ and ζ ′ is simply

dist∂T (ζ, ζ ′) = 1− sup{t≤ 1 : ζ(t) = ζ ′(t)}.

There is a one-to-one map Φ between S and ∂T which can be described as
follows: let ζ ∈ ∂T , then for each t ∈ (0,1), the vertex ζ(1− t) corresponds,
by definition, to an excursion above R−1(1− t) that hits level R−1(1) and
hence to a block Bζ(t) of the partition Π(t), where Π is the embedded
coalescent process. When t < t′, Bζ(t)⊆Bζ(t′). Define i(t) := minBζ(t), the
least element of the block that corresponds to the vertex ζ(1− t). Note that
the function i(t) satisfies the Cauchy criterion (with respect to the metric
dS) as t→ 0, by construction. Since S is a complete metric space under
dS , it follows that there is a unique x ∈ S such that dS(x, i(t))→ 0 when
t→ 0. We put Φ−1(ζ) = x. In the converse direction, since N is dense in S,
for any x ∈ S, we may consider a sequence (in, n = 1,2, . . .) in N such that
dS(in, x)→ 0 when n→∞. Without loss of generality, we may assume that
dS(in, x) is monotone decreasing. Then the sequence of blocks B(in, tn) that
contain in at time tn = dS(in, x) defines a unique ray ζx such that ζx(1− tn)
corresponds to B(in, tn) for each n. Moreover, ζx does not depend on the
particular sequence in converging to x, so we may unambiguously define
Φ(x) = ζx. It is easy to see that Φ(Φ−1(ζ)) = ζ . For instance, this map Φ
acts on the integers as follows: ∀i ∈N, Φ(i) is the unique ray (ζ(t), t≥ 0) such
that for each t≥ 0, the integer i is in the block of Π(t) which corresponds
to ζ(t).

Hence, we may identify S with ∂T and note that, by construction, dis-
tances are preserved in this identification

dS(x, y) = dist∂T (Φ(x),Φ(y)).

Furthermore, if z is a vertex at level t of T , let $(z) the total local time at
level R−1(1) of the excursion defining z, divided by ZR−1(1), the total local

time of the whole process (Hs, s≤ Tr) at level R−1(1). The correspondence
between local time at level R−1(1) and asymptotic frequencies of the blocks
of Π(t) implies that

η(B(x, t)) = $(ζx(t)),(29)
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where ζx(t) is the vertex corresponding to B(x, t), that is, the vertex at level
t on the ray ζx. Hence, as the map Φ preserves the distance, it is easy to see
that dimH S(γ) = dimH S′(γ), where

S′(γ) =
{
ζ ∈ ∂T : lim inf

t→0

log $(ζ(1− t))

log t
≤ γ

}
(30)

because the two sets coincide via the map Φ. Thus, we want to prove that
dimH S′(γ) = (γα− 1). On the other hand, recall that T is just a rescaling
of T0, which is the shorthand notation for the reduced tree at level R−1(1).
Recall that this tree has a set of vertices at level t (for 0 ≤ t ≤ 1) corre-
sponding to excursions above level tR−1(1) reaching R−1(1). Let us first
treat the case γ ≤ 1/(α− 1) of “thick points.” By Lemma 27, we have that
R−1(1)−R−1(1− t)∼ tq (where, as before, q denotes the random number
in Lemma 27), so it is enough to prove that dimH S′

0(γ) = (γα− 1), where

S′
0(γ) =

{
ζ ∈ ∂T0 : lim inf

t→0

log $(ζ(1− t))

log t
≤ γ

}
.

On the other hand, by Lemma 23, for a fixed level u > 0, the limit W of the
Kesten–Stigum martingale associated with the reduced tree at level u is a
constant multiple of the local time at u. Let (ζ(t),0≤ t≤ 1) be a ray in ∂Tu.
Applying this to the subtree rooted at v = ζ(t), it follows that the number
W (v) defining the branching measure on ∂Tu is also a constant multiple
of the local time $(v) at level u enclosed in the excursion corresponding to
vertex v,

W (v) = K(ue−t)−1/(α−1)$(ζ(t)),

since the subtree rooted at v has the law of Tue−t
. In other words, dividing

both sides by et/(α−1) and referring to (28), if µ is the branching measure
on ∂Tu, then almost surely, for all t > 0,

µ(B(ζ, e−t)) = K$(ζ(t)),

that is, the branching measure associated with a vertex ζ(t) = z ∈Tu is a
constant multiple of the local time $(z) enclosed at level u in the excursion
corresponding to z. Therefore, using Lemma 28, this implies that almost
surely, conditionally on the event sup0≤s≤Tr

Hs > u,

dimH

{
ζ ∈T

u : lim inf
t→0

log $(ζ(1− t))

log t
≤ γ

}
= γα− 1.

We may therefore apply Lemma 26 to conclude that if t /∈N , where N is
a deterministic set of Lebesgue measure zero, then this property also holds
for the reduced tree at level R−1(t). There is, of course, no loss of generality
in assuming that 1 /∈N , so we conclude that

dimH S′
0(γ) = γα− 1,
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as required. When γ > 1/(α− 1), the proof follows the same lines and uses
the “thin points” part of Lemma 28. This concludes the proof of Theorem
5. !

6. Site and allele frequency spectrum. Our goal in this section is to
prove Theorem 9. Our proof relies heavily on the connection between Beta-
coalescents and Galton–Watson processes developed in the previous sec-
tion. Throughout this section, (ξt, t ≥ 0) will denote the continuous-time
Galton–Watson process where individuals live for an independent exponen-
tial amount of time and then give birth to a number of offspring distributed
according to χ, where P (χ = 0) = P (χ = 1) = 0 and, for k ≥ 2,

P (χ = k) =
α(2−α)(3− α) · · · (k− 1−α)

k!
=

αΓ(k−α)

k!Γ(2− α)
.

This offspring distribution is supercritical, with mean m = 1 + 1/(α − 1).
Also, recall that Mk(n) denotes the number of families of size k in the
infinite sites model when the sample has n individuals, and that Nk(n) is
the equivalent quantity in the infinite alleles model.

6.1. Expected values. Suppose marks occur at times of a constant rate θ
Poisson point process along the branches of a reduced tree at level 1 under
the measure N(1), so that the reduced tree has a single ancestor. Recall that
the number of branches of T1 at level 1− e−t is a Galton–Watson process.
Hence, after rescaling, this amounts to having mutation marks at intensity
θe−s per unit length at time s on the Galton–Watson tree that comes from
the process ξ. We will stop the Galton–Watson process at a fixed time t. If
there is a mutation at time s < t, then we say that it creates a family of size
k if the individual with the mutation at time s has k descendants alive in
the population at time t. Let MGW

k (t) denote the number of families of size
k at time t. The following result shows that a simple calculation gives the
asymptotic behavior of E[MGW

k (t)]. A sharper argument will be needed to
establish convergence in probability.

Proposition 29. Let τ be an independent exponential random variable
with mean 1/c, where

c =
2− α

α− 1
.

We have

lim
t→∞

e−ctE(MGW
k (t)) =

θ

c
P (ξτ = k).
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Proof. By applying the branching property and using the facts that
E[ξt] = e(m−1)t and that m− 2 = c for the third equality, we obtain

E(MGW
k (t)) =

∫ t

0
P (there is a mark in dl)P (ξt−l = k)

=
∫ t

0
E(ξlθe−l)dl P (ξt−l = k)

=
∫ t

0
θeclP (ξt−l = k)dl

= θect
∫ t

0
e−cuP (ξu = k)du

= ect θ

c

∫ t

0
ce−cuP (ξu = k)du.

Multiplying both sides by e−ct and letting t→∞, we get

lim
t→∞

e−ctE(MGW
k (t)) =

θ

c

∫ ∞

0
ce−cuP (ξu = k)du

=
θ

c
P (ξτ = k). !

To make the limiting expression for E[MGW
k (t)] more explicit, we now

calculate P (ξτ = k).

Lemma 30. For all positive integers k, we have

P (ξτ = k) =
(2− α)Γ(k + α− 2)

Γ(α− 1)k!
.(31)

Proof. We prove the result by induction. Note that ξτ = 1 if and only
if there are no birth events before time τ . Because τ has an exponential
distribution with rate parameter c and individuals give birth at rate 1, it
follows that

P (ξτ = 1) =
c

1 + c
= 2−α,

which agrees with the right-hand side of (31) when k = 1.
Now, suppose that k ≥ 2 and (31) is valid for j = 1, . . . , k − 1. Let rk =

P (ξt = k for some t≤ τ). By conditioning on the number of individuals be-
fore there were k individuals, we get

rk =
k−1∑

j=1

rj ·
j

j + c
P (χ = k− j + 1)(32)
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because if there are j < k individuals, then the probability of having another
birth before time τ is j/(j +c) and if this happens, the probability that there
are k individuals after the next birth is P (χ = k− j + 1). If ξt = k for some
t≤ τ , then we will have ξτ = k if and only if τ occurs before the next birth
event. When there are k individuals, birth events happen at rate k, so the
probability that τ happens before the next birth is c/(k + c). Therefore,
P (ξτ = k) = crk/(k + c) and so rk = P (ξτ = k)(k + c)/c. Substituting this
into (32), we get

P (ξτ = k) =
1

k + c

k−1∑

j=1

jP (ξτ = j)P (χ = k− j + 1).(33)

Using the induction hypothesis and the fact that P (χ = k) = αΓ(k − α)/
(k!Γ(2− α)), we obtain

P (ξτ = k) =
α(2− α)

Γ(α− 1)Γ(2−α)(k + c)

k−1∑

j=1

Γ(j + α− 2)Γ(k − j + 1−α)

(j − 1)!(k − j + 1)!
.

Using the fact that k + c = (kα− k + 2−α)/(α− 1) and letting $ = j − 1 in
the sum, we get

P (ξτ = k) =
α(α− 1)(2− α)

(kα− k + 2−α)Γ(α− 1)Γ(2−α)
(34)

×
k−2∑

+=0

Γ($ + α− 1)Γ(k − $− α)

$!(k− $)!
.

If a, b ∈ R and n ∈ N, then by starting with the identity (1− x)−a(1 −
x)−b = (1−x)−(a+b) and considering the nth order term in the Taylor series
expansion of both sides, we get (see, e.g., page 70 in [3])

n∑

k=0

(a)k(b)n−k

k!(n− k)!
=

(a + b)n
n!

,

where (a)k = a(a + 1) · · · (a + k − 1). Since (a)k = Γ(a + k)/Γ(a), it follows
that

n∑

k=0

Γ(a + k)Γ(b + n− k)

k!(n− k)!
=
Γ(a)Γ(b)(a + b)n

n!
.(35)

When a + b =−1, we have (a + b)n = 0. Therefore, (35) with a = α− 1 and
b =−α implies that the sum on the right-hand side of (34) would be zero if
it went up to k rather than k−2. It follows that the sum up to k−2 is equal
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to the negative of the sum of the terms when $ = k and $ = k− 1, which is

−
Γ(k + α− 2)Γ(1−α)

(k − 1)!
−
Γ(k−α− 1)Γ(−α)

k!

=
Γ(2−α)Γ(k + α− 2)(kα− k + 2−α)

k!α(α− 1)
.

Combining this result with (34) gives (31). The lemma follows by induction.
!

6.2. A queueing system result. The problem on a Galton–Watson tree
will essentially reduce to the following lemma.

Let Qt be the state of a queueing system where customers arrive at rate
Aect for some constants A and c > 0. We assume that there are infinitely
many servers and that each customer requires an independent exponential
rate λ amount of time to be served, so when the state of the queue is m,
the departure rate is λm per unit of time.

Lemma 31. As t→∞, almost surely

e−ctQt→
A

λ + c
.

Proof. Because all customers depart at rate λ, the number of customers
at time zero does not affect the limiting behavior of the queue as t→∞.
Therefore, we may assume that the number of customers at time zero is
Poisson with mean A/(λ+c). The probability that a customer who arrives at
time s≤ t is still in the queue at time t is e−λ(t−s). Therefore, the distribution
of Qt is Poisson with mean

Ae−λt

λ + c
+

∫ t

0
Aecse−λ(t−s) ds =

Aect

λ + c
.

For all positive integers n, let tn = (3/c) log n, so E[Qtn ] = An3/(λ + c).
Let Bn be the event that (1− ε)An3/(λ + c) ≤ Qtn ≤ (1 + ε)An3/(λ + c).
Note that if Z has a Poisson distribution with mean µ, then

P (|Z − µ|> εµ)≤
1

ε2µ
,(36)

by Chebyshev’s inequality. Applying (36) with µ = An3/(λ + c), we get

P (Bc
n)≤

λ + c

Aε2n3
.

Therefore, by the Borel–Cantelli lemma, almost surely Bn occurs for all but
finitely many n.
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Between times tn and tn+1, the number of arrivals is Poisson with mean
at most

∫ tn+1

tn
Aecs ds =

A

c
((n + 1)3 − n3)≤

3A(n + 1)2

c
.

Therefore, the probability that there are more than 6A(n + 1)2/c arrivals
between times tn−1 and tn is at most the probability that a Poisson random
variable with mean 3A(n+1)2/c is greater than 6A(n+1)2/c, which by (36)
with ε = 1, is at most c/(3A(n + 1)2). The number of departures between
times tn and tn+1 also has a Poisson distribution and since E[Qt] is an
increasing function of t, the expected number of departures between times
tn and tn+1 is also bounded by 3A(n+1)2/c. Therefore, the probability that
there are more than 6A(n+1)2/c departures between times tn and tn+1 is at
most c/(3A(n + 1)2). Let Dn be the event that between times tn−1 and tn,
there are at most 6A(n+1)2/c arrivals and at most 6A(n+1)2/c departures.
By the Borel–Cantelli lemma, almost surely Dn occurs for all but finitely
many n.

Suppose that Bn and Dn occur for all n≥N . Suppose that tn ≤ t≤ tn+1.
If n≥N , then

(1− ε)An3

λ + c
−

6A(n + 1)2

c
≤Qt ≤

(1 + ε)An3

λ + c
+

6A(n + 1)2

c
.

Because 1/n3 ≤ e−ct ≤ 1/(n + 1)3, it follows that

lim sup
n→∞

e−ctQt ≤
(1 + ε)A

λ + c
a.s.

and

lim inf
n→∞

e−ctQt ≥
(1− ε)A

λ + c
a.s.

Since ε > 0 is arbitrary, the result follows. !

Having proven this result, we easily deduce the following one. Suppose
that (Qt, t≥ 0) is the length of the queue in a queueing system, where the
arrival rate is a random process at [i.e., the process of arrivals (Q+

t , t≥ 0) is a
counting process such that Q+

t −
∫ t
0 as ds is a martingale] and the departure

rate at time t, which is nonrandom, is λ(t) per customer. Then if at and
λ(t) have the correct asymptotics as t→∞, the asymptotics of Qt are also
the same as in the previous case.

Lemma 32. If at ∼ Aect almost surely as t→∞ and limt→∞ λ(t) = λ,
then almost surely

e−ctQt→
A

λ + c
.



BETA-COALESCENTS AND CONTINUOUS STABLE RANDOM TREES 47

Proof. Let At =
∫ t
0 as ds. Since Q+

t is a counting process and Q+
t −At

is a martingale, there exists a Poisson process N0
t such that Q+

t = N0
At

. Let
ε > 0 and consider the function

bt = (A(1 + ε)ect − at)+.

Let N1 be an independent Poisson process. Compare the state of the queue
(Qt, t≥ 0) with the queue (Q1,t, t≥ 0), in which customers arrive with the
jumps of (N0

At
+ N1

Bt
, t≥ 0), where Bt =

∫ t
0 bs ds, and customers get served

at rate λ(t). By properties of Poisson processes, the arrival process of the
queue Q1 is thus itself a Poisson process with rate at + bt per unit time.
Observe that for t sufficiently large, at ≤ A(1 + ε)ect, so for t sufficiently
large, bt = A(1 + ε)ect − at. Thus, for t sufficiently large, the total rate of
arrivals for the queue Q1 is at+bt = A(1+ε)ect. Let (Q2,t, t≥ 0) be the queue
where arrivals are given by N0

At
+ N1

Bt
when at ≤A(1 + ε)ect and N2

A(1+ε)ect

otherwise, where (N2
t , t≥ 0) is another independent Poisson process. Again,

assume that customers depart from the queue at rate λ(t). Since customers
depart from Q1 and Q2 at the same rate, the queues can be coupled so that
they are identical after a certain random time T . Moreover, (Q2,t, t≥ 0) is a
queueing system where arrivals occur at rate A(1 + ε)ect throughout time.
Because λ(t)→ λ, we have λ(t) ≥ λ− ε for sufficiently large t. Therefore,
the queue (Q2,t, t≥ 0) can be coupled with another queue (Q3,t, t≥ 0) with
arrival rate A(1 + ε)ect and departure rate λ− ε such that Q2,t ≤Q3,t for
sufficiently large t, because for t sufficiently large, all customers depart Q2

at least as quickly as they depart Q3. Hence, by Lemma 31, almost surely

lim sup
t→∞

e−ctQ2,t ≤
A(1 + ε)

(λ− ε) + c

and similarly for Q1, because Q1 and Q2 have the same asymptotics. By
construction, we also have that for all t≥ 0, Qt ≤Q1,t, because every cus-
tomer who arrives in Q also arrives in Q1. By taking ε→ 0, this implies
that

lim sup
t→∞

e−ctQt ≤
A

λ + c
.

Applying similar reasoning, we get lim inft→∞ e−ctQt ≥ (1−ε)A/((λ+ε)+c)
a.s. for all ε > 0, which implies the lemma. !

6.3. Almost sure result for a Galton–Watson tree. Recall that we are
considering the Galton–Watson tree associated with the branching process
(ξt, t≥ 0), with mutation marks along the branches at rate θe−s at time s.
By Lemma 21, there is a random variable W such that

e−(m−1)tξt→W a.s.
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Recall that MGW
k (t) denotes the number of marks before time t such that

the individual who gets the mutation has k descendants at time t. Likewise,
let NGW

k (t) denote the number of blocks of size k in the allelic partition at
time t, when we assume two individuals have different alleles if any of their
ancestors have had a mutation since their most recent common ancestor.

For the proof, we introduce two other quantities. Let Lk(t) be the number
of mutations before time t such that the individual who gets the mutation
has k descendants alive at time t and none of this individual’s descendants
undergoes another mutation before time t. Let K(t) be the number of mu-
tations before time t such that some descendant of the individual that un-
dergoes the mutation also undergoes another mutation before time t. The
strategy of the proof will be to show that MGW

k (t) and NGW
k (t) both be-

have asymptotically like Lk(t), while K(t) is of lower order. The lemma
below concerns Lk(t).

Lemma 33. For all k ≥ 1,

e−ctLk(t)→
θW

c
P (ξτ = k) a.s.

Proof. Our first step is to prove that this result holds with a limit
being θWak for some deterministic sequence of positive numbers ak.

We prove this by induction on k ≥ 1. For k = 1, observe that, conditionally
on the process (ξt, t ≥ 0), the process L1(t) can be viewed as a birth-and-
death chain in which the total birth rate is θe−tξt and each individual dies at
rate 1+θe−t. Indeed, L1(t) increases by one every time some branch gets hit
by a mutation. Since marks arrive at rate θe−t dt at time t on each branch
of the Galton–Watson tree, this means that, conditional on (ξt, t≥ 0), new
mutations occur at rate θe−tξt dt. Also, L1(t) decreases by one each time a
member of a family of size 1 either reproduces or experiences a mutation,
which happens at rate 1+θe−t for every individual. Because e−(m−1)tξt→W
a.s., we can view L1(t) as a queueing system whose arrival rate is asymptotic
to θWect and whose departure rate converges to 1. Therefore, by condition-
ing on W and applying Lemma 32, we have

e−ctL1(t)→
θW

1 + c
.

Because

P (ξτ = 1) =
∫ ∞

0
ce−cuP (ξu = 1)du

=
∫ ∞

0
ce−cue−u du

= c/(c + 1),
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we can take a1 = (1/c)P (ξτ = 1), which is deterministic.
Now suppose that k ≥ 2. Note that families of size k are obtained when an

individual in a family of size j with j ≤ k− 1 reproduces and has k− j + 1
offspring. Therefore, the process (Lk(t), t ≥ 0) is a birth-and-death chain
with arrival rate

k−1∑

j=1

jLj(t)P (χ = k− j + 1)dt.(37)

We emphasize that this does not mean that conditionally on (Lj(t), t ≥
0, i = 1, . . . , k − 1), the process Lk is a queueing system with arrival rate
(37). Indeed, the positive jump times of Lk are necessarily negative jump
times of Lj for some j < k. Instead, this means that the arrival process L+

k
for the queue Lk is a counting process such that

L+
k (t)−

∫ t

0

k−1∑

j=1

jLj(s)P (χ = k− j + 1)ds(38)

is a martingale and conditionally on L+
k , the process Lk(t) is independent

of the lower-level queues Lj , j = 1, . . . , k − 1. The departure rate at time t
is k(1 + θe−t) because for each family of size k, there are k individuals that
could reproduce or experience mutation.

In particular, the arrival rate (37) for Lk(t) is almost surely asymptotic
to

θW

(
k−1∑

j=1

jajP (χ = k− j + 1)

)

ect.

Applying Lemma 32 with λ = k, we conclude

e−ctLk(t)→ θWak a.s.,

where

ak =
1

k + c

k−1∑

j=1

jajP (χ = k− j + 1).

Thus, the constants ak satisfy the same recursion established in (33) for
P (ξτ = k). Because a1 = (1/c)P (ξτ = k), it follows that ak = (1/c)P (ξτ = k)
for all k. !

We now use this result to obtain the asymptotic behavior of the quantities
MGW

k and NGW
k .
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Lemma 34. For all k ≥ 1, almost surely

e−ctMGW
k (t)→

θW

c
P (ξτ = k)

and

e−ctNGW
k (t)→

θW

c
P (ξτ = k).

Proof. Note that every mutation before time t that is counted by Lk(t)
is inherited by k individuals at time t. By the definition of Lk(t), these
k individuals experience no additional mutations, so they form a block of
the allelic partition at time t. It follows that Lk(t)≤MGW

k (t) and Lk(t)≤
NGW

k (t). Furthermore, if any mutation not counted by Lk(t) is passed on
to k individuals at time t or gives rise to a block of size k in the allelic
partition at time t, then some descendant of the individual that experiences
the mutation must experience another mutation before time t. Therefore, we
have MGW

k (t)≤ Lk(t) + K(t) and NGW
k (t)≤ Lk(t) + K(t). Thus, the result

will follow from Lemma 33 once we prove that

lim
t→∞

e−ctK(t) = 0 a.s.(39)

To prove (39), note that if M(t) denotes the total number of mutations
before time t, then for all positive integers N ,

K(t) = M(t)−
∞∑

k=1

Lk(t)

≤M(t)−
N∑

k=1

Lk(t).

Conditional on (ξt, t ≥ 0), the process (M(t), t ≥ 0) is a queueing system
with departure rate zero and arrival rate θe−tξt. Therefore, by Lemma 32,
we have e−ctM(t)→ θW/c a.s. By combining this result with Lemma 33, we
get

lim sup
t→∞

e−ctK(t)≤
θW

c
−

N∑

k=1

θW

c
P (ξτ = k)

=
θW

c
P (ξτ > N).

Letting N →∞ gives (39). !

Remark 35. Another consequence of this result is that the proportions
of families of size k both in the infinite sites and the infinite alleles models
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satisfy

MGW
k (t)

M(t)
→ P (ξτ = k),

NGW
k (t)

M(t)
→ P (ξτ = k),

almost surely. We will use this below.

6.4. Almost sure result for the Beta-coalescent tree. Let u > 0 and con-
sider the reduced tree Tu at level u, which, we recall, has, at level 0≤ t≤ 1,
as many vertices as there are excursions between tu and u. Suppose muta-
tion marks fall at intensity θ dt per unit length on this tree and for k ≥ 1,
we let MTu

k (t) be the number of families of size k at level 0≤ t≤ 1 in the
infinite sites model, and let NTu

k (t) be the equivalent quantity in the infinite
alleles model.

Lemma 36. For fixed u, conditionally on sup0≤s≤Tr
Hs > u, almost surely

as t→ 0,

tcMTu

k (1− t)→
θK

c
u−1/(α−1)ZuP (ξτ = k)(40)

and

tcNTu

k (1− t)→
θK

c
u−1/(α−1)ZuP (ξτ = k),(41)

where K = (α− 1)−1/(α−1).

Proof. The proof follows from Lemma 34 in exactly the same way that
Lemmas 23 and 25 follow from the Kesten–Stigum theorem, the idea being
simply that we can again identify W with Ku−1/(α−1)Zu when we look at
the reduced tree at level u, Tu. !

Proof of Theorem 9. We first note that (40) may be strengthened
into the same result where the convergence holds almost surely for all θ
simultaneously. Indeed, if we assume that mutation marks come with a label
θ in (0,∞) and that mutation marks fall on the tree with intensity dθ⊗ dt,
where dt stands for the unit length of the tree, we obtain a construction
of MTu

k (t) for all θ simultaneously by considering those marks whose label
is smaller than θ. (We note for later purposes that, independent of the
shape of the tree, such mutation marks may themselves be obtained from a
probability measure Q which is a countable collection of independent Poisson
processes with intensity dθ⊗ dt.) Observe that since MTu

k (t) is monotone in
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θ and since (40) holds for all rational θ, it also holds for nonrational values of
θ. To get (40) simultaneously for all θ in the infinite allele case as well, note
that |MGW

k (t) − NGW
k (t)| ≤ K(t) for all k and t. Since K(t) is monotone

in θ, the result (39) holds for all θ > 0, so (41) also holds simultaneously for
all θ.

Let Au be the event that (40) and (41) hold almost surely for all θ si-
multaneously. By applying Lemma 26 with the product probability P ×Q,
we may assume, without loss of generality, that (40) and (41) hold almost
surely for all θ also at level u = R−1(1), that is,

P ×Q(AR−1(1)) = 1.

Let T0 = TR−1(1) be the reduced tree at level R−1(1). In order to translate
the result to the Beta-coalescent tree, one more fact is needed, since the
coalescent tree is not exactly T0, but a time-change of T0. (Indeed, for t≤ 1,
the coalescent tree T has t #excR−1(1−t),R−1(1) branches at level, rather
than #exctR−1(1),R−1(1).) In fact, this simply translates into a change of the
intensity of the mutation marks for T0. Indeed, for a given segment in the
coalescent tree, between level R−1(1 − t) and R−1(1 − s) for s ≤ t, there
is a Poisson number of marks with intensity θ(t− s). So, if 0 ≤ σ ≤ τ ≤ 1,
the number of marks on a segment of the reduced tree T0 between levels
σ and τ is also a Poisson random variable with parameter θ(t − s), with
R−1(1− t) = τR−1(1) and R−1(1−s) = σR−1(1). Now, observe that as t→ 0
or τ → 1, this means that the intensity of the marks becomes asymptotic
to θR−1(1)/q, where q is the derivative of the function R−1(1− t) at t = 0,
which was shown to be

q =
1

α(α− 1)Γ(α)
Zα−1

R−1(1)

in Lemma 27. Let MΠ
k (t) be the number of families of size k obtained from

the coalescent tree considered for all s≥ t. (I.e., this tree at level s≥ 0 has
|Πt+s| branches.) Using monotonicity of MT0

k (t) (number of families of size k
in the infinite-site case on T0) with respect to the intensity, this means that
for all ε > 0, for t sufficiently small, MΠ

k (t) ≤MT0
k (1 − tq/R−1(1)), where

the intensity is (θ + ε)R−1(1)/q. Using (40) and the notation u = R−1(1),
we have

limsup
t→0

tcMΠ
k (t)≤ lim sup

t→0
tcMT0

k (1− tq/R−1(1))

≤
K(θ + ε)u

qc
u−1/(α−1)Zuucq−cP (ξτ = k)

≤
θ + ε

c
(αΓ(α))1/(α−1)P (ξτ = k)
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after simplification, recalling that c = (2−α)/(α− 1). We may proceed sim-
ilarly with the lim inf, so we have proven that almost surely as t→ 0,

tcMΠ
k (t)→

θ

c
(αΓ(α))1/(α−1)P (ξτ = k).

Combining this result with (39), we get

tcNΠ
k (t)→

θ

c
(αΓ(α))1/(α−1)P (ξτ = k).

The same calculations apply to show that the total number of marks MΠ(t)
satisfies

tcMΠ(t)→
θ

c
(αΓ(α))1/(α−1)

almost surely. We apply this convergence at times t = Tn = inf{t > 0 : |Πt|≤
n}. Recall that Tn ∼ (αΓ(α))n1−α almost surely and that when |Π(Tn)| = n
(i.e., if the coalescent ever has n blocks), then MΠ(Tn) is identical to M(n).
On the other hand, by Theorem 1.8 in [8], limn→∞P (|ΠTn |= n) = α−1 > 0,
so conditioning on this event which has asymptotically positive probability,
we find that

nα−2M(n)→p θ
α(α− 1)Γ(α)

2− α

(this argument is similar to the one for Theorem 1.9 in [8]). On the other
hand, the total number of families M(n) is Poisson with parameter θLn,
conditionally on Ln, where Ln is the total length of the tree, so this gives
another proof of Theorem 1.9 in [8] which states that

nα−2Ln→p
α(α− 1)Γ(α)

2−α
.

We conclude similarly that

nα−2Mk(n)→p θ
α(α− 1)Γ(α)

2−α
P (ξτ = k).

It follows immediately that the same convergence holds for Nk(n) and this
concludes the proof of Theorem 9. !

Corollary 37. Let K(n) be the size of a family chosen uniformly at
random among all M(n) families when the population has n individuals.
Then

K(n)→d ξτ .

This is just a reformulation of the fact that the proportions of families of
size k converge to P (ξτ = k). Note that ξτ <∞ almost surely, meaning that,
asymptotically, a typical family stays of finite size.
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[5] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York–
Heidelberg. MR0373040

[6] Berestycki, J. (2003). Multifractal spectra of fragmentation processes. J. Statist.

Phys. 113 411–430. MR2013691
[7] Berestycki, J., Berestycki, N. and Limic, V. (2007). The asymptotic number of

blocks in a Lambda coalescent. To appear.
[8] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2006).

Small-time behavior of beta-coalescents. Preprint. Available at
http://front.math.ucdavis.edu/math.PR/0601032.

[9] Bertoin, J. (1999). Subordinators: Examples and applications. Ecole d ’été de Prob-
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berg, J. and Wakolbinger, A. (2005). Alpha-stable branching and beta-
colaescents. Electron. J. Probab. 10 303–325. MR2120246

[15] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and
an abstract cavity method. Comm. Math. Phys. 197 247–276. MR1652734

[16] Donnelly, P. and Kurtz, T. (1999). Particle representations for measure-valued
population models. Ann. Probab. 27 166–205. MR1681126

[17] Duquesne, T. and Le Gall, J.-F. (2002). Random Trees, Lévy Processes, and Spa-
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