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1 Introduction

Multipower variation is the probability limit of normalised partial sums of powers of lags of

absolute high frequency increments of a semimartingale as the sampling frequency goes to in-

finity. It was introduced by Barndorff-Nielsen and Shephard in a series of papers motivated by

some problems in financial econometrics. Realised multipower variation estimates this process

and was shown, by Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005), to

reveal integrated volatility powers in general Brownian semimartingales. They also derived the

corresponding central limit theorem. Some detailed discussion of the econometric uses of these

results are given in Barndorff-Nielsen, Graversen, Jacod, and Shephard (2005). Such continuous

sample path processes are, of course, stimulating, however Barndorff-Nielsen and Shephard were

also interested in realised multipower variation as they showed it has some features which are

robust to finite activity jump processes (i.e. jump components with finite numbers of jumps in
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finite time). In this paper we return to that issue, sharpening their results in the finite activity

case and giving an analysis of the case where there are an infinite number of jumps.

Measuring the variation of price processes is a central topic in financial economics. A survey

of this area is given by Andersen, Bollerslev, and Diebold (2005). The standard method is to use

various quantities computed off the realised quadratic variation (QV) process. For a log-price

process Y , which will be assumed to be a semimartingale, the realised QV process is

[Yδ]
[2]
t =

bt/δc
∑

j=1

y2
j ,

where δ > 0 is some time gap, for example 10 minutes, and

yj = Yjδ − Y(j−1)δ,

are high frequency returns. Interest in this type of process is motivated by the advent of complete

records of quotes or transaction prices for many financial assets. Although market microstructure

effects (e.g. discreteness of prices, bid/ask bounce, irregular trading etc.) mean that there is a

mismatch between asset pricing theory based on semimartingales and the data at very fine time

intervals it does suggest the desirability of establishing an asymptotic distribution theory for

estimators as we use more and more highly frequent observations. Papers which directly model

the impact of market microstructure noise on these realised quantities include Bandi and Russell

(2003), Hansen and Lunde (2003) and Zhang, Mykland, and Aı̈t-Sahalia (2005). Related work in

the probability literature on the impact of noise on discretely observed diffusions can be found in

Gloter and Jacod (2001a) and Gloter and Jacod (2001b), while Delattre and Jacod (1997) report

results on the impact of rounding on sums of functions of discretely observed diffusions. Papers

which try to overcome the impact of noise include Zhang, Mykland, and Aı̈t-Sahalia (2005),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004) and Zhang (2004). In this paper we

ignore these effects.

Clearly, if the Y process is a semimartingale then as δ ↓ 0 so

[Yδ]
[2]
t

p→ [Y ]
[2]
t ,

the QV process, where the convergence is also locally uniform in time. Recall the QV process

is defined as

[Y ]
[2]
t = p− lim

M→∞

M
∑

j=1

(

Ytj − Ytj−1

)2
, (1)

for any sequence of partitions t0 = 0 < t1 < ... < tM = t with supj{tj+1 − tj} → 0 for M → ∞.

Here p− lim denotes the probability limit of the sum. Under the stronger condition that Y is a
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Brownian semimartingale

Yt =

∫ t

0
audu +

∫ t

0
σudWu,

where a is predictable, W is standard Brownian motion and σ is càdlàg, then

[Y ]
[2]
t =

∫ t

0
σ2

udu,

the integrated variance. The convergence in probability result can be strengthened to a cen-

tral limit theory under this Brownian semimartingale assumption. Results developed by Jacod

(1994), Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002) and Barndorff-Nielsen

and Shephard (2004a) imply that

δ−1/2
(

[Yδ]
[2]
t − [Y ]

[2]
t

)

→
√

2

∫ t

0
σ2

udBu,

where convergence holds stably as a process and B is a new standard Brownian motion inde-

pendent of W , a and σ.

When we extend this analysis to where we observe

X = Y + Z,

where Z is a jump process, then

[X]
[2]
t =

∫ t

0
σ2

udu +
∑

u≤t

(∆Zu)2 .

Jacod and Protter (1998) have studied a central limit theorem for quantities related to [Xδ ]
[2]
t −

[X]
[2]
t under some strong conditions. These results are important, but they give us no device for

learning about
∫ t
0 σ2

udu in the presence of jumps. To tackle this problem Barndorff-Nielsen and

Shephard (2004b) and Barndorff-Nielsen and Shephard (2005) introduced generalised measures

which are now called realised multipower variation. In the simple case of order 1,1 realised

bipower variation, which is the sole focus of Barndorff-Nielsen and Shephard (2005), they worked

with quantities of the type

[Xδ]
[1,1]
t =

bt/δc
∑

j=2

|xj−1| |xj | ,

and showed that

[Xδ]
[1,1]
t

p→ [X]
[1,1]
t = µ2

1

∫ t

0
σ2

udu = [Y ]
[1,1]
t ,

when Z is a finite activity jump process and µ1 = E |u|, where u ∼ N(0, 1). This implies that

µ−2
1 [Xδ]

[1,1]
t is a consistent estimator of integrated variance, while obviously [Xδ]

[2]
t −µ−2

1 [Xδ]
[1,1]
t

estimates the quadratic variation of Z. Barndorff-Nielsen and Shephard (2005) have developed

a central limit theorem for bipower variation when there are no jumps, which can be used to
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construct tests for the hypothesis that there are no jumps. Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard (2005) and Barndorff-Nielsen, Graversen, Jacod, and Shephard (2005)

have deepened these results by giving rather general central limit theorems for realised multi-

power variation objects, under significantly weaker assumptions but again under the hypothesis

that there are no jumps.

In this paper we ask two new questions: (i) do these kinds of robustness results also hold

when the jump process has infinite activity, (ii) is it possible to construct central limit theorems

for realised multipower variation processes when there are jumps in X? For a closely related

analysis see Woerner (2004). In Section 2 of the paper we establish notation and provide various

definitions. This is followed in Section 3 with an analysis of multipower variation in the case

where the processes are Brownian semimartingales plus jumps. In Section 4 we specialise the

discussion to the case where the jumps are Lévy or OU processes. The results from a simulation

experiment are reported in Section 5, while in Section 6 we draw our conclusions.

2 Some definitions

2.1 Brownian Semimartingales

Brownian semimartingales (denoted BSM) are defined as the class of continuous semimartin-

gales Y for which the (usual) decomposition Y = A + M is such that

At =

∫ t

0
audu (2)

Mt =

∫ t

0
σudWu (3)

where a is predictable, W is standard Brownian motion and σ is càdlàg.

2.2 Multipower Variation (MPV)

Let X be an arbitrary stochastic process. Then the realised multipower variation (MPV) of X

is based on high frequency returns, recorded every δ > 0 time periods,

xj = Xjδ − X(j−1)δ, j = 1, 2, ..., bt/δc .

It can be defined via the unnormalised version

[Xδ]
[r]
t = [Xδ]

[r1,...,rm]
t = [Xδ, ..., Xδ ]

[r1,...,rm] =

bt/δc
∑

j=m

|xj−m+1|r1 · · · |xj |rm ,

or more commonly through its normalised version

{Xδ}[r]
t = {Xδ}[r1,...,rm]

t = δ1−r+/2[Xδ ]
[r]
t
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where r is short for r1, ..., rm and

r+ =

m
∑

j=1

rj .

It will be convenient to write

max r = max{r1, , , , rm}.

Similarly, for arbitrary processes X (1), ..., X(m) we let

[X
(1)
δ , ..., X

(m)
δ ]

[r]
t =

bt/δc
∑

j=m

|x(1)
j−m+1|r1 · · · |x(m)

j |rm ,

while we always assume that rj ≥ 0 and r+ > 0.

2.3 MPVCiP and MPVCLT for BSM

We say that the Brownian semimartingale Y satisfies CiP (converges in probability) for MPV

(denoted MPVCiP) provided that

{Yδ}[r]
t

p→ drσ
r+∗
t = dr

∫ t

0
σr+

u du,

where dr is a known constant depending only on r. Barndorff-Nielsen, Graversen, Jacod, Podol-

skij, and Shephard (2005) have shown that this result holds if Y ∈ BSM. Barndorff-Nielsen and

Shephard (2004b) and Barndorff-Nielsen and Shephard (2005) show that this result continues

to hold when we add finite activity jumps to a Brownian semimartingale. But what happens

when the jumps are of infinite activity? We will provide a fairly detailed answer to this.

We say that Y satisfies a central limit theorem (CLT) for MPV (denoted MPVCLT) provided

that

δ−1/2
(

{Yδ}[r]
t − drσ

r+∗
t

)

law→ cr

∫ t

0
σr+

u dBu

where B is a Brownian motion, Y ⊥⊥B (i.e. Y is independent of B), and cr is a known constant

depending only on r. Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) have

shown that under some mild additional assumptions on the σ process, such a CLT holds.

3 MPV for BSM + jump process

We will now study what happens to the limiting distribution when we add jumps to the Brownian

semimartingale Y . The only existing results we know of are due to Jacod and Protter (1998)

who studied the case where r = 2, Y is a Brownian semimartingale and the jumps came from

a purely discontinuous Lévy process, and Woerner (2004) who derives closely related results to

ours. Thus we shall discuss various extensions of MPVCiP and MPVCLT for BSM to processes

of the form

X = Y + Z
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where Y ∈ BSM while Z is a process exhibiting jumps.

We assume that Y satisfies MPVCiP or MPVCLT and consider to which extent this limiting

behaviour remains the same when Z is added to Y , i.e. whether the influence of Z is negligible

(in this respect). Thus we ask whether:

• For the CiP case

{Xδ , ..., , Xδ}[r1,...,rm] − {Yδ, ..., , Yδ}[r1,...,rm] = op(1).

• For the CLT case

{Xδ, ..., , Xδ}[r1,...,rm] − {Yδ, ..., , Yδ}[r1,...,rm] = op(δ
1/2).

We shall use the following fact

Proposition 1 The Brownian semimartingale Y satisfies

δ−1/2|Yjδ − Y(j−1)δ| = Op(| log δ|1/2) (4)

uniformly in j.

Proof. First we split

|Yjδ − Y(j−1)δ| ≤
∣

∣

∣

∣

∣

∫ jδ

(j−1)δ
audu

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ jδ

(j−1)δ
σudWu

∣

∣

∣

∣

∣

and note that the first part is Op(δ) whereas, by the Dubins-Schwarz theorem and stochastic

integration,

Mt =

∫ t

0
σudWu = B∫ t

0
σ2

sds

for a standard Brownian motion B. Lévy’s theorem on the uniform modulus of continuity of

Brownian motion states that

P

(

lim sup
ε↓0

(

sup
0≤t1<t2≤T :t2−t1≤ε

|Bt2 − Bt1 |
√

2ε| log(ε)|

)

= 1

)

= 1.

Since
∫ t2

t1

σ2
sds ≤ |t2 − t1| sup

0≤s≤T
σ2

s

and the latter supremum is a.s. finite, we deduce that

P

(

lim sup
ε↓0

(

sup
0≤t1<t2≤T :t2−t1≤ε

|Yt2 − Yt1 |
√

2ε| log(ε)|

)

< ∞
)

= 1

as required.

Without the sup over t1 and t2, for fixed t, i.e. without uniformity, the result holds with log

replaced by log log.
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3.1 Finite activity case

Consider the m-th order MPV process

[Xδ]
[r] = [Xδ , ..., Xδ ]

[r1,...,rm].

When Z is a finite activity jump process then pathwise the number of jumps of Z is finite

and, for sufficiently small δ, none of the additive terms in [Xδ, ..., Xδ ]
[r1,...,rm] involves more

than one jump. Each of the terms in [Xδ , ..., Xδ ]
[r1,...,rm] that contains no jumps are of order

Op

(

(δ| log δ|)r+/2
)

. Any of the terms that do include a jump is of order Op

(

(δ| log δ|)(r+−max r)/2
)

.

Hence

δ1−r+/2([Xδ ]
[r] − [Yδ]

[r]) = δ1−r+/2Op((δ| log δ|)(r+−max r)/2)

= Op(δ
1−max r/2| log δ|(r+−max r)/2).

So:

• CiP is not influenced by Z so long as max r < 2, while CLT continues to hold so long as

max r < 1.

The bound max r < 2 seems quite a tight condition for when m = 1 and r = 2

[Xδ]
[2] p→ [Y ][2] + [Z][2],

where

[Z]
[2]
t =

∑

s≤t

|∆Xs|2 ,

i.e. jumps do impact the limit.

The above CLT result is of some importance. It means that we can use multipower variation

to make mixed Gaussian inference about
∫ t
0 σ2

udu, integrated variance, in the presence of finite

activity jumps processes so long as max r < 1 and r+ = 2. An example of this is where m = 3

and we take r1 = r2 = r3 = 2/3 (that is using Tripower Variation (TPV)).

3.2 Some inequalities

As a preliminary to treating the infinite activity case we now recall or derive several inequalities.

We shall refer to the following classical mathematical inequalities. Below a, b, c etc. denote

arbitrary real numbers with a = b + c.

(i) For 0 < r ≤ 1,
∣

∣

∣

∣

∣

∣

n
∑

j=1

|aj |r −
n
∑

j=1

|bj|r
∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|cj |r. (5)
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(ii) For 1 ≤ p
∣

∣

∣

∣

∣

∣

∣





n
∑

j=1

|aj |p




1/p

−





n
∑

j=1

|bj |p




1/p
∣

∣

∣

∣

∣

∣

∣

≤





n
∑

j=1

|cj |p




1/p

. (6)

Formula (6) is a consequence of Minkovsky’s inequality: If p ≥ 1 then, for arbitrary random

variables A,B and C with A = B+C,

E{|A|p}1/p ≤ E{|B|p}1/p + E{|C|p}1/p.

Inequality (i) implies that for 0 < r, s ≤ 1,

∣

∣

∣

∣

∣

∣

n
∑

j=2

|aj−1|r|aj |s −
n
∑

j=2

|bj−1|r|bj |s
∣

∣

∣

∣

∣

∣

≤
n
∑

j=2

|cj−1|r|cj |s +

n
∑

j=2

|cj−1|r|bj |s +

n
∑

j=2

|bj−1|r|cj |s

=
n
∑

j=2

|cj−1|r|cj |s +
n
∑

j=2

|cj−1|r|bj |s [2]. (7)

Similarly we find for 0 < r, s, u ≤ 1

∣

∣

∣

∣

∣

∣

n
∑

j=3

|aj−2|r|aj−1|s|aj |u −
n
∑

j=3

|bj−2|r|bj−1|s|bj |u
∣

∣

∣

∣

∣

∣

≤
n
∑

j=3

|cj−2|r|cj−1|s|cj |u +
n
∑

j=3

|cj−2|r|cj−1|s|bj |u [3] +
n
∑

j=3

|cj−2|r|bj−1|s|bj |u [3], (8)

etc.

Applying this to MPV with max r ≤ 1 we find that

∣

∣

∣
[Xδ , ..., Xδ ]

[r1,...,rm] − [Yδ, ..., Yδ ]
[r1,...,rm]

∣

∣

∣
≤ [Zδ, ..., Zδ ]

[r1,...,rm]

+[Zδ, ..., Zδ , Yδ]
[r1,...,rm] [

(m
1

)

]

+[Zδ, ..., Zδ , Yδ, Yδ]
[r1,...,rm] [

(m
2

)

]

+ · · ·

+[Zδ, Yδ, Yδ, ..., Yδ ]
[r1,...,rm] [

( m
m−1

)

] (9)

where the binomial coefficients indicate the relevant number of similar terms.

Thus in the m = 1 case we have that

δ(1−r)/2|[Xδ]
[r] − [Yδ]

[r]| ≤ δ(1−r)/2[Zδ]
[r]. (10)
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When m = 2

δ1−(r+s)/2|[Xδ , Xδ]
[r,s] − [Yδ, Yδ]

[r,s]| ≤ δ1−(r+s)/2[Zδ, Zδ]
[r,s]

+δ1−r/2[Zδ, δ
−1/2Yδ]

[r,s]

+δ1−s/2[δ−1/2Yδ, Zδ ]
[r,s] (11)

= δ1−(r+s)/2[Zδ, Zδ]
[r,s]

+δ1−r/2[Zδ, δ
−1/2Yδ]

[r,s] [2].

For m = 3

δ1−(r+s+u)/2|[Xδ , Xδ, Xδ ]
[r,s,u] − [Yδ, Yδ, Yδ]

[r,s,u]|

≤ δ1−(r+s+u)/2[Zδ, Zδ, Zδ ]
[r,s,u]

+δ1−(r+s)/2[Zδ, Zδ, δ
−1/2Yδ]

[r,s,u] [3]

+δ1−r/2[Zδ , δ
−1/2Yδ, δ

−1/2Yδ]
[r,s,u] [3]. (12)

3.3 Infinite activity case

In discussing CiP and CLT for infinite activity we shall, for simplicity, mostly restrict consider-

ation to the case r1 = · · · = rm = r.

Recall

X = Y + Z

where Y ∈ BSM.

Sufficient conditions for MPVCiP, respectively MPVCLT, are (see the beginning of the

present Section), that

δ1−mr/2([Xδ , ..., Xδ ]
[r,...,r] − [Yδ, ..., Yδ ]

[r,...,r]) = op(1)

respectively

δ(1−mr)/2([Xδ , ..., Xδ ]
[r,...,r] − [Yδ, ..., Yδ ]

[r,...,r]) = op(1).

3.3.1 Convergence in probability

We need to distinguish between the cases 0 < r ≤ 1 and r > 1.
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When 0 < r ≤ 1 we have, by (9),

δ1−mr/2
∣

∣

∣
[Xδ , ..., Xδ ]

[r,...,r] − [Yδ, ..., Yδ ]
[r,...,r]

∣

∣

∣

≤ δ1−mr/2[Zδ, ..., Zδ ]
[r,...,r]

+δ1−(m−1)r/2[Zδ, ..., Zδ , δ
−1/2Yδ]

[r,...,r] [
(m

1

)

]

+δ1−(m−2)r/2[Zδ, ..., Zδ , δ
−1/2Yδ, δ

−1/2Yδ]
[r,...,r] [

(m
2

)

]

+ · · ·

+δ1−r/2[Zδ, δ
−1/2Yδ, ..., δ

−1/2Yδ]
[r,...,r] [

( m
m−1

)

]. (13)

Thus for MPVCiP, when 0 < r ≤ 1 it suffices that the following conditions are met:

δ1−mr/2[Zδ, ..., Zδ ]
[r,...,r] = op(1) (14)

δ1−(m−1)r/2| log δ|r/2[Zδ , ..., Zδ ]
[r,...,r] [

(m
1

)

] = op(1) (15)

.......

δ1−r/2| log δ|(m−1)r/2[Zδ]
[r] [
(m

1

)

] = op(1). (16)

For the power variation case, where m = 1, for the convergence in probability result (denoted

PCiP) this reduces to

δ1−r/2[Zδ]
[r] = op(1).

For the bipower variation case, where m = 2, for the convergence in probability result

(denoted BPVCiP) the conditions are

δ1−r[Zδ, Zδ]
[r,r] = op(1) (17)

δ1−r/2[Zδ, δ
−1/2Yδ]

[r,r] = op(1). (18)

The latter relation is equivalent to

δ1−r/2| log δ|r/2[Zδ]
[r] = op(1). (19)

For r > 1 we have
∣

∣

∣

∣

(

δ1−mr/2[Xδ, ..., Xδ ]
[r,...,r]

)1/r
−
(

δ1−mr/2[Yδ, ..., Yδ ]
[r,...,r]

)1/r
∣

∣

∣

∣

≤
(

δ1−mr/2S
)1/r

where, in a compact notation,

S =

bt/δc
∑

j=m

∣

∣

∣

∣

∑

ω

∏

yk
∏

zl

∣

∣

∣

∣

r

and
∑

ω

∏

yk
∏

zl = (yj−m+1 + zj−m+1) · · · (yj + zj) − yj−m+1 · · · yj,
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where ω runs over all selections of one factor from each of the parentheses in the above equation,

except the one leading to yj−m+1 · · · yj.

Now, if

δ1−mr/2S = op(1) (20)

then, on account of the previously established fact that δ1−mr/2[Yδ, ..., Yδ ]
[r,...,r] converges in

probability to a positive random variable, we can conclude from the Minkovski inequality that

(
(

δ1−mr/2
)1/r

(

(

[Xδ, ..., Xδ ]
[r,...,r]

)1/r
−
(

[Yδ, ..., Yδ ]
[r,...,r]

)1/r
)

= op(1).

To determine a sufficient condition for (20), and hence for MPVCiP, we note that in view of

the inequality

|b + c|r ≤ 2r−1(|b|r + |c|r)

there exists a constant C such that

|∑
ω

∏

yk
∏

zl|r ≤ C
∑

ω
|∏ yk

∏

zl|r.

This yields

S ≤ C

bt/δc
∑

j=m

∑

ω
|∏ yk

∏

zl|r = C
∑

ω

bt/δc
∑

j=m

|∏ yk
∏

zl|r.

It follows that (20) will hold if, for all ω,

δ1−mr/2

bt/δc
∑

j=1

|∏ yk
∏

zl|r = op(1).

But this is equivalent to the set of conditions (14)-(16), which were previously established as

sufficient for MPVCiP in the case r ≤ 1.

So sufficient for CiP is:

δ1−mr/2[Zδ, ..., Zδ ]
[r,...,r] = op(1) (21)

δ1−(m−1)r/2| log δ|r/2[Zδ , ..., Zδ ]
[r,...,r] [

(m
1

)

] = op(1) (22)

.......

δ1−r/2| log δ|(m−1)r/2[Zδ]
[r] [
(m

1

)

] = op(1). (23)

3.3.2 Central limit theorem

In the IA setting, for CLT we are assuming that r ≤ 1. It will be seen, from the examples to be

discussed in the next Section, that the restriction to r ≤ 1 is essentially necessary. From (13)

we find:
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For MPVCLT it suffices that the following conditions are met for r ≤ 1:

δ(1−mr)/2[Zδ , ..., Zδ ]
[r,...,r] = op(1) (24)

δ(1−(m−1)r)/2 | log δ|r/2[Zδ, ..., Zδ ]
[r,...,r] [

(m
1

)

] = op(1) (25)

.......

δ(1−r)/2| log δ|(m−1)r/2[Zδ ]
[r] [
(m

1

)

] = op(1). (26)

For PCLT this reduces to

δ(1−r)/2[Zδ ]
[r] = op(1)

which can only be satisfied for r < 1.

For BPCLT the conditions (in the general [r, s] case) are

δ(1−r−s)/2[Zδ, Zδ]
[r,s] = op(1) (27)

δ(1−r)/2[Zδ, δ
−1/2Yδ]

[r,s] = op(1) (28)

δ(1−s)/2[δ−1/2Yδ, Zδ]
[r,s] = op(1). (29)

Due to assumption (4), sufficient for the relations (28) and (29) are

δ(1−r)/2| log δ|s/2[Zδ]
[r] = op(1) (30)

and

δ(1−s)/2| log δ|r/2[Zδ]
[s] = op(1). (31)

Sufficient for the first of these latter relations is 0 < r < 1 and supδ[Zδ]
[r] < ∞. And similarly

for the second.

In the tripower variation (TPV) case of m = 3, with r, s, u ≤ 1 we have

|[X][r,s,u] − [Y ][r,s,u]| ≤ [Zδ, Zδ , Zδ]
[r,s,u]

+[Zδ, Zδ, Yδ]
[r,s,u][3]

+[Zδ, Yδ, Yδ]
[r,s,u][3]

and sufficient for TPVCLT is that

δ(1−r−s−u)/2[Zδ, Zδ , Zδ]
[r,s,u] = op(1)

δ(1−r−s)/2| log δ|u/2[Zδ, Zδ ]
[r,s] = op(1) [3]

δ(1−r)/2| log δ|(s+u)/2[Zδ ]
[r] = op(1) [3].
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4 Lévy processes with no continuous component

4.1 Preliminaries on Lévy processes and their small-time behaviour

Lévy processes, i.e. processes with stationary independent increments, are a versatile class of

jump processes on which we can apply the deterministic criteria derived in the previous sec-

tion. Whether MPVCiP or MPVCLT hold, depends on the characteristics of the Lévy process.

Notably the number of small jumps is important. We have seen that finite activity restricts

max r < 2 and max r < 1, respectively for MPVCiP and MPVCLT. We will get further restric-

tions, in general, when we have infinite activity.

Standard references on Lévy processes are Bertoin (1996) and Sato (1999). Let us recall here

some important facts. The most general (real-valued) Lévy process can be decomposed into a

continuous component κBt + bt, a Brownian motion with drift (hence a Brownian semimartin-

gale), and a part Zt “with no continuous component” that incorporates jumps (∆Zt)t≥0, which

form a homogeneous Poisson point process, whose intensity measure, called the Lévy measure,

we will write as Π. Π is a Radon measure on R∗ = R − {0} with
∫

R∗

(

|x|2 ∧ 1
)

Π(dx) < ∞. (32)

If the stronger condition
∫

R∗
(|x| ∧ 1)Π(dx) < ∞ holds, then we choose the drift b so that

Zt =
∑

s≤t

∆Zs and E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) =

∫

R∗

(1 − eiλx)Π(dx),

and Z has paths of locally bounded variation. If
∫

R∗
(|x| ∧ 1)Π(dx) = ∞, there is no canonical

choice of drift b ∈ R, in general. We create some redundancy and allow an additional drift

parameter a ∈ R so that

E(exp{iλZt}) = exp{−tΨ(λ)}, where Ψ(λ) = −iλa +

∫

R∗

(1 − eiλx + iλx1{|x|≤1})Π(dx),

and in this case Z has paths of locally unbounded variation. The function Ψ is the so-called

characteristic exponent of Z.

We define an index

α = inf

{

γ ≥ 0 :

∫

[−1,1]
|x|γΠ(dx) < ∞

}

∈ [0, 2].

The number α measures how heavily infinite Π is at zero, i.e. how many small jumps Z has. If

α = 0, then Π is finite, or only just infinite.

Example 1 For a Variance Gamma process Z, we have

Π(dx) = ν|x|−1 exp{−λ|x|}dx

and so an infinite Lévy measure with α = 0.

13



If 0 < α < 2, then Z is locally comparable to a stable process of index α. If α = 2, then Π

only just satisfies the integrability condition (32). An example is the Lévy measure

Π(dx) = |x|−3| log |x/2||−1−β1[−1,1](x)dx,

for β > 0. This would not be a Lévy measure without the log-term.

Clearly, if Z has bounded variation, then 0 ≤ α ≤ 1. If Z has unbounded variation, then 1 ≤
α ≤ 2. The boundary α = 1 is attained for both bounded and unbounded variation processes.

Π(dx) = |x|−2| log |x/2||−1−β1[−1,1](x)dx is an example for a bounded variation process with

α = 1.

Example 2 For a Normal Inverse Gaussian process Z, we have

Π(dx) =
1

π
δ

√

γ2 + β2|x|−1K1

(
√

γ2 + β2|x|
)

eβxdx,

and the well-known asymptotic property of the Bessel function K1(x) ∼ |x|−1, as x ↓ 0, shows

that Z has unbounded variation, and α = 1.

The index α can be seen to be greater than or equal (usually equal) to the Blumenthal and

Getoor (1961) upper index

α∗ = inf{γ ≥ 0 : lim sup
λ→∞

|Ψ(λ)|/λγ = 0} ∈ [0, 2].

Let Z be a Lévy process with no continuous component. Then without loss of generality we

can decompose Z into

Zt = Z
(1)
t + Z

(2)
t ,

where Z(1) and Z(2) are independent processes and Z (2) is defined as

Z
(2)
t =

∑

s≤t

∆ZsI (|∆Zs| > 1) .

Clearly Z(2) is a compound Poisson process, and hence of finite activity. The effect of Z (2) on

MPVCiP and MPVCLT was studied in the previous Section and so from now on in this Section

we can, without loss of generality, set Z (2) to zero, i.e. assume Π is concentrated on [−1, 1].

Lemma 1 Let Z be a Lévy process with no continuous component and index α. Then

sup
δ>0

E |Zδ|γ
δ

< ∞,

for all α < γ ≤ 1 if Z has finite mean and bounded variation, and for all 1 ≤ α < γ ≤ 2 if Z is

a zero-mean Lévy process with finite variance.
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Proof. Let α < 1. From (5) and the compensation formula for Poisson point processes we

get for all α < γ ≤ 1

E |Zδ|γ = E

∣

∣

∣

∣

∣

∣

∑

0≤s≤δ

∆Zs

∣

∣

∣

∣

∣

∣

γ

≤ E
∑

0≤s≤δ

|∆Zs|γ = δ

∫

R∗

|z|γΠZ(dz) < ∞.

If 1 ≤ α < 2, we use Monroe embedding Zt = BTt into a Brownian motion B, for a

subordinator Tt of stopping times for B, with E(Tt) = E
(

Z2
t

)

< ∞. Using the explicit embedding

of Winkel (2005), we have as Lévy measure of T

ΠT =

∫

R∗

ρ|x|Π(dx) +

∫

R∗

∫ |x|

0

|x|
y2

ρ|x| ∗ ρ|x|dyΠ(dx),

where ρx is the distribution of the first passage time at x of a three-dimensional Bessel process

starting from zero. In particular, Rx ∼ ρx has first moment E(Rx) = x2/3, so that for all

2 ≥ γ > α ≥ 1, by Jensen’s inequality,

∫

R∗

E(R
γ/2
|x| )Π(dx) ≤

∫

R∗

(

E(R|x|)
)γ/2

Π(dx) =

(

1

3

)γ/2 ∫

R∗

|x|γΠ(dx) < ∞,

and similarly

∫

R∗

∫ |x|

0

|x|
y2

E((R|y| + R̃|y|)
γ/2)dyΠ(dx) ≤

(

2

3

)γ/2 ∫

R∗

∫ |x|

0

|x|
y2

yγdyΠ(dx)

=

(

2

3

)γ/2 1

γ − 1

∫

R∗

|x|γΠ(dx) < ∞.

The sum of the left hand sides is
∫

(0,∞) |z|γ/2ΠT (dz), so that the index of T is (at most) α/2.

Now we invoke Revuz and Yor (1999, Exercise V.(1.23)):

E |Bτ |2p ≤ CpE (τp) , (33)

for all (bounded, but then all) stopping times τ with E (τ p) < ∞, all p > 0, and universal

constants Cp; see also Revuz and Yor (1999, Theorem IV.(4.10)).

This implies

E |Zδ|γ = E |BTδ
|γ ≤ CpET

γ/2
δ

and an application of the bounded variation case to the subordinator T completes the proof.

Inspecting the proof of the lemma for weaker assumptions, one obtains the following corollary.

We recall that a function f : [0,∞) → [0,∞) is said to be subadditive if, for all x, y ∈ [0,∞),

f(x + y) ≤ f(x) + f(y);

f is called regular varying at 0, with index β if

f(λx)

f(x)
→
x↓0

λβ

for all λ > 0 (cf. Bingham, Goldie, and Teugels (1989)).
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Corollary 1 (i) Let Z be a finite mean bounded variation Lévy process with no continuous

component and f an even nonnegative measurable function with f(0) = 0, subadditive on

[0,∞). Then
∫

R∗

f(x)Π(dx) < ∞ ⇒ sup
δ>0

Ef(Zδ)

δ
< ∞.

(ii) Let Z be a zero-mean finite-variance Lévy process with no continuous component, and f

an even nonnegative continuous function with f(0) = 0, increasing concave on [0,∞),

regularly varying at 0 with index β ∈ (1/2, 1]. Then

∫

R∗

f(x2)Π(dx) < ∞ ⇒ sup
δ>0

Ef(Z2
δ )

δ
< ∞.

Proof. (i) is clear. For (ii) note that concavity with f(0) = 0 implies f(|x + y|) ≤ f(|x|) +

f(|y|) so that we will be able to apply (i). We do not repeat the whole argument here, but point

out that the assumption of regular variation is used to ensure that as x ↓ 0 so

∫ |x|

0

|x|
y2

f

(

2

3
y2

)

dy � f

(

2

3
x2

)

� f(x2),

cf. Bingham, Goldie, and Teugels (1989). Here f � g means that 0 < lim inf (f/g) ≤ lim sup(f/g) <

∞. For the appropriate generalisation of (33) to more general functions f , we refer to Revuz

and Yor (1999, Theorem IV.(4.10)).

Examples of functions other than f(x) = |x|γ to which the results apply can be built from

f̃1,κ(x) = |x|(log(1/|x|))κ and f̃2,κ(x) = |x|(log log(1/|x|))κ for κ ≥ 0, which only fail to be

increasing and concave on all of [0,∞). Since they have these properties in a neighbourhood of

0, we can take a linear continuation fj,κ of f̃j,κ outside its monotonicity/concavity domain. To

prove monotonicity and concavity for small x, calculate for x > 0

f̃ ′
1,κ(x) =

(

log

(

1

x

))κ−1 (

log

(

1

x

)

− κ

)

f̃ ′′
1,κ(x) = κ

1

x

(

log

(

1

x

))κ−2(

(κ − 1) − log

(

1

x

))

and

f̃ ′
2,κ(x) =

(

log log

(

1

x

))κ−1(

log

(

1

x

))−1(

log log

(

1

x

)

log

(

1

x

)

− κ

)

f̃ ′′
2,κ(x) = κ

1

x

(

log log

(

1

x

))κ−2 (

log

(

1

x

))−2(

(κ − 1) − log log

(

1

x

)

− log log

(

1

x

)

log

(

1

x

))

4.2 General results on multipower variation for BSM plus Lévy

We recall that we are working with

X = Y + Z,
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where Y is a Brownian semimartingale. No assumptions are made regarding dependence between

Y and Z.

We can now show the following general result

Theorem 1 Let Z be a Lévy process with no continuous component and with index α ∈ [0, 2].

Then

• 0 < r < 2 ⇒ PCiP is valid,

• α < 2 and 0 < max r < 2 ⇒ MPVCiP is valid,

• α < 1 and α/(2 − α) < r < 1 ⇒ PCLT is valid,

• α < 1 and α/(2 − α) < min r ≤ max r < 1 ⇒ MPVCLT is valid.

Apart from a finer distinction on the boundaries such as α = 2 or r = α/(2 − α) in terms of

powers of logs or integral criteria, we believe that the ranges for α and r cannot be extended.

Some evidence for this is given in form of examples in the next subsection.

Proof. For the PCiP, note that Ψ(λ)/λ2 → 0 as λ → ∞ since we have no Gaussian coefficient

(cf. Bertoin (1996, Proposition I.2)). Therefore

E

(

exp

{

iλ
Zδ

δ1/2

})

= exp

{

−δΨ

(

λ

δ1/2

)}

→ 1

i.e. Zδ/δ
1/2 → 0 in probability as δ ↓ 0. Since also E(Z2

δ ) = cδ, we have that (Zδ/δ
1/2)δ>0

is bounded in L2, i.e. convergent in Lr, 1 ≤ r < 2, and it is easily seen that this extends to

0 < r < 2 (e.g. by raising Zδ/δ
1/2 to a small power and applying the argument again). Therefore

E
(

δ1−r/2[Zδ]
[r]
t

)

= δ bt/δc E|Zδ|r

δr/2
→ 0.

By (21), this shows PCiP. For the MPVCiP, the argument works for (21) since, by independence

of increments,

E
(

δ1−r+/2[Zδ, . . . , Zδ]
[r]
t

)

= δ b1 − m + t/δc
m
∏

j=1

E|Zδ|rj

δrj/2
→ 0,

but fails for (22-23) because of the log-terms e.g. in (23). However, if α < 2, we can adapt the

argument as follows. By Lemma 1, we have

sup
δ>0

E|Zδ|γ
δ

< ∞
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for all α∗ ≤ α < γ ≤ 2. As above, we have Zδ/δ
1/γ → 0 in probability, and hence in Lr for

r < γ. This allows us to check (23) for 0 < rj < γ:

E

(

δ1−rj/2

(

log

(

1

δ

))r+−rj

[Zδ]
[rj ]
t

)

= δ bt/δc E|Zδ|rj

δrj/2
(

log
(

1
δ

))rj−r+
≤ δ bt/δc E|Zδ|rj

δrj/γ
→ 0,

and similarly all (21)-(23).

For the MPVCLT note that α < 1 implies that Z has bounded variation. Furthermore, we

can assume that Z has no drift, as this can be placed in the Y process. Now, Lemma 1 gives

the basis for the above MPVCiP argument to apply here, for α < γ < 1, and we can check (26):

E

(

δ1/2−rj/2

(

log

(

1

δ

))r+−rj

[Zδ]
[rj ]
t

)

= δ bt/δc E|Zδ|rj

δrj/2+1/2
(

log
(

1
δ

))rj−r+
≤ δ bt/δc E|Zδ|rj

δrj/γ
→ 0

if and only if rj/2 + 1/2 < rj/γ, i.e. rj > γ/(2 − γ) ↓ α/(2 − α) as γ ↓ α. It is now easy to

repeat the argument and check that then also (24-26) hold.

Remark 1 A more elementary and instructive (partial) proof is as follows. For α < 1, note

that for all 0 < r ≤ 1,

[Z]
[r]
t = lim

δ↓0
[Zδ]

[r]
t =

∑

0≤s≤t

|∆Zs|r. (34)

Specifically, we use (5) to see that

[Zδ]
[r]
t =

bt/δc
∑

j=1

∣

∣

∣

∣

∣

∣

∑

(j−1)δ<s≤jδ

∆Zs

∣

∣

∣

∣

∣

∣

r

≤
∑

0≤s≤t

|∆Zs|r .

For the opposite inequality we choose ε > 0 and denote T0 = 0 and jump times of jumps of size

> ε by Tn = inf{t > Tn−1 : |∆Zt| > ε}. Then, for all δ < min{Tn − Tn−1 : Tn ≤ t}, we have

[Zδ]
[r]
t ≥

∑

n:Tn≤t

∣

∣ZδdTn/δe − ZδbTn/δc

∣

∣

r →
∑

n:Tn≤t

|∆ZTn |r ,

as δ ↓ 0, by the càdlàg property of sample paths. Since this holds for all ε > 0, this establishes

(34).

Furthermore, by the exponential formula for the Poisson process (∆Zt)t≥0 of jumps of Z with

intensity measure Π,

∑

0≤s≤t

|∆Zs|r < ∞ ⇐⇒
∫

R∗

(|x|r ∧ 1)Π(dx) < ∞,

which holds if (and essentially only if) r > α. Now, if we scale [Xδ]
[r]
t by δ(1−r)/2 → 0, we deduce

that PCLT holds for α < r < 1, but this does not allow to make a statement about

α

2 − α
< r ≤ α.

To improve the lower bound to α/(2 − α), we had to take into account the interplay between

δ(1−r)/2 → 0 and [Zδ ]
[r]
t → ∞.
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4.3 Examples

In the examples we shall discuss Z is a Lévy jump process and r1 = ... = rm = r. However, as

will be noted at the end of this Section, quite similar results hold for Z being a process of OU

type.

Example 3 Suppose Z is the Γ(ν, λ) subordinator, i.e. Z is the Lévy process for which the law

of Z1 is the gamma distribution with probability density function

λν

Γ(ν)
xν−1e−λx.

This has infinite activity. In fact, α = 0 is its index.

Then, for t ↓ 0,

E{|Zt|p} = λ−pΓ(tν + p)

Γ(tν)
∼ O(t)

whatever the value of p > 0. (Here we have used that tΓ(t) → 1 as t → 0.) Thus [Zδ]
[r] = Op(1),

[Zδ, Zδ ]
[r,r] = Op(δ), [Zδ, Zδ, Zδ ]

[r,r,r] = Op(δ
2), etc.

Consequently:

• MPVCiP is valid for all m = 1, 2, ... and 0 < r < 2.

• MPVCLT is valid for all m = 1, 2, ... and 0 < r < 1.

On the other hand we have, for example, that BPVCLT does not hold if r = 1 and Y ⊥⊥ Z.

Example 4 Let Z be the IG(φ, γ) subordinator, i.e. Z is the Lévy process for which the law

of Z1 is the inverse Gaussian distribution with density function

δ√
2π

eδγx−3/2e−
1

2
(φ2x−1+γ2x).

Then, as t ↓ 0, 〈proof below〉

E{|Zt|p} ∼







O(t) if p > 1
2

O(t| log t|) if p = 1
2

O(t2p) if 0 < p < 1
2 ,

(35)

so that, for 1
2 < r < 1 we have [Zδ ]

[r,r] = Op(δ) and [Zδ]
[r] = Op(1).

Consequently:

• MPVCiP is valid for all m = 1, 2, ... and 0 < r < 2.

• MPVCLT is valid for all m if 1
2 < r < 1.
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In particular, MPVCLT holds for tripower variation with r = 2
3 .

When r = 1
2 , [Zδ, Zδ]

[ 1
2
, 1
2
] = Op(δ

1−ε) for ε arbitrarily close to 0 and [Zδ]
[ 1
2
] = Op(| log δ|) and

BPCLT holds. For 0 < r < 1
2 we find [Zδ, Zδ]

[r,r] = Op(δ
4r−1) and [Zδ]

[r] = Op(δ
2r−1). Hence

BPCLT holds if 1
3 < r < 1

2 . In fact α = 1
2 is the index of Z, and 1

3 = α
2−α is the lower bound

established in Theorem 1.

Proof of (35): Recall that the density of the generalised inverse Gaussian distribution, de-

noted GIG(ν, φ, γ), is

p(x) =
(γ/φ)ν

2Kν(φγ)
xν−1e−

1

2
(φ2x−1+γ2x), x ∈ R+.

where Kν(·) is a modified Bessel function of the third kind. We note that

K− 1

2

(x) = K 1

2

(x) =

√

π

2
x− 1

2 e−x, x ∈ R+.

Hence, for p positive real

E{|Zt|p} =

√

2

π
eφγtγ

1

2
−pφ

1

2
+pK|p− 1

2
|(φγt)t

1

2
+p.

For x ↓ 0 and ν > 0 we have

Kν(x) ∼ Γ(ν)2ν−1x−ν

whereas

K0(x) ∼ | log x|.

Thus, as t ↓ 0,

E{|Zt|p} ∼







O(t) if p > 1
2

O(t| log t|) if p = 1
2

O(t2p) if 0 < p < 1
2 .

.

Example 5 If Z is the Variance Gamma Lévy process (also known as a normal Gamma process,

written NΓ(ν, λ)) then, for t ↓ 0,

E{|Zt|q} ∼ O(t) (36)

whatever the value of q > 0. Consequently:

• MPVCiP is valid for all m = 1, 2, ... and 0 < r < 2.

• MPVCLT is valid for all m and 0 < r < 1.
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Proof of (36): One can use the fact that if Z is the Variance Gamma Lévy process with

parameters ν and λ, then it can be written as

Zt = BTt ,

where B is Brownian motion and T is a Γ(ν, λ) subordinator, while B ⊥⊥ T . This means that

E{|Zt|q} = E{|Tt|q/2}.

Example 6 Let Z be the NIG(γ, 0, 0, φ) Lévy process. This is representable as the subordi-

nation of a Brownian motion B by the IG(φ, γ) subordinator. Hence, E{|Zt|q} behaves asymp-

totically as in (35) with p = q/2. Consequently:

• MPVCiP is valid for all m = 1, 2, ... and 0 < r < 2.

• MPVCLT does not hold for any value of r.

Remark 2 From a modelling perspective it will often be more natural to have Z as an OU

process V with a background driving Lévy process (BDLP) L. Letting

V ∗
t =

∫ t

0
Vsds

we have, since V is by definition the solution of dVt = −λVt + dLλt, that

Vt = V0 − λV ∗
t + Lλt.

Hence, letting Y ′ = Y + V0 − λV ∗ we see that Y ′ satisfies the condition (4). Therefore the

asymptotics are the same whether Z = V or Z = L. In the latter case we are back in the setting

of the above examples.

5 Simulation experiments

5.1 Simulation design

In the first design we will repeatedly simulate, over the unit interval, standard Brownian motion

B plus four different types of jump process Z. The B and Z processes are drawn independently

of one another. The jump process Zt will have a zero mean, be symmetrically distributed and

have a unit unconditional variance. Further, the four jump processes will be setup to share

identical first four moments. The specifics of the jump processes are as follows.

• (i) a normal inverse Gaussian Lévy process such that Z1
L
= εσ where ε ⊥⊥ σ, ε ∼ N(0, 1)

and σ ∼ IG(c2, 2). This process has index of 1,
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• (ii) a normal gamma Lévy process, which has index of 0,

• (iii) a stratified normal inverse Gaussian compound Poisson process (CPP) with a single

jump per unit of time (which means the process will distribute an arrival randomly in the

unit interval and the jumps are distributed as a normal inverse Gaussian random variable),

which has index of 0,

• (iv) a stratified normal inverse Gaussian CPP process with 10 jumps per unit of time.

Obviously the jumps in this process will have to have a smaller variance than in (iii) to

compensate for the fact that there are more jumps. This process has index of 0.

The parameters of the normal gamma and normal inverse Gaussian distributions in (ii), (iii)

and (iv) were selected to match the distributions in (i). When c = 1 the variance, per unit of

time, of B and Z are equal. In empirical work based on 10 minute returns for the Dollar against

the DM from 1986 to 1996, Barndorff-Nielsen and Shephard (2005) suggest that jumps account

for around 10% of the variation of the price process. Hence in our Monte Carlo results we will

study the cases where c = 1/10 and 1.

5.2 Convergence in probability

In this subsection we see how accurate the CiP predictions are in finite samples. Our simulations

of the jumps processes will cover both finite activity and infinite activity processes. To assess

the results we will compute the root mean square error of the following error terms

S1 =
(

µ−2
1 {Yδ}[1,1]

1 − 1
)

,

S2 =
(

µ−3
2/3{Yδ}[2/3,2/3,2/3]

1 − 1
)

,

S3 = {Yδ}[2]
1 − µ−2

1 {Yδ}[1,1]
1 − [Zδ ]

[2]
1 ,

and

S4 = {Yδ}[2]
1 − µ−3

2/3{Yδ}[2/3,2/3,2/3]
1 − [Zδ ]

[2]
1 .

The first two terms are the errors of the scaled realised bipower and tripower estimators of the

quadratic variation of the continuous component of the process, which is 1 in this case. The

third and fourth terms are the corresponding errors in estimating the quadratic variation of the

jump component.

The results in Table 1 are given only in the c = 1 case, as this is the most challenging. They

suggest that the tripower variation based statistics provide better estimators than when there

are jumps in the process. The two CPP cases are interesting. They suggest that the infrequent
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NIG case NGamma case
n S1 S2 S3 S4 S1 S2 S3 S4

10 1.162 0.987 1.027 0.903 1.208 1.021 1.027 0.895
30 0.883 0.766 0.833 0.728 0.835 0.709 0.786 0.671

100 0.621 0.527 0.603 0.513 0.577 0.459 0.567 0.455
300 0.454 0.357 0.450 0.355 0.363 0.263 0.364 0.268

1,000 0.299 0.221 0.298 0.222 0.217 0.140 0.216 0.143
3,000 0.198 0.139 0.198 0.140 0.132 0.077 0.134 0.081

10,000 0.126 0.083 0.127 0.084 0.073 0.038 0.073 0.040

CPP 1 jump CPP 10 jumps
n S1 S2 S3 S4 S1 S2 S3 S4

10 0.851 0.684 0.802 0.747 1.175 1.002 1.022 0.897
30 0.550 0.432 0.560 0.480 0.846 0.727 0.785 0.678

100 0.314 0.227 0.329 0.257 0.585 0.477 0.575 0.475
300 0.180 0.126 0.191 0.147 0.398 0.299 0.396 0.301

1,000 0.102 0.066 0.108 0.079 0.245 0.167 0.244 0.168
3,000 0.060 0.036 0.063 0.043 0.150 0.092 0.151 0.094

10,000 0.031 0.019 0.035 0.024 0.084 0.046 0.086 0.048

Brownian motion
n S1 S2 S3 S4

10 0.957 1.014 0.540 0.749
30 0.585 0.626 0.295 0.397

100 0.320 0.345 0.158 0.208
300 0.187 0.202 0.089 0.118

1,000 0.101 0.109 0.049 0.065
3,000 0.059 0.063 0.028 0.037

10,000 0.032 0.035 0.015 0.020

Table 1: Root mean square error of the estimators of various measures of variation. The four
jump processes have the same first four moments. First two cases have infinite activity, next
two finite activity. Code: winkel.ox.

jumps case is easier to deal with than the case with many, smaller jumps. The processes are

set up so that if the number of jumps went off to infinity so the CPP case would converge to

the NIG Lévy process. These are the expected results from the theory and detailed examples

developed in the previous Section.

Table 1 also gives results when there are no jumps in the process. Here we compute the same

quantities as above but now simulate from
√

2 times standard Brownian motion. The results

are the ones expected from the theory given in Barndorff-Nielsen, Graversen, Jacod, Podolskij,

and Shephard (2005) and Barndorff-Nielsen, Graversen, Jacod, and Shephard (2005) which is

that the bipower based quantities are slightly more accurate than the corresponding tripower

versions.
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5.3 Central limit theorem

The theory we have developed implies we should expect that when the jumps are of a finite ac-

tivity case the CLT holds for realised tripower variation based estimators of integrated variance.

However, it fails for realised power and realised bipower variation versions. In this subsection

we use the above simulation design to assess the accuracy of these predictions in finite samples.

In the case where the continuous component is standard Brownian motion, if the CLT works

then the bipower CLT takes on the form of

√
M
(

log
(

µ−2
1 {Yδ}[1,1]

1

)

− log (1)
)

√
2.6090

d→ N(0, 1).

The corresponding tripower CLT is

√
M
(

log
(

µ−3
2/3{Yδ}[2/3,2/3,2/3]

1

)

− log (1)
)

√
3.0613

d→ N(0, 1).

We compute these t-statistics and record the mean and standard error, which should be

roughly 0 and 1 if the CLT exactly holds. Also recorded is the percentage that the absolute value

of the statistics are less than 1.96. This should be around 95% if the finite sample distribution

is accurate.

5.3.1 Tripower variation

The results on realised tripower are given in Table 2 for the c = 0.1 case. They are in line with

the above theory. It suggests that practically speaking the CLT does indeed seem to work for

a moderately large sample size in the normal gamma, compound Poisson and Brownian motion

cases and it shows signs of failure in the NIG case.

The theoretical results seem to continue to have some explanatory power in the extreme

c = 1 case — which is less realistic in financial economics. The results are given in Table 3

in the NIG and normal gamma cases. Having said that, the convergence of the CLT for the

normal gamma process is very slow indeed and the predictions from the theory would seem to

be unreliable for any sensible finite samples. The Table shows the dramatic failure of the CLT

to hold in the NIG case, as predicted.

The corresponding results for compound Poisson processes when c = 1 are also given in Table

3. In the single jump case the CLT seems to perform in a somewhat useful way, while when

there are many jumps the CLT takes extreme large samples to produce reasonably accurate

predictions. In the case of pure Brownian motion the theory gives accurate predictions even for

quite small samples.
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NIG case Ngamma case

M Bias S.E. Cove Bias S.E. Cove

10 -0.61 1.13 88.1 -0.61 1.12 87.7
30 -0.21 1.05 93.3 -0.22 1.04 93.2

100 0.04 1.03 94.0 -0.01 1.05 93.6
300 0.17 1.02 93.9 0.08 1.03 93.7

1,000 0.29 1.03 93.4 0.14 1.03 93.9
3,000 0.38 1.02 92.8 0.17 1.02 94.0

10,000 0.42 1.02 92.4 0.14 1.02 94.4

CPP 1 jump CPP 40 jumps Brownian motion

M Bias S.E. Cove Bias S.E. Cove Bias S.E. Cove

10 -0.59 1.12 88.1 -0.56 1.11 88.7 -0.70 1.12 86.5
30 -0.23 1.05 92.8 -0.24 1.05 93.0 -0.36 1.03 92.4

100 -0.03 1.03 94.1 0.04 1.04 93.9 -0.21 1.00 94.5
300 0.05 1.01 94.5 0.17 1.04 93.7 -0.12 0.99 94.8

1,000 0.09 1.00 94.7 0.26 1.02 93.7 -0.05 1.00 95.0
3,000 0.08 1.01 94.4 0.33 1.02 92.8 -0.03 1.01 94.4

10,000 0.11 1.01 94.7 0.39 1.01 92.8 -0.01 1.00 94.9

Table 2: c = 0.1 case. Bias and standard error of the realised tripower variation errors using
the log-based asymptotics. Cove denotes estimated finite sample coverage using the asymptotic
theory setting the nomimal level at 95.0. Based on 5,000 replications. File: simple.ox.

5.3.2 Bipower variation

The corresponding results for realised bipower variation in the c = 1 case are given in Table 4.

They confirm the theoretical predictions that the CLT fails when there are any form of jumps.

6 Conclusion

In this paper we have studied how the behaviour of realised multipower variation changes when

we add jumps to a Brownian semimartingale. Previously Barndorff-Nielsen and Shephard have

shown that the probability limit of these measures of variation are robust to finite activity

jumps, whatever their relationship to the Brownian semimartingale. Here we show that this

conclusion generalises to infinite activity Lévy processes provided the activity is not too high.

Similar results hold for jump processes in wide generality, see the closely related work of Woerner

(2004). Thus, in particular, we expect that realised multipower variation can be used to split

up quadratic variation into that due to the continuous component of prices and that due to the

jumps.

The other contribution of the paper is to provide the first analysis of the asymptotic distri-

bution of realised multipower variation when there are jumps. We showed that if our interest is

in estimating integrated variance, in the presence of arbitrary finite activity jumps, then realised
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NIG case Ngamma case

M Bias S.E. Cove Bias S.E. Cove

10 0.33 1.17 89.0 0.20 1.20 89.3
30 1.12 1.13 76.8 0.98 1.20 79.6

100 1.96 1.20 50.2 1.54 1.25 63.6
300 2.64 1.21 28.6 1.80 1.31 55.9

1,000 3.33 1.25 13.2 1.96 1.27 50.0
3,000 3.80 1.24 5.6 1.92 1.25 51.3

10,000 4.38 1.17 1.6 1.76 1.15 55.6
30,000 4.74 1.15 0.7 1.57 1.11 64.2

100,000 5.05 1.10 0.3 1.38 1.10 68.4
300,000 5.36 1.09 0.0 1.11 1.04 79.9

1,000,000 5.59 1.05 0.0 0.84 1.04 85.2

CPP 1 jump CPP 40 jumps Brownian motion

M Bias S.E. Cove Bias S.E. Cove Bias S.E. Cove

10 -0.24 1.20 89.1 0.26 1.16 90.9 -0.72 1.15 85.2
30 0.16 1.07 92.7 1.04 1.18 77.5 -0.39 1.02 92.9

100 0.36 1.13 90.0 1.73 1.18 59.4 -0.17 1.01 95.0
300 0.43 1.09 90.2 2.20 1.19 43.4 -0.15 1.01 94.9

1,000 0.40 1.08 90.4 2.43 1.22 35.7 -0.04 0.99 96.2
3,000 0.37 1.03 91.9 2.49 1.14 32.0 -0.02 0.98 95.6

10,000 0.26 1.02 93.4 2.36 1.15 37.0 -0.04 0.97 95.6
30,000 0.32 1.04 92.4 2.17 1.08 43.2 -0.07 0.99 94.6

100,000 0.21 1.01 93.8 1.86 1.08 54.7 0.00 0.99 94.8
300,000 0.20 1.00 95.0 1.60 1.03 63.7 -0.02 0.99 94.9

1,000,000 0.15 1.00 94.8 1.35 1.02 72.1 0.01 0.99 95.3

Table 3: c = 1.0 case. Bias and standard error of the realised tripower variation errors using
the log-based asymptotics. Cove denotes estimated finite sample coverage using the asymptotic
theory setting the nomimal level at 95.0. Based on 2,000 replications. File: simple.ox.

tripower variation can do this and the corresponding standard non-jump central limit theorem

continues to hold under jumps. This result does not hold in the case of bipower variation. When

the jumps are of infinite activity the results are more complicated, as discussed. Simulation re-

sults suggest that the CLT does have some predictive power in finite samples when the share of

the variation in the process due to jumps is moderate — which is realistic in financial economics.

However, when jumps make up a large share of the movement in the process the predictions

from the theory are often quite inaccurate.
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NIG case Ngamma case

M Bias S.E. Cove Bias S.E. Cove

10 0.66 1.16 84.6 0.60 1.20 86.1
30 1.48 1.19 66.5 1.33 1.28 67.5

100 2.50 1.36 35.3 2.05 1.39 49.2
300 3.48 1.47 15.0 2.73 1.65 32.6

1,000 4.65 1.67 3.2 3.25 1.75 21.8
3,000 5.76 2.03 0.8 3.61 1.85 17.5

10,000 6.99 1.95 0.0 3.77 2.05 16.8
30,000 8.15 2.17 0.0 4.00 2.07 13.3

100,000 9.33 1.98 0.0 4.08 1.87 10.8
300,000 10.5 1.96 0.0 3.62 1.70 16.4

1,000,000 11.7 2.03 0.0 2.89 1.48 28.2

CPP 1 jump CPP 40 jumps Brownian motion

M Bias S.E. Cove Bias S.E. Cove Bias S.E. Cove

10 0.19 1.19 90.2 0.60 1.16 87.1 -0.50 1.13 89.1
30 0.52 1.28 84.7 1.46 1.17 66.5 -0.28 1.02 93.6

100 0.81 1.31 80.8 2.27 1.35 42.4 -0.11 1.00 95.2
300 1.00 1.45 76.3 3.02 1.50 23.4 -0.10 1.00 95.0

1,000 1.03 1.51 75.8 3.78 1.65 12.0 -0.02 1.00 95.8
3,000 1.12 1.57 73.6 4.34 1.72 5.9 0.00 0.98 95.5
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1,000,000 1.20 1.60 72.8 5.22 1.87 1.4 0.01 0.99 95.0

Table 4: c = .01 case. Bias and standard error of the realised bipower variation errors using
the log-based asymptotics. Cove denotes estimated finite sample coverage using the asymptotic
theory setting the nomimal level at 95.0. Based on 2,000 replications. File: simple.ox.
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