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Abstract

A branching process in random environment (Z,,, n € N) is a generalization of Galton
Watson processes where at each generation the reproduction law is picked randomly.
In this paper we give several results which belong to the class of large deviations. By
contrast to the Galton-Watson case, here random environments and the branching
process can conspire to achieve atypical events such as Z,, < e when c¢ is smaller
than the typical geometric growth rate L and Z,, > e°” when ¢ > L.

One way to obtain such an atypical rate of growth is to have a typical realization
of the branching process in an atypical sequence of environments. This gives us a
general lower bound for the rate of decrease of their probability.

When each individual leaves at least one offspring in the next generation almost
surely, we compute the exact rate function of these events and we show that condi-
tionally on the large deviation event, the trajectory t — % log Z 4, t € [0, 1] converges
to a deterministic function f. : [0,1] — Ry in probability in the sense of the uniform
norm. The most interesting case is when ¢ < L and we authorize individuals to
have only one offspring in the next generation. In this situation, conditionally on
Z, < e, the population size stays fixed at 1 until a time ~ nt.. After time nt.
an atypical sequence of environments let Z,, grow with the appropriate rate (# L)
to reach ¢. The corresponding map f.(t) is piecewise linear and is 0 on [0,¢.] and

fet) =c(t—t.)/(1 —tc) on [te, 1].

AMS 2000 Subject Classification. 60J80, 60K37, 60J05, 92D25
Key words and phrases. Branching processes, random environments, large deviations.



1 Introduction

Let P be the space of probability measures on the integer, that is

Pi={p:N—[0,1]:> p(k) =1},
k>0

and denote by m(p) the mean of p :

m(p) =Y _ kp(k).

k>0

A branching process in random environment (BPRE for short) (Z,,n € N) with
environment distribution p € M;(P) is a discrete time Markov process which evolves
as follows : at time n, we draw p according to p independently of the past and then
each individual i = 1, ..., Z, reproduces independently according to the same p, i.e. the
probability that individual ¢ gives birth to k offsprings in the next generation is p(k) for
each i. We will denote by P, the distribution probability of this process started from z
individuals. When we write P and unless otherwise mentioned, we mean that the initial
state is equal to 1.

Thus, we consider an i.i.d. sequence of random environment (p;);cny with common
distribution p. Traditionally, the study of BPRE has relied on analytical tools such as
generating functions. More precisely, denoting by f; the probability generating function
of p;, one can note that the BPRE (Z,,,n € N) is characterized by the relation

E(Szn+1’Z07"'7Zn; an"'7fn) :fn(s)zn (0 S s S 1’ n 2 O)

For classical references on these processes see [1, 2, 3, 6, 15, 23].

A good picture to keep in mind when thinking of a BPRE is the following : consider
a population of plants which have a one year life-cycle (so generations are discrete and
non-overlapping). Each year the climate or weather conditions (the environment) vary
which impacts the reproductive success of the plant. Given the climate, all the plants
reproduce according to the same given mechanism. In this context, p can be thought of
as the distribution which controls the successive climates, which are supposed to be iid,
and the plant population then obeys a branching process in random environment. By
taking a Dirac mass for p we recover the classical case of Galton Watson processes.

At least intuitively one easily sees that some information on the behavior of the BPRE
Zy, can be read from the process M,, = II}m(p;) and that their typical behavior should
be similar :

Zy, &~ My, (n € N).

Hence the following dichotomy is hardly surprising: A BPRE is supercritical (resp. crit-
ical, resp. subcritical) if the expectation of log(m(p)) with respect to u the law of the
environments :

E(log(m(p))),

is positive (resp. zero, resp. negative). In the supercrticial case, the BPRE survives with
a positive probability, in the critical and subcritical case, it becomes extinct a.s.



Moreover, in the supercritical case, we have the following expected result [3, 16].
Assuming that E(} ;. k°p(k)/m(p)) < oo for some s > 1, there exists a finite r.v. W
such that

M1z, =W,  P(W >0)=P(n,Z,>0).

which ensures that conditionally on the non-extinction of (Z,),en

log(Zyn)/n — E(log(m(p))) a.s.

This result is a generalization in random environment of the well known Kesten-Stigum
Theorem for Galton- Watson processes : let N be the reproduction law of the GW process
(Zn,n > 0) and let m = E(NV) be its mean. Assume that E(N log, N) < oo, then

W, = Z,/(m™) =W,  P(W >0)=P(Vn,Z, > 0).

The distribution of W is completely determined by that of N and a natural question
concerns the tail behavior of W near 0 and infinity. Results in this direction can be found
for instance in [8, 12, 13, 22] for the Galton Watson case and [17] for the BPRE case. In
a large deviation context, the tail behavior of W can be related to event where Z,, grows
with an atypical rate. Another way to study such events is to consider the asymptotic
behavior of Z,1/Z,. This is the approach taken in [5] to prove that |W,, — W| decays
supergeometrically when n — oo, assuming that P(N = 0) = 0. Yet another approach
is the study of so-called moderate deviations (see [21] for the asymptotic behavior of
P(Z, = v,) with v, = O(m™")).

Finally, we observe that Kesten Stigum Theorem for Galton Watson processes can be
reinforced into the following statement:

1
(t — - log Zjpy,t € [0,1]) = (t = tlog(m),t € [0,1]).

in the sense of the uniform norm almost surely (see for instance [20] for this type of
trajectorial results, unconditioned and conditioned on abnormally low growth rates).

In this work we will consider large deviation events for BPREs A.(n),c > 0 of the
form
Au(n) = { {0 < Llog Z, < c} for ¢ < E(log(m(p))
¢ {Llog Z, > ¢} for ¢ > E(log(m(p)) ~
and we are interested in how fast the probability of such events is decaying. More precisely,
we are interested in the cases where

~log(E(Au(n) — x(0), with x(¢) < ox.

Let us discuss very briefly the Galton-Watson case first (see [14, 20, 22]). Assume first
that the Galton Watson process is supercritical (m := E(N) > 1) and and that all the
moments of the reproduction law are finite. If we are in the Béttcher case (P(INV < 1) = 0)
then there are no large deviations, i.e.

c#logm = ¢(c) = 0.

If, on the other hand, we are in the Schrodder case (P(N = 1) > 0) then ¢(c) can be
non-trivial for ¢ < logm. This case is discussed in [20] (see also [14] for finer results for



lower deviations) where it is shown that to achieve a lower-than-normal rate of growth
¢ < logm the process first refrains from branching for a long time until it can start to
grow at the normal rate logm and reach its objective. More precisely, it is a consequence
of Theorem 2 below that conditionally on Z,, < e,

(5 1o8(Zi):t € 0.11) = (0.t € 0.1

in probability in the sense of uniform norm, where f(t) = log(m).(t — (1 — ¢/log(m)))+.
When the reproduction law has infinite moments, the rate function ¢ is non-trivial for
¢ > logm. In the critical or subcritical case, there are no large deviations.

We will see that the situation for BPRE differs in many aspects from that of the
Galton-Watson case: for instance the rate function is non-trivial as soon as m(p) is not
constant and more than 1 with positive probability. This is due to the fact that we can
deviate following an atypical sequence of environments, as explained in the next Section,
and as already observed by Kozlov for upper values in the supercritical case [18]. When we
condition by Z, < e and we assume P(Z; = 1) > 0 the process (1 log(Zny),t € [0,1])
still converges in probability uniformly to a function f.(¢) which has the same shape as f
above, that is there exists ¢, € [0, 1] such that f.(t) = 0 for ¢t < ¢, and then f. is linear and
reach ¢, but the slope of this later piece can now differs from the typical rate E(log m(p)).

2 Main results

Denote by (L;);en the sequence of iid log-means of the successive environments,
Li:=log(m(pi)),  Sp:=) Li

and

L := E(log(m(p))) = E(L).

Define ¢r(\) := log(E(exp(AL))) the Laplace transform of L and let ¢ be the large
deviation function associated with (Sy,)nen:

P(c) = sup{cA — o (M)}
AER

We briefly recall some well known fact about the rate function ¢ (see [11] for a classical
reference on the matter). The map = — 9 (z) is strictly convex and C* in the interior
of the set {A’(\), A € D3} where Dy = {\ : A(\) < oo}. Furthermore, /(L) = 0, and 1)
is decreasing (strictly) on the left of L and increasing (strictly) on its right.

The map ¢ is called the rate function for the following large deviation principle
associated with the random walk S,,. We have for every ¢ < L,

Jim —log(IP(Sy/n < ¢)/n = (c), (1)
and for every ¢ > L
Jim —log(IP(Sp/n > ¢)/n = ¢(c). (2)



Roughly speaking, one way to get
log(Z,)/n € O (n — o0)
is to follow environments with a good sequence of environments:
log(IT}_ym(p;))/n = Sp/n € O.

We have then the following upper bound for the rate function for any BPRE under a
moment condition analogue to that used in [16]. In ecology applications, this corresponds
to explaining a rare event by environmental stochasticity.

Proposition 1. Assuming that E(} .. k*p(k)/m(p)) < oo for some s > 1, then for
every 2g :

-VYe< L .
limsup ——log P, (log(Z,)/n < ¢) < (c).
n

n—oo

lim sup ! log P, (log(Z,)/n > ¢) < (c).
n—00 n

As Theorem 2 below shows, the inequality may be strict. Moreover, this proves that
even in the subcritical case, there may be large deviations, contrary to what happens in
the Galton Watson case. More precisely, as soon as P(m(p) > 1) > 0 and m(p) is not
constant almost surely, the rate function v is non trivial on (0, c0).

As the proof of this result uses classical probability tilting arguments, we only give
the main idea and leave the details to the interested reader. Introduce the probability P

on P defined by
m(p)e
E(m(p)*)

where A, is the point where A — Ac — ¢, () reaches its unique maximum. in [0, 1]. Under
this new probability

P(p € dp) = P(p € dp),

E(log m(p)) = ¢ > 0,
so Sp, = Y i logm(p;) is a random walk with drift ¢ and Z, is a supercritical BPRE
with survival probability p > 0. Observe that for a measurable function f E.,(f(Z,)) =
E(m(p)*)"E., (exp(—AeSn) f(Zy)). The result follows with f(z) = Ije—c cqq(log(2)/n).
2.1 Lower deviation in the strongly supercritical case.

We focus here on the so-called strongly supercritical case
P(p(0) =0) =1

(in which the environments are almost surely supercritical). Let us define for every ¢ < L,

(@) = inf {~tlog(E(p(1)) + (1 - hilc/(1 - 1)}

te(0,1]

It is quite easy to prove that this infimum is reached at a unique point t. by convexity
arguments. Thus

x(c) = —tlog(E(p(1))) + (1 — te)ib(c/(1 —tc)), te € [0,1 — ¢/L].



We can thus define the function f. : [0,1] — R for each ¢ < L as follows (see figure 1):

0, if < t,
felt) = { et —te), ift >t

0 te 1

Figure 1: The function t — f.(t) for ¢ < L.

We will need the following moment assumption H.

JA > 0 s.t. u(m(p) > A) =0,
{ dB > 0 s.t. u(zﬂkeN k*p(k) > B) =0 } (H)

Observe that the condition in Proposition 1 (3s > 1 such that E(}, .y k*p(k)/m(p)) <
o0) is included in (H).

The main result is the following theorem which gives the large deviation cost of
Z, < exp(cn) and the asymptotic trajectory behavior of Z, when conditioned on
Zn < exp(cn).

Theorem 2. Assuming that P(p(0) = 0) = 1 and the hypothesis H we have
(a) If u(p(1) > 0) > 0, then for every c < L,
—log(P(Zy, < e™))/n "= x(e),
and furthermore, conditionally on Z, < e“",

sup {‘ log(Z[m})/n — fc(t)|} o, in P.
te(0,1]



(b) If u(p(1) > 0) = 0, then for every ¢ < L,
—log(P(Zn < e™))/n == 9(c),
and furthermore for every inf{supplog(m(p))} < ¢ < L, conditionally on Z,, < e,

sup {|log(Zj))/n — ct|} =370, in P.
te[0,1]

Let us note that if u(p(1) > 0) > 0, then ¢. -the take-off point of the trajectory- may
either be zero, either be equal to 1 — ¢/L, or belong to (0,1 — ¢/L) (see Section 3 for
examples).

Moreover, when m := m(p) is deterministic, as in the case of a GW process,

- If pw(p(l) > 0) > 0 (Bottcher case), then ¢, = 1 — ¢/log(m) and x(c) =
telog(E(p(1)))-

- If p(p(1) > 0) = 0 (Schrodder case), then x(c) = —oc.

Let us first give a heuristic interpretation of the above theorem. Observe that
P(Zy =1,k =1,...,tn) = E(p(1))™ = exp(log(E(p(1)))tn)
and that
Tim ~1ogB(S(1_ya/n < ¢) = (1~ )(e/(1 — 1))
This suggests that
P(Zr=1,k=1,...,tn;S, — S, < cn) < exp(n[tlog(E(p(1))) + (1 — t)v(c/(1 —1))])

and x(c) is just the “optimal” cost of such an event with respect to the choice of ¢. It is
not hard to see that the event {Zy = 1,k =1,...,tn ; S, — Sy, < en} is asymptotically
included in {Z,, < en} and hence x(c) is an upper bound for the rate function for Z,.
Adding that once Z, >> 1 is large enough it has no choice but to follow the random
walk S, associated to the environment sequence, x is actually the good candidate to be
the rate function.

Thus, roughly speaking, to deviate below ¢, the process (log(Zuy)/n)e(0,1] stays
bounded until an optimal time ¢. and then deviates in straight line to ¢ thanks to a good
sequence of environments. The proof in Section 5 and 6 follows this heuristic.

Another heuristic comment concerns the behavior of the environment sequence con-
ditionally on the event Z, < e. Before time [nt.] we see a sequence of iid environments
which are picked according to the original probability law p biased by p(1) the proba-
bility to have one offspring (think of the case where p charges only two environments).
After time [nt.] we know that the distribution of the sequence (L;);>[,s,] is the law of
a sequence of iid L; conditioned on Z:‘L:[ntc} L; < [nc]. This implies that the law of the
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environments is that of an exchangeable sequence with common distribution g tilted by
the log-means.

To conclude this section, we comment on the hypothesis P(p(0) = 0) = 1. It is known
(see [6]) that for a Galton Watson process Z,, with survival probability p and generating
function f, under the N log N condition, for all j € N

Y "P(Zn =) — ()

where Vj € N: o € (0,00) and v = f'(p). In the case where P(Z; = 0) = 0 (no death),
v = f'(p) = f'(0) = P(Z; = 1) which tells us that the cost of staying bounded is the
cost of keeping the population size fixed at 1, a fact that we also use for our analysis
of BPRE. This suggests that the analogue of v for BPRE should also play a role in the
lower deviations events when P(p(0) = 0) < 1. However there is not yet an analogue of
(x) for BPRE and the situation is probably more complex.

2.2 Upper deviation in the strongly supercritical case

Assume as above that

and that for every k > 1,
E(Z}) < oo,

we have the following large deviation result for upper values.

Theorem 3. For every ¢ > L,
1 .
——log(P(Z, > e™)) "= (o),
n

and furthermore for ¢ < sup{supplog(m(p))}, conditionally on Z, > exp(cn),

sup {|log(Zym))/n — ct|} 0.
t€0,1]

To put it in words, this says that the cost of achieving a higher than normal rate of
growth is just the cost of seeing an atypical sequence of environments in which this rate
is expected. Furthermore, conditionally on Z, > e, the trajectory (log(Zj,q)/n)efo,1]
is asymptotically a straight line.

Kozlov [18] gives the upper deviations of Z,, in the case where the generating functions
f are a.s. linear fractional and verify a.s. f”(1) = 2f/(1)2. In the strongly supercritical
case and under those hypothesis, he proves that for every 6 > 0, there exists I(6) > 0
such that

P(log(Z,) > 6n) ~ I(0)P(S,, > On), (n — o).

Thus, Kozlov gets a finer result in the linear fractional case with f”(1) = 2f'(1)? a.s. by
proving that the upper deviations of the BPRE Z,, above L are exactly given by the large
deviations of the random walk S,,.

Proposition 1 shows that the rates of upper and lower deviations are at least those of
the environments, but Theorem 2 and the remark below show that the converse is not
always true.

Theorem 3 is the symmetric for upper deviations of case (b) of Theorem 2 for lower
deviations. It is natural to ask if there is an analogue of case (a) as well. In this direction,
we make the following two remarks.



o If there exists k > 1 such that
E(ZY) = oo,

then the cost of reaching ¢ can be less that 1(c), since the BPRE might “explode”
to a very large value in the first generation and then follow a geometric growth.
This mirrors nicely what happens for lower deviations in the case (a). However we
do not have an equivalent of Theorem 2 for upper deviations as such a result seems
much harder to obtain for now.

e In the case when
P(m(p) < 1) >0,

then by Theorem 3 in [16],

Smax ‘= sUp{E(W?*) < oo} < o0.
s>1

Thus, the BPRE (Z,)nen might deviate from the exponential of the random walk

of environments :

lim — log(P(exp(—Sn)Z, > exp(ne))/n < oo, (e >0),

n—oo

which would yield a more complicated rate function for deviations.

2.3 No large deviation without supercritical environment

Finally, we consider the case when environments are a.s. subcritical or critical :
P(m(p) <1) =1,

and we assume that for every j € N, there exists M; > 0 such that
© .
Zk:]p(k:) < Mj as. (M).
k=0

Note that the condition (M) implies (H) simply by considering j = 2.

In that case, even if P1(Z; > 2) > 0, there is no large deviation, as in the case of a
Galton Watson process.

Proposition 4. Suppose (M) and that P(m(p) < 1) =1, then for every ¢ > 0,

lim —log(P(Z, > exp(cn))/n = cc.

n—oo

We recall that by Proposition 1, this result does not hold if P(m(p) > 1) > 0.

The next short section shows a concrete example where ¢, is non trivial. Section 77
is devoted to the proof of Proposition 1. Section 4 is devoted to proving two key lemmas
which are then used repeatedly. The first gives the cost of keeping the population bounded
for a long time. The second tells us that once the population passes a threshold, it grows
geometrically following the product of the means of environments. In Section 77, we start
by computing the rate function and then we describe the trajectory. Section 5 is devoted
to upper large deviation while Section 6 to case when environments are a.s. subcritical
or critical.



3 A motivating example : the case of two environments

Suppose we have two environments P; and P, with u(p = P;) = ¢. Call L; =
logm(P;) and Ly = logm(P,) their respective log mean and suppose L; < Ly. The
random walk S, is thus the sum of iid variables X : P(X = L;) = ¢,P(X = Ly) =1 —q.

Recall that if X is a Bernoulli variable with parameter p the Fentchel Legendre trans-
form of A(\) = log(E(eM)) is

A (z) = wlog(z/p) + (1 — 2)log((1 — 2)/(1 = p)).

Hence the rate function for the large deviation principle associated to the random walk
Sy, is defined for Ly < x < Ly by

—L
() = zlog(2/p) + (1 = )log((1 - 2)/(1 = p)) where z = ——.
2 —1n
Recall that E(p(1)) = ¢Pi(1) 4+ (1 — q)P»(1) is the probability that an individual has
exactly one descendent in the next generation.

The following figure 2 shows the function t — —tlog(E(p(1))) 4+ (1 — t)¢(c/(1 — 1)),
so x(c) is the minimum of this function and t. is the ¢ where this minimum is reached.
Figure 2 is drawn using the values L1 = 1, Ly = 2, ¢ = .5, E(p(1)) = .4, ¢ = 1.1 and
1 —¢/L ~ .27. Thus, we ask Z, < e!'!" whereas Z,, behaves normally as %" and this
example illustrate Theorem 2 a) with ¢, € (0,1 — ¢/L).

uuuuuu

uuuuuu

040000 /
o

uuuuuu

nnnnnn

uuuuuu

Figure 2: In this example t. ~ 0.18, the slope of the function f. after ¢. is 1.34.

As an illustration and a motivation we propose the following model for parasites in-
fection. In [7], we consider a branching model for parasite infection with cell division. In
every generation, the cells give birth to two daughter cells and the cell population is the
binary tree. We want to take into account unequal sharing of parasites, following experi-
ments made in Tamara’s Laboratory in Hopital Necker (Paris), and we distinguish a first
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(resp. a second) daughter cell. Then we call Z() (resp. Z(?)) the number of descendants
of a given parasite of the mother cell in the first (resp. the second daughter), where
(ZM, Z?) is any couple of random variable (it may be non symmetric, dependent...).
A key role for limit theorems is played by the process (Z,,)nen which gives the number
of parasites in a random cell line (choosing randomly one of the two daughter cells at
each cell division and counting the number of parasites inside). This process follows a
Branching process with two equiprobable environment with respective reproduction law
ZW and Z®). Thus, here ¢ = 1/2, L; = log(E(ZM)) and Ly = log(E(Z?)).

We are interested in determining the number of cells with a large number of parasites
and we call N=¢ (resp N7¢) the number of cells in generation n which contain less (resp.
more) than exp(cn) parasites, for ¢ > 0. An easy computation (which follows (17) in [7])
shows that

E(NE®) = 2"P(Z, < exp(cn)), E(NZ°) =2"P(Z, > exp(cn)).
IfP(ZM = 0) = P(Z? = 0) = 1, Section 2.1 ensures that for every ¢ > /E(ZW)E(Z?),

lim log(E(N%))/n = log(2) — x(c).

n—oo

Moreover Section 2.2 ensures that for every ¢ > /E(Z())E(Z(3),

lim log(E(NE))/n = log(2) — (c).

4 Lower deviations: Proof of Theorem 2

Let us briefly describe the main steps which compose the proof of Theorem 2. First,
we compute the rate of decrease of the probability that the population remains bounded.
We then prove that when the population is large enough, its growth is given by the
product of mean of the successive environments. This allows us to give both the rate
function for large deviations and the point where the trajectory of the process under the
conditional event takes off. Finally, we describe the full asymptotic path conditionally on
the large deviation event.

4.1 The cost of staying bounded

We start with the following elementary result, which says that staying bounded has
the same exponential cost than staying fixed at 1.

Lemma 5. For every N > 1,
lim log(P(Z, < N))/n = log(E(p(1)).

Moreover, if E(p(1)) > 0, then for every fized N there is a constant C' such that for every
n €N,
P(Z, < N) < CnVE(p(1))" .

Proof. We call (N;);>1 the number of offspring of a random lineage. More explicitly, we
call Ny the size of the offspring of the ancestor in generation 0 and pick uniformly one
individual among this offspring. We call Nj the size of the offspring of this individual
and so on...
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Note that (V;);>1 are iid with common ditribution P(N = k) = E(p(k)). Hence, for
every n > N, recalling that P(p(0) =0) =1,

P(Z, < N) < P(less than N of the (N;)o<i<n—1 are > 1)

Adding that

allows us to conclude. O

Our proof actually shows the stronger
lim log(P(Z, < n®))/n =log(E(p(1))),
n—oo

for a € (0,1).

4.2 The cost of deviating from the environments

The aim of this section is to show that once the process “takes off” (i.e. once the
population passes a certain threshold), it has to follow the products of the means of the
environments sequence.

Lemma 6. Assuming H, for all ¢ > 0 and n > 0, there exist N, D € N such that for all
zo> N and n € N,

Py (Zn < 29exp(Sy — ne) | (pi)iZg) < D" as.

so that
P.,(Zy, < exp(S, —ne)) < Dn".

Define for every 0 <i <n —1,
R, = Zi1/Z;,

so that
Zy = ZolT!§' R;.

For al A\> 0, ¢ € Nand 0 <i <n — 1 define the function
Aq(\,p) = E(exp(A[L; — e —log(R,)]) | pi = p, Zi = q),

(this quantity does not depend on ¢ by Markov property) and

Mn (A, p) == sup Ag(A, p).
=N

The proof will use the following Lemma, the proof of which is given at the end of this
section.
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Lemma 7. Fiz e > 0, there exist a € (0,1),\g € (0,1) and N € N such that
Mn(Mo,p) <1—a a.s.

where p is a random probability with law w.

We proceed with the proof of Lemma 6 assuming that the above result holds.

Proof. For every A > 0,¢ > 0, k : inN, by Markov inequality

Pz (Zn < kzo exp(Sy, — ne) | (pi)?;ol)

n—1
= P, (2011 Ri < kzoexp(>_[Li —€]) | (P:)}g)
=0
n—1
< B Ea (exp{A D [Li — e —log Ril} | (pi)1y).
=0

Observe that conditionally on pj, R; depends on (pi)gzo and (Zy, Ro, R1,..., Rj—1)
only through Z;. Furthermore, under P,; we have that almost surely Vn € N : Z, > 2
since P(p(0) > 0) = 0. Hence we get for every A > 0,

.o (Zn < kzgexp(Sy, — ne) | (pi)'=)

n—2

<k EZO{ exp(A Z[Lz — e —log(R;)])
i=0

XE. [exp(ALn-1 — €~ 10g(Ra-1))) [Pu-1, Z0-1] | (i) |

n—2

k)\ Ezo(exp()‘ Z[Ll —€— log(Ri)]) { (pi)?;02)Mzo ()" pnfl)
=0

IN

<
< k)\ H;L:_()leo ()‘7 pi)'

Fix ¢ > 0, by Lemma 7 we can find a € (0,1),\p € (0,1) and 3N € N such that
almost surely Vi € N, My (Mo, p;) < 1— a. Hence, for all zyp > N,k € N we have,

P.,(Zn < kzgexp(Sn — ne) | (pi)iey) < kM HMzo (Mo, pi) <EM(1—a)" as.  (3)
i=1

Fix now n > 0 and chose k € N such that (1 — a)® < 5. By starting with an initial
population of size larger than kN and dividing it up in subgroups of size at least N
which then evolve independently, we see that Lemma 6 follows easily from(3).

O

We now prove Lemma 7.
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Proof. Observe that the (Ag(X, p;))ien are iid with common distribution
Ay(N) = Ag(A, po) = E(exp(A[Log — € — log Ro]) |po, Zo = q).
By Taylor’s formula, for every A > 0, there exists ¢y € [0, A] such that
Ag(A) =1+ AE(Lo — € —log(Ro) | po, Zo = q) + A*Ag(c). (4)

Conditionally on pg = p and Zy = ¢, Ry = ¢! 7 | X; where the X; are iid with
distribution p. We then remark that since Ry > 1 and exp Ly > 1 a.s., using |log(Ry) —
Lo| < |Rp — exp Lg| and Cauchy-Schwartz inequality

1 1/2
|E[log(Ro) — Lo | o, Zo = q]| < <5Varp0> .
By hypothesis ‘H, Varp, is bounded so there exists N € N such that for every ¢ > N,
|E[log(Ro) — Lo|po, Zo = q]| < €/2 a.s.

Next, in order to bound the second order term Ag (M), using logz < z—1 when x > 0,
we note that

) q
E(log(Ro)* | po, Zo=4q) <1+ ?E(ZXJQ | Po, Zo=4q)
j=1

2
<1+4+-B a.s.,
q

where B is the constant from H. Hence, for any A € [0, 1],
Ag(N) = E[(Lo — € —log Rg)?eFomeloso)| po - 7, = Q}
6LOH‘E[(LO — e —log(Ro))* | po, Zo = Q]

< 44 [(log AP 42+ IE(log(Ro)2 | Po, Zo = q)] a.s.,

IN

where A is the constant from H. Thus we conclude that for all A € [0,1] and ¢ € N
Aj(N) <M a.s.,
where M is a finite constant. Then, for all ¢ > N and A € [0, 1],
AN <1 —Ae/2+ N2M a.s.,

and thus
My (A, po) < 1—Xe/2+ N2M a.s. .

Choose now g € (0,1] small enough such that Age/2 — \3M = a > 0, then
Mp (Ao, pPo) <1— a a.s. This ends up the proof of Lemma 7. O
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4.3 Deviation cost and take-off point

For each ¢ < L, we start by giving the rate function for lower deviations and we prove
that (Z[nt])te[o,l] begins to take large values at time t.. We then show that no jump occur
at time ¢, and that (log(Z[,s)/n)ie[r.,1) grows linearly to complete the proof of Theorem 2.

We consider the first time at which the population reaches the threshold N
T(N):=inf{k: Zy > N}, 7,(N)=min(7(N),n).
Recalling that

x(c) = inf }{—tlog(E(p(l)))+(1—t)1/1(0/(1—t))}

te[0,1—c/L

and that t. is the unique minimizer,we have the following statement.

Proposition 8. For each ¢ < L,
1

lim ——logP(log(Z,)/n < ¢) = x(c).
n—oo n

Furthermore, for N large enough, conditionally on Z, < e“",
T(N)/n "= t. inP.

For the proof, we need the following lemma, which tells us that once the population is

above N, the cost of a deviation for (Z,,),>0 is simply the cost of the necessary sequence
of environments, i.e. the deviation cost for the random walk (.S;,)n>0.
By decomposing the total probability cost of reaching nc in two pieces (staying bounded
until time nt and then having (S, — St.n) =~ nc) and then minimizing over t gives us
the correct rate function. The unicity of this minimizer ¢. ensures then that the take-off
point 7,,(N)/n converges to t..

Lemma 9. Assume H.

(i) For each n > 0,e > 0, there exists D, N € N such that for all ¢ > 0, zg > N and
n €N,

P., (Zn < pexp(cn)) < D(" + exp(—ny*(c + €))),
where ¢¥*(x) = Y(x) for x < L and *(x) =0 for x > L.

(ii) For every e > 0 and for every co < L — € such that 1)(co) < oo, there exists N such
that for all zg > N and c € [co, L — €],

1
liminf ——log P.,(Z,, < z0e™) > ¥(c + ¢)
n— oo n

and 1
lim sup ——log P, (Z,, < zpe™) < 9(c).
n

n—oo

15



Proof. For each zo € N,c < L,n € N and € > 0,

P., (Zn < z exp(cn))
< P.,(Z, < 20exp(cn), Sy, —ne > cn) + P, (Sn — ne < cn)
<P, (Zn < zpexp(Sy, — ne)) + P, (Sn <(c+ e)n)

We bound this using Lemma 6 and the following classical fact (see [11]): If ¢ < L,
Vn e N:P(S, < nc) < exp(—ni(c)) (5)
Thus, there exist D, N := D(e,n), N(e,n) such that for all ¢ < L — ¢, 29 > N,
P.,(Z, < zpexp(cn)) < Dn™ + exp(—ny*(c + €)).
which yields (i).

The first part of (ii) is an easy consequence of (i) by taking n < inf{exp(—1(c)),c €

[co, L — €]}. The second part comes directly from Proposition 1. O

Proof of Proposition 8. If E(p(1)) = 0 then x(¢) = 9¥(¢) and t. = 0. Noting that
Zy > 2" a.s. gives directly the second part of the lemma, while the first part follows
essentially from Lemma 9 (ii).

We suppose now that E(p(1)) > 0. For each ¢ < L and i = 1,...,n, we have for every
zo €N,

P(1n(N) =1, Z, <exp(cn)) P(Zi—1 < N)Pn(Z,—i < exp(cn))

<
< P(Zi—1 < N)Pn(Zy—i < Nexp(cn)).

Using Lemma 9 and Lemma 5, for all n > 0 and € > 0, there exists N, M € N such that
for all z9 > N,

P(ra(N) =i, Zy<exp(en) < MnVE(p(1)[y"™ + exp(~(n — ip*(en/(n — i) + )]

Summing over i leads to
P(log(Zn)/n < ¢) =Y P(r(N) =1, log(Z,)/n < ¢)
i=1

< 3 MaVE®Q)) [ + exp(—(n — i (en/(n — i) + ).
i=1

Thus, using standard inequalities and that a" + "™ < (a + b)™ when a,b > 0, we see that
o 1
lim inf ——log P(log(Z,,)/n < ¢)
n— o0 n

> inf {~tlog(E(p(1))) ~ (1~ 1)loz(n + exp(~"(e/(1 ~1) + 9))}.

16



This yields the results by letting 1, e — 0, and noting that the infimum is necessarily
reached on [0,1 — ¢/L] (since ¥*(c/(1 —t)) =0 as soon as t > 1 —¢/L).

More generally, given 0 < a < b < 1 it is an easy adaptation of the above argument
to show that

lim inf—% logP(log(Z,)/n < ¢, 7, (N)/n € [a, b))

> inf -~ {—tlogE(p(1)) + (1 —t)y(c/(1 =1))}. ()
tela,bjN[0,1—c/L]

The upper bound is much easier since it is enough to exhibit a trajectory having x(c)
as it asymptotic cost. By construction it should be clear that

P(Z[tcn} =172, <e™) = P(Z[tcn} = 1)P(Zn—[tcn] <e™)

By Lemma 5 and Proposition 1,

limnsup _% log IP)(Z[tcn] = 15 Zn < ecn) < _tc IOg E(p(l)) + (1 - tc)¢(c/(1 - tc))
= x(o).

Combining this inequality with the lower bound given by (?7), this concludes the proof
of the first point of Proposition 8.

For the convergence of 7,,(N)/n — t., observe that as t. is the unique minimizer of

te[0,1] — {—tlogE(p(1)) + (1 —t)y(c/(1 — 1))}, if t. & (a,b) we have

inf —_ {—tlogE(p(1)) + (1 = )y(c/(1 = 1))} > x(c).
tela,b]N[0,1—c/L]
This means by (??) and (6) that conditionally on Z, < e the event 7,,(N)/n € (a,b)
becomes negligible with respect to the event 7,,(N)/n € [t. — €, t. + €] for any € > 0. This
proves that 7,(N)/n —, t.. O

Proposition 8 already proves half of Theorem 2. We now proceed to the proof of the path
behavior. Define a process t — Y (") () for t € [0, 1] by

n 1
v = - 10g(Zjny)-

The second part of Theorem 2 tells us that Y () (t) converges to f. in probability in the
sense of the uniform norm. To prove this we need two more ingredients, first we need to
show that after time 7,,(IN)/n ~ t. the trajectory of Y (")(t) converges to a straight line
(this is the object of the following section 4.4) and then that Y™ does not jump at time
Tn(N)/n (in section 4.5).
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4.4 Trajectories in large populations

The following proposition shows that for a large enough initial population and condi-
tionally on Y™ (1) < ¢ the process Y™ converges to the deterministic function ¢ s ct.

Proposition 10. For all ¢ < L and € > 0, there exists N € N, such that for zo > N,

lim P, ( sup (Y™ () —ca| > e | Z, < 2 exp(cn)) = 0.
n=oo z€[0,1]

Before the proof, let us give a little heuristic of this result. Informally, for all ¢t € (0,1)
and ¢ > 0,

Py (V") = cte, Zu < exp(en)) = Pay(Zjus) = oxp(tn(c+€) Poxp(inter) (Zn-fu < oxp(en)).
Then, for zg large enough, Lemma 9 ensures that
Jim — log(PZO(YQ(n) =c+e, Zy <exp(en)))/n
=tp(ct+e) + (1 —t)p(c—et/(1 1)) (7)
> 1h(c),

by strict convexity of 1. Adding that limsup,, —% log P, (2 < 20e™) < 9(c) by Propo-
sition 1 entails that the probability of this event becomes negligible as n — oo.

Proof. Observe that {3z € [zg,21] : YW (2) > cx + €} = {Fz € [xg,21] : YW (2) €
(cz 4 €, L]}, because a.s. t — Y™ (t) is an increasing function so that the only way
Y™ can cross z — La downward is continuously. Hence we can divide the proof in the
following steps :

(i) There exists 0 < xg < 1 < 1 such that for every ¢ > 0 and for zy large enough
limy, 00 IP’ZO(supxg[mm]{]Y(") (z) —cx| > €| Z, < zpexp(cn)) = 0 (see Figure 4.4).

(i) We show that for zy large enough lim, .o P, (32 € [z0,21] : cx + € < YW (z) <
Lz | Z, < zgexp(cn)) = 0.

(iii) The fact that for zq large enough lim,, .. P, (37 € [vg,21] : YV (2) < cx—€ | Z,, <
zpexp(cn)) = 0 then follows from the same arguments as in (ii).

We start by proving (ii) which is the key point. We can assume € < (L — ¢)x¢ and

€ < (L—c¢)(1—x1) and we define
Re = {(z,y) : ® € [v0,21],y € [cx + ¢, Lx]}.
We know from Lemma 9 that limsup,,_., —2logP.,(Z, < zgexp(cn)) < ¢(c) (for z

large enough). Hence, we will have proved the result if we show that for zg large enough

n—oo

liminf—% log P, (3 € [wo, 1] : (2, Y™ (2)) € R, Z, < 20e™) > ¥(c). (8)

Lemma 9 or heuristic (7) suggest that the asymptotic cost of the event {V()(z) =
y, Y (1) < ¢} is given by the map

2,y € [0,1] = z(y/x) + (1 —z)p((c —y)/(1 — x)).

18



Figure 3: Proof of point (i). By chosing zy small enough, reaching cxg + € requires the
population to deviate from the environments since the environments alone can only reach

ACEQ.

Yd

xg ] Ty T

Figure 4: Proof of point (ii). R, (the grey aera) and the cell 6.

More precisely, consider a cell § = [z}, z,] X [y4, yu] C R, and define for every n > 0,

Cen(0) = 2 (ya/z1 +n) + (1 — 2:)((c — ya) /(1 — z1) + ).
Observe that
(B (2, Y™ (@) € 0} < {Y M (@1) <y} 0 {Y D (24) > yal,
so using the Markov property and the fact that zg — P., (Y™ (1) < ¢) is decreasing
P.,(3z : (z, Y™ (z)) €0, Y™ (1) < ¢)
<P (VO (1) <, Y () 2 90, YO (1) = VO (@) < 0= Y ()

< on (Y(n) (1’[) < yu) SBP P[expny] (Y(n)(l - xr) < (C — y)/(l — 907"))
Y=2Ya

< Py (VO (1) < ) Plesprgy (Y (1= 27) < (e = ya) /(1 = 27))
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Hence, using Lemma 9 (ii), we see that for every n > 0 small enough, there exists N (7, 0)
large enough such that for every zy > N(n,0),

lim 1nf—— logP.,(3z € [0,1] : (2, Y™ (2)) € 0, Y™ (1) < ¢) > Cen(0).
By continuity of ,0 — C;, .(0),
inf  {C,(0)} 1= inf {Co.o({z})}-
zZERe

GCR.:,
diam(6)<d

Moreover for every z = (z,y) € R, x € [xg,x1] and y/x > ¢, so by strict convexity of 1,

Coc({z}) = 2¢(y/z) + (1 = 2)p((c —y) /(1 = ) > (c).

Then inf,er {Coc({z})} > ¥(c), and there exists dy > 0 and n > 0 such that for every
cell § whose diameter is less than &y, for every zo > N(n,0),

lim inf —— log]P’ZO(Hx € [0,1] : (2, Y™ (x)) € 0,YM(1) < ¢) > (c). (9)

Fix an arbitrary region R C R included in the interior of R.. We can chose 0 < 6 < g
such that there is a cover of R by the union of a finite collection K of rectangular regions
[z(0),z(i4+1)] x [y(4),y(j +1)] withi e {1,...,Ns} and j € {1,..., N (i)} such that their
diameter is never more than ¢.

Observe that for every 2o > 1,

P.,(3z : (z,Y™M(2)) e R, Y™ < ¢) < ZPZO(EIx Sz, Y™ () e, Y < ¢)
oeKC
< |K|sup P, 3z : (2, Y™ (2)) € 0, Y™ < ¢).
oeK

Then using (9) simultaneously for each cell § € I, we conclude that for every zp > N =
max{N(0,n):0 € K},

hmmf—— log P, (3z : (z,Y ™ (2)) e R, Y™ < ¢)

n—oo

1
= minliminf —= log P,, (3 : (2, Y™ (2)) € 0, Y™ < ¢)
n

el n—oo
> 1(c).
As R’ is arbitrary in the interior of R, this concludes the proof of (8) and (ii).

Let us now proceed with the proof of (i). Recall that under hypothesis H,P(L >
log A) = 0 (i.e. the support of L is bounded by log A.) Fix ¢ > 0 and take xg,x; such
that e/xg > A+ (,xpc<eand c+e/(1 —x1) > A+ (e > c(l —xq).

P, (3z <z : |Y(")(x) —cx| > e, Y™ (1) < ¢)

<P, (3z ")(x)—cac>e)
<P 0(Y > €)

<P 0(Y<" ) > z0(A+0))

< Py (108(Zjnag) > Sinao) + Cno)
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since nxo(A+ () — Spay > (nxg. Hence this requires a “deviation from the environments”
and by Lemma 6 for 7 fixed, there exists D > 0 such that for zy large enough,

P, (3z <z: Y™ (z) — cx| > €, Y™ (1) < ¢+ log zo/n) < D™,

Picking n small enough ensures that this is in o(exp(—nt(c))). The argument for the
[21,1] part of the interval is similar. Thus, recalling that limsup,_ ., — 2 logP,,(Z, <
zoexp(en)) < (c) for zp large enough, we get (i). O

We can also prove the following stronger result. For every ¢ < L, for every € > 0,
there exists NV € N and « > 0, such that for zg > NV,

lim sup P ( sup (Y™ (z) = da| > e | Zn < 2 exp(c'n)) = 0. (10)

N0 ergle—a,cta] z€[0,1]

Indeed the proof of Lemma 9 (ii) also ensures that for every € > 0 and for every ¢y < L—¢
such that 1 (cg) < oo there exists N such that for zy > N,

1
liminf inf {——logP,,(Z, < z0e™) —¢(c+€)} > 0.

n— 00 CE[Co,E] n

Then, following the proof of (ii) above with now

i i ] 5777*'0
Uit {Cne(0)} = ik {Goc({2hH =0,
diam(6)<d

there exists dg > 0 and 1 > 0 such that for every cell § whose diameter is less than Jg,
for every zo > N(n,0), (9) becomes

B =liminf inf {_% logP.,(3z € [0,1] : (z, Y™ (2)) € 0,Y™ (1) < ¢) —1b(c)} > 0.

n—00 c€lcp,L]

Moreover for every € > 0,

1 1
limsup sup ——logP, (Z, <exp(cn)) < limsup——logP, (Z, < exp((c—a)n))
n—oo €le—a,ctal T N—00 n
= Y(c—a).

Putting the two last inequalities together with « > 0 such that ¥(c — o) < ¢¥(c+ a) + 3

and [c — o, ¢+ o] C [co, L — €] gives (10).

4.5 End of the proof of Theorem 2

We have proved the part of Theorem 2 concerned with the rate function in section
4.3. Now we tackle the part which gives the full trajectory convergence. For convenience
we write P"¢(-) the conditional probability P(-|Z, < e“).

We begin to prove that (Z,),en does not make a big jump when it goes up to N in
the following sense.
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Lemma 11. For every ¢ < L and N € N,

supP™(Z, vy 2 N+ M) — Mzeo,
neN

Proof. By the Markov property, for any b and a < N fixed,

P Zyy vy = N+ M |10 (N) = b, Zr, (n)—1 = @)
=P(Z1 2N+ M | Zyp < ™)
<PN(Zy 2N+ M| Znp <e™)
_ Pn(Zny<e™| Zy > N+ M)Py(Z1 > N+ M)
IP)N(Zn—b < ecn)

by Bayes’ formula. Observe that
PN(Zn-p <€ | Z1 > N+ M)) < Pn(Zyp < ™),
so that
P(Zrny = N+ M |Z, < e, 70(N) =b,Z,, (ny-1 = a) <Pn(Z1 > N + M).
This is uniform with respect to a and b so that summing over them yields

vneN, P"(Z. (vy=N+M)<Py(Z1 > M+ N),

which completes the proof letting M — oo. ]

We can now prove the second part of Theorem 2 in the case P(p(1) > 0) > 0 (case
a). Let e, > 0 and M, N > 1 and note that

Pme( sup {[Y"(t) = fo(t)[} = 1) < A+ Bn+ Cyy (11)
te(0,1]
where
Ay, =P (supsepo 1] {IY( (t) fe®} >n, 7(N)/n € [te — €, tc + €, Z(vy <N+ M)
B, =P"¢(7(N)/n ¢ +¢])

Cn, = P"VC(ZT(N) > N+ M)
(12)
We need to show that those three quantities go to zero. The term C,, is small since
there is no jump at time 7(V), and more precisely by Lemma 11, we can find M such
that for n large enough
C, <e

The B, bit deals with the event that 7(N) is outside of its normal window. Thanks to
Lemma 9 (ii), there exists N large enough so that

n—oo

B, — 0.

Thus it remains only to show that A,, — 0. This is essentially a consequence of Proposition
10 since A,, is related to the trajectory after 7(IN).. Let us now give the details.
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We start by observing that for every e < n/2¢, for n large enough,

sup  {[log(N)/n| + |fe(t)[} < n/2,
te[0,tc+e]

so that conditionally on the event {7(N)/n € [t. — €,t. + €]},

sup  {|[Y™(t) — fo(t)]} <.
te[0,7(N)/n]

Then, fixing € > 0 such that

sup {fela+t)—ct/(1 —a)} <n/2,
te—e<a<tcte, t€[0,1]

we have for every n € N,

Ap
< P™( sup  {[log(Zpy)/n — fe(t)|} =n, T(N)/n € [te — €, te+ €], Zny < N+ M)
7(N)/n<t<1
< sup P ( sup {[log(Zpny)/n — fela+ )|} =1 | Zjg—am) < exp(cn)),
20€[N,N+M] t<l-a

te—e<a<lt.+e

ct
< sSup PZO( Sup {‘ log(Z[nt})/n - 1—‘} > 77/2 ‘ Z[n(l—a)] < eXp(Cn))
20€[N,N+M] t<l-« —
te—e<a<tc+e
< sup P2y ( sup {[log(Zpu)/n — @t} = 0/2| Zjpess) < exp(ne/z.x))
20€[N,N+M] t<c/x

c¢/(1—tete)<z<c/(1—tc—e€)

n—oo

By (10), there exists € > 0 such that A, — 0. Then using (11),

P( sup {|log(Zpy)/n — fo(t)]} = n) =30.
te[0,1]

Thus in the case P(p(1) > 0) > 0, we get that conditionally on Z, < e,

sup {|log(Zy)/n — fo(t)|} =70,  inP.
te(0,1]

The case P(p(1) > 0) = 0 is easier (and amounts to make t. = 0 in the proof above).

5 Proof for upper deviation
Here, we assume that for every k > 1,
E(Z}) < oc.
Lemma 12. For every ¢ > L, denoting by
Smaz := sup{s > 1: E(m(p)' %) < 1},

we have for every zyp > 1,

1
liminf inf {—=log (Ps,(Z, > zoexp(cn)))} >  sup  min(smasn, ¥(c—n)).
nee szl 0<n<ce—L
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The first part of Theorem 3 is a direct consequence of this lemma. Indeed, in the case
when 7, is strongly supercritical, s, = 00, then letting n | 0, we get, for every ¢ > L,

—log(Py(Zn < ™)) /n "= ¢(c).

Proof of Lemma 12. For every n > 0, P, (Z, > zgexp(cn)) is smaller than
P.,(Z, > zoexp(cen)), Sp < n[c—n]) +P.(Z, > zpexp(cn)), S, >nlc—n]). (13)
First, as for every k > 1, E(ZF) < oo, by Theorem 3 in [16], for every s > 1 such that
E(m(p)'™*) < 1,
there exists Cs > 0 such that for every n € N,
E (W) < Cs,

where W,, = exp(—S,)Z,. Note that conditionally on the environments (pi)?gol, Wh
starting from zg is the sum of zg iid random variable distributed as W, starting from 1.
Thus, there exists C! such that for all n, zg € N,

B (W) < 2G5

Then, by Markov inequality,

P.,(Z, > zpexp(cn), Sp < nf[c—n]) P.,(Z, exp(—Sy) > zpexp(nn))

Py (W > 20 exp(nn))

= z§exp(nsn)
< Clexp(—sm). (14)

Second, by standard large deviation upper bound, we have
P.,(Z, > exp(en), S, > nlc—n]) <P(S, > nlc—n]) < exp(—ni(c—n)). (15)
Combining (13),(14), and (15) we get

liminf inf {—log (P, (Z, > 20 exp(cn))}/n > min(sny, ¥(c—n)).

n—oo zp>1
Thus,

liminf inf —log (P(log(Z,)/n >¢))}/n > sup min(sy, ¥(c—n)).
n—oo zg>1 Ogngcfi

Letting s T Simae = sup{s > 1: E(m(p)'~%) < 1} yields the result. O
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The proof of the second part of Theorem 3 follows the proof of Proposition 10.
Roughly speaking, for all ¢ € (0,1) and € > 0,

P(Z[nt} = eXp(tn(c+€)), Zn = eXp(cn)) = IP)(Z[m&] = exp(tn(c+€)))Pexp(tn(che)) (an[nt} > exp(cn)).
Then the first part of Theorem 3 ensures that
lim —log(P(Z}, = exp(tn(c +¢)), Z, > exp(cn)))/n

L th(c+e€) + (1 —t)b(c—t/(1 — t)e)
> 1(c),

by strict convexity of 1. This entails that log(Zp)/n — ct as n — oo.

6 Proof without supercritical environments

We assume here that P(m(p) < 1) = 1. Recall that f; is the probability generating
function of p; and that, denoting by

Epi=foo---ofn,

we have for every k € N,

Ei(s7 4| foroes fu) = Fapa(s)®  (0<s<1).

We assume also that for every j > 1, there exists M; > 0 such that
[e.e]
Z Fp(k) < M; as.
k=0

Then, ‘
i) < M; as.

We use that for ever ¢ > 1 and k > 1, by Markov inequality,
P(Z,>c") = P(Z,(Z,—1)..(Zp—k+1)>"("=1)..(c"—k+1))
- E(Z.,(Z, —1)..(Z, — k+1))
- c(c—1)..("—k+1)
E(Fy (1))
(e —1).. (" —k+1)

Thus, to get Proposition 4, it is enough to prove that for every k > 1,
E(F{P(1)) < G

and let k& — oco. The last inequality can be directly derived from the following lemma,
since here f/(1) < 1 a.s. and there exists M; > 0 such that for every j € N, (1) < M;
a.s.
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Lemma 13. Let (g;)1<i<n be power series with positive coefficients such that
V2<i<n, g(l)=1
and denote by
G; = gi 0 ... 0 gn, (1 <i<n).
Then, for every k >0,

sup GYY(z) < max (1, [ (1)) max (1, gj(1))"".n*"
z€(0,1] ?éggﬁ 2<i<n

Proof. This result can be proved by induction. Indeed,

G = [Magio Gia®

- > Pilgi o Giga)®).
kit tkn=k

Then, noting that #{i € [1,n] : k; > 0} < k and #{k; : ky +... + k, = k} < nF, for every
z € [0,1],

G (@) < nf max {1,[g] 0 Gia)*) ()} max(1, g} (Ga(2)). max (1,91(1)".

0<ki<k
So,
k )
sup G (2) <nk max {1, [g) 0 Gy ™ (@)} max (1, 61(1)".
x€[0,1] 1<i<n 2<i<n
0<ki<k
One can complete the induction noting that k + k*(k + 1) < (k + 1)1 O
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