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Abstract
This article is about right inverses of Lévy processes as first introduced by Evans in the symmetric
case and later studied systematically by the present authors and their co-authors. Here we add
to the existing fluctuation theory an explicit description of the excursion measure away from the
(minimal) right inverse. This description unifies known formulas in the case of a positive Gaussian
coefficient and in the bounded variation case. While these known formulas relate to excursions
away from a point starting negative continuously, and excursions started by a jump, the present
description is in terms of excursions away from the supremum continued up to a return time. In
the unbounded variation case with zero Gaussian coefficient previously excluded, excursions start
negative continuously, but the excursion measures away from the right inverse and away from a
point are mutually singular. We also provide a new construction and a new formula for the Laplace
exponent of the minimal right inverse.

1 Introduction

Evans [5] defined a (full) right inverse of a Lévy process X = (X t , t ≥ 0) to be any increasing
process K = (Kx , x ≥ 0) such that XKx

= x for all x ≥ 0. A partial right inverse [8] is any
increasing process K = (Kx , 0 ≤ x < ξK) such that XKx

= x for all 0 ≤ x < ξK for some (random)
ξK > 0. The existence of partial right inverses is a local path property that has been completely
characterised [4, 5, 8] in terms of the Lévy-Khintchine triplet (a,σ2,Π) of the Lévy process X , i.e.
a ∈ R, σ2 ≥ 0 and Π measure on R with Π({0}) = 0 and

∫

R(1∧ y2)Π(d y)<∞ such that

E
�

eiλX t
�

= e−tψ(λ), where ψ(λ) =−iaλ+
1

2
σ2λ2 +

∫

R

�

1− eiλy + iλy1{|y|≤1}
�

Π(d y).
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Right inverses of Lévy processes 573

We recall Evans’ construction of right inverses. Recursively define for each n≥ 0 times

T (n)0 = 0, T (n)k+1 = inf
n

t ≥ T (n)k : X t = (k+ 1)2−n
o

, k ≥ 1,

and a process K (n)x = T (n)k , k2−n ≤ x < (k+ 1)2−n, k ≥ 0. Then, a pathwise argument shows that,
if the limit

Kx = inf
y>x

sup
n≥0

K (n)y (1)

is finite for 0 ≤ x < ξK and ξK > 0, it is the minimal partial right inverse: for all right-continuous
partial right inverses (Ux , 0≤ x < ξ′), we have ξ′ ≤ ξK and Ux ≥ Kx for all 0≤ x < ξ′.
Where right inverses exist, the minimal right-continuous right inverse is a subordinator, and for
partial right inverses (and ξK maximal), a subordinator run up to an independent exponential time
ξK . In the sequel, we focus on this minimal right-continuous (partial) right inverse and denote its
Laplace exponent by

ρ(q) =− ln
�

E
�

e−qK1 ;ξK > 1
��

= κK +ηKq+

∫

(0,∞)

�

1− e−qt�ΛK(d t). (2)

Evans [5] showed further that the reflected process Z = X − L is a strong Markov process, where
Lt = inf{x ≥ 0 : Kx > t}, 0≤ t < KξK

, Lt = ξK , t ≥ KξK
; and L is a local time process of Z at zero.

In analogy with the classical theory of excursions away from the supremum (see below), there is
an associated excursion theory that studies the Poisson point process (eZ

x , 0≤ x < ξ) of excursions
away from the right inverse, where

eZ
x (r) = ZKx−+r , 0≤ r ≤∆Kx = Kx − Kx−, eZ

x (r) = 0, r ≥∆Kx .

Specifically, we denote by nZ its intensity measure on the space (E,E ) of excursions

E = {ω ∈ D :ω(s) = 0 for all s ≥ ζ(ω) = inf{r > 0 :ω(r) = 0}}

equipped with the restriction sigma-algebra E induced by the Borel sigma-algebra D associated
with Skorohod’s topology on the space D = D([0,∞),R) of càdlàg paths ω: [0,∞) → R. The
entrance laws nZ

r (d y) = nZ({ω ∈ E : ω(r) ∈ d y,ζ(ω) > r}) are characterised by their Fourier-
Laplace transform

∫ ∞

0

e−qr

∫

R
eiλy nZ

r (d y)dr =
ρ(q)− iλ

q+ψ(λ)
−ηK , (3)

see [5, 8]. The sub-stochastic semi-group within these excursions is the usual killed semi-group

P†
t (y, dz) = P†

y({ω ∈ D :ω(t) ∈ dz,ζ(ω)> t}), with P†
y = P((X t∧ζ(X ), t ≥ 0) ∈ · |X0 = y)

as canonical measure on E ⊂ D of the distribution of X starting from y and frozen when hitting
zero. More explicit expressions for nZ are available from [8] in two cases: when σ2 > 0, then

nZ(dω) =
2

σ2 nX (dω;ω(s)< 0 for all 0< s < ε and some ε > 0) (4)

is proportional to the intensity measure nX of excursions of X away from zero restricted to those
starting negative; in the bounded variation case (BV), σ2 = 0 and

∫

R(1∧ |y|)Π(d y)<∞,

nZ(dω) =
1

b

∫

R
P†

y(dω)Π(d y), where necessarily b = a−
∫

R
y1{|y|≤1}Π(d y)> 0. (5)
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Recall now from [4, 5, 8] that a Lévy process X possesses a partial right inverse if and only if

σ2 > 0 or BV, b > 0, Π((0,∞))<∞ or not BV,

∫ 1

0

x2Π(d x)

(
∫ x

0

∫ 1

y
Π(−∞,−s)dsd y)2

<∞.

In the present paper, we describe nZ for a general Lévy process that possesses a partial right
inverse. This seems to answer the final open question [4] related to the notion of right inverse of
a Lévy process. However, this study can also be seen in the light of more general subordination
[7] of the form XTx

= Yx , where (T, Y ) is a bivariate Lévy process, increasing in the T -component.
To formulate our main result, we recall some classical fluctuation theory [1, 2]. With any Lévy
process X we associate the ascending ladder time and ladder height processes (τ, H), a bivariate
subordinator such that Hx = Xτx

= X τx
visits all suprema X t = sup{Xs, 0 ≤ s ≤ t}, t ≥ 0. If

X t →−∞ as t →∞, then τ = (τx , 0 ≤ x < ξ) is a subordinator run up to an exponential time ξ.
We write the Laplace exponent of (τ, H) in Lévy-Khintchine form as

k(α,β) =− ln
�

E
�

e−ατ1−βH1 ;ξ > 1
��

= κ+ηα+δβ +

∫

[0,∞)2

�

1− e−αs−β y
�

Λ(ds, d y). (6)

It was shown in [8] that δ > 0 whenever there exists a partial right inverse. In the sequel, we will
always normalise the ascending ladder processes so that δ = 1. Also, when partial right inverses
exist, then P(T{z} < ∞) > 0 for all z > 0, where T{z} = inf{t ≥ 0 : X t = z}. In particular, the
q-resolvent measure

Uq(dz) =

∫ ∞

0

e−qtP(X t ∈ dz)d t

then admits a bounded density uq(z) that is continuous except possibly for a discontinuity at zero
in the bounded variation case, see [6, Theorem 43.19]. Now R= X −X is a strong Markov process
with τ as its inverse local time; its excursions, with added height ∆Hx at freezing,

eR
x(r) = Rτx−+r , 0≤ r <∆τx = τx −τx−, eR

x(r) = ∆Hx , r ≥∆τx ,

form a Poisson point process whose intensity measure we denote by enR. For ω ∈ D, we write
ζ+(ω) = inf{r > 0 :ω(r)> 0}. For ω1 ∈ D with ζ+(ω1)<∞ and ω2 ∈ D, we concatenate

ω=ω1 ⊕ω2, where ω(r) =ω1(r), 0≤ r < ζ+(ω1), ω(ζ+(ω1) + r) =ω2(r), r ≥ 0.

Theorem 1. Let X be a Lévy process that possesses a partial right inverse. Then the excursion mea-
sures nZ away from the right inverse and enR away from the supremum are related as

nZ(dω) = (enR ⊕K)(dω), (7)

where the stochastic kernel

K(ω1, dω2) = P
†
ω1(ζ+(ω1))

(dω2), if ζ+(ω1)<∞, K(ω1, dω2) = δ0 otherwise,

associates to a path ω1 that passes positive a Lévy process path ω2 that starts at the first positive
height of ω1 and is frozen when reaching zero, and where (enR ⊕ K)(dω) is the image measure of
K(ω1, dω2)enR(dω1) under concatenation (ω1,ω2) 7→ω=ω1 ⊕ω2.
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For the case σ2 = 0 and X of unbounded variation, it was noted in [4] that a.e. excursion under
nX starts positive and ends negative, while a.e. excursion under enR starts negative; by Theorem 1,
the two measures nZ and nX are therefore singular, in contrast to (4) in the case σ2 > 0. When
X is of bounded variation, the discussion in [8, Section 5.3] easily yields the compatibility of (7)
and (5); it can happen that a jump in the ladder height process ∆Hx occurs without an excursion
away from the supremum, ∆τx = 0, and so nZ can charge paths with ω(0) > 0, while in the
unbounded variation case we have ω(0) = 0 for nZ -a.e. ω ∈ E.
Other descriptions of nZ follow: let enR

t (dz) = enR({ω ∈ E :ω(t) ∈ dz,ζ+(ω)∧ ζ(ω)> t}).

Corollary 2. In the setting of Theorem 1, the entrance laws of nZ are given by

nZ
t (dz) = enR

t (dz) +

∫

[0,t]×(0,∞)
P†

t−s(y, dz)Λ(ds, d y), (8)

and the semi-group of nZ , or rather nZ({ω ∈ E : (ω(t), 0≤ t < ζ(ω)) ∈ · }, is (P†
t (y, dz), t ≥ 0).

We also record an expression for the Laplace exponent ρ of the partial right inverse K .

Theorem 3. Let X be a Lévy process which possesses a partial right inverse. Then

ρ(q) = κ+ηq+

∫

[0,∞)×[0,∞)

�

1− e−qs uq(−y)
uq(0)

�

Λ(ds, d y), with uq(0) = uq(0+), (9)

where κ ≥ 0, η ≥ 0 and Λ are as in (6), respectively, the killing rate and the drift coefficient of the
ascending ladder time process and the Lévy measure of the bivariate ladder subordinator (τ, H). In
particular, the characteristics (κK ,ηK ,ΛK) of K in (2) are given by

κK = κ+

∫

[0,∞)2
P(T{−y} =∞)Λ(ds, d y), ηK = η,

ΛK(d t) =

∫

[0,∞)×[0,∞)
P(s+ T{−y} ∈ d t; T{−y} <∞)Λ(ds, d y). (10)

We stress that Λ({0}, d y) is the zero measure unless X can jump into its new supremum from the
position of its current supremum. The latter can happen only when the ascending ladder time has
a positive drift η > 0, i.e. in particular only when X is of bounded variation.
Let us note a simple consequence of Theorem 3 which can also be seen directly using more ele-
mentary arguments: P(ξK > x , Kx ≤ t)> 0 for some t > 0 implies P(ξK > x) = 1.

Corollary 4. A recurrent Lévy process has a partial right inverse iff it has a full right inverse.

We proceed as follows. Sections 2 and 3 contain proofs of Theorem 3 and Corollary 4 exploiting
recent developments [3] on joint laws of first passage variables, and, respectively, of Theorem 1
and Corollary 2. In an appendix, we introduce an alternative construction of right inverses and
indicate an alternative proof of Theorem 3.

2 The Laplace exponent of K; proof of Theorem 3

Before we formulate and prove some auxiliary results, we introduce some notation. Denote by
U (ds, d y) =

∫∞
0
P(τx ∈ ds, Hx ∈ d y;ξ > x)d x the potential measure of the bivariate ascending
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ladder subordinator (τ, H), by T+x = inf{t ≥ 0 : X t ∈ (x ,∞)} the first passage time across level
x > 0, by X t = sup0≤s≤t Xs the supremum process, by G t = sup{s ≤ t : Xs = X t or Xs− = X t} the
time of the last visit to the supremum and by Ox = XT+x

− x ≥ 0 the overshoot over level x . Then
on {(t, s, w, y) : t ≥ 0, s ≥ 0, w > 0, 0≤ y ≤ x}, we have

P(T+x − GT+x −∈d t, GT+x −∈ds, Ox ∈dw, x − X T+x −∈d y; T+x <∞) = Λ(d t, du+ y)U (x − d y, ds),
(11)

by a corollary of the quintuple law of Doney and Kyprianou [3].
Suppose that X possesses a partial right inverse. Recall construction (1). A crucial quantity there
is the hitting time of levels, T{x}. A key observation for our developments is that

T{x} = T+x + eT{−Ox } a.s. on {T+x <∞}, (12)

where eT{−Ox } = inf{t ≥ 0 : eX t = −Ox} for eX = (XT+x +t − XT+x
, t ≥ 0) independent of (T+x , Ox). For

q > 0, let

zn = 2nE
�

1− e−qT{2−n}
�

= 2nE
�

1− e−q(T+
2−n+eT{−O2−n })

�

,

with the convention that e−∞ = 0 and T+2−n+ eT{O2−n } =∞ on {T+2−n =∞}. As was already exploited
by Evans [5], construction (1) allows us to express

ρ(q) =− ln
�

lim
n→∞
E
�

e−qK(n)1

�
�

=− ln
�

lim
n→∞

�

1−
zn

2n

�2n�

= lim
n→∞

zn, (13)

because K (n)1 is the sum of 2n independent random variables with the same distribution as T{2−n}.
To calculate this limit, we will use (12) and also decompose zn, as follows, setting

bzn = 2nE
�

�

1− e−qT{2−n}
�

1{O2−n>0,T+
2−n<∞}

�

and ezn = zn − bzn. (14)

Lemma 5. Let X be a Lévy process of unbounded variation which possesses a partial right inverse.
Then

lim
n→∞

bzn =

∫

(t,h)∈(0,∞)2

�

1− e−qt uq(−h)
uq(0)

�

Λ(d t, dh). (15)

Proof. According to [6, Theorems 43.3, 43.19 and 47.1], the resolvent density uq is bounded and
continuous for all q > 0 and E(e−qT{x}) = uq(x)/uq(0) for all x ∈ R. We use (11) to obtain

E
��

1− e−q(T+x +eT{−Ox })
�

1{Ox>0}

�

= E
��

1− e−q(GT+x −
+T+x −GT+x −

+T̃{−Ox })
�

1{Ox>0}

�

=

∫

(s,y)∈(0,∞)×[0,x]

∫

(t,w)∈(0,∞)2

�

1− e−q(s+t) u
q(−w)
uq(0)

�

Λ(d t, dw+ y)U (ds, x − d y)

=

∫

(t,h)∈(0,∞)2

∫

(s,y)∈(0,∞)×[0,x∧h]

�

1− e−q(s+t) u
q(−h+ y)

uq(0)

�

U (ds, x − d y)Λ(d t, dh).

Therefore it will be sufficient to show that as n tends to infinity, we have the convergence

2n

∫

(t,h)∈(0,∞)2

∫

(s,y)∈(0,∞)×[0,2−n∧h]

�

1− e−q(t+s) u
q(−h+ y)

uq(0)

�

U (ds, 2−n − d y)Λ(d t, dh)

−→
∫

(t,h)∈(0,∞)2

�

1− e−qt uq(−h)
uq(0)

�

Λ(d t, dh). (16)
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First fix (t, h) ∈ (0,∞)2 and consider the bounded and continuous function f : [0,∞)2 → [0,∞)
given by

f (s, y) = 1− e−q(t+s) u
q(−h+ y)

uq(0)
(17)

and the measures ϑn,h(ds, d y) = 1[0,2−n∧h](y)2nU (ds, 2−n−d y) on [0,∞)2. Since H has unit drift,
we have that P(Ht ≥ t for all t ≥ 0) = 1 and so for all ε > 0, we have

lim
n→∞

ϑn,h (([0,ε]× [0,ε])c) = lim
n→∞

2n

∫ ∞

0

P
�

τx > ε, Hx ≤ 2−n� d x

= lim
n→∞

2n

∫ 2−n

0

P
�

τx > ε, Hx ≤ 2−n� d x ≤ lim
n→∞
P(τ2−n > ε) = 0,

whereas Ht/t → 1 a.s., as t → 0, implies that P(H2−n(1−ε) ≤ 2−n) ≥ 1− ε for n sufficiently large,
and so

1≥ 2n

∫ 2−n

0

P(τx ≥ 0, Hx ≤ 2−n)d x ≥ 2n

∫ 2−n(1−ε)

0

P(Hx ≤ 2−n)d x ≥ (1− ε)2.

This shows convergence ϑn,h(ds, d y) = 1[0,2−n∧h](y)2nU (ds, 2−n− d y)→ δ(0,0) weakly as n tends
to infinity, where δ(0,0) is the Dirac measure in (0,0); in particular

∫

[0,∞)2
f (s, y)ϑn,h(ds, d y)→ f (0,0). (18)

To deduce (16), and hence (15), from (18), we use the Dominated Convergence Theorem and for
this purpose we show that

fn(t, h) =

∫

(s,y)∈(0,∞)×[0,2−n∧h]

�

1− e−q(t+s) u
q(−h+ y)

uq(0)

�

U (ds, 2−n − d y) (19)

is bounded above by a Λ-integrable function. We shall prove the bound

fn(t, h)≤ (1− e−qt) +
�

k(q, 0) +
1

2
k(0,ρ(q))

�

(1∧ h) +
�

1−
uq(−h)
uq(0)

�

, (20)

where we recall from (6) that k is the Laplace exponent of (τ, H). The integrand in (19) is

f (s, y) = (1− e−qt) + e−qt(1− e−qs) + e−q(t+s)
�

1−
uq(−h+ y)

uq(0)

�

≤ (1− e−qt) + (1− e−qs) +
�

1−
uq(−h+ y)

uq(0)

�

,

three terms, where f (s, y) is defined in (17). First note that as before since H has unit drift

ϑn,h([0,∞)2) = 2n

∫ 2−n

0

P(Ht ≤ 2−n)d t ≤ 1.

Therefore
∫

(s,y)∈[0,∞)2
(1− e−qt)ϑn,h(ds, d y)≤ 1− e−qt . (21)
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For the second term we use P(Hu −Ht ≥ u− t for all u≥ t ≥ 0) = 1 to write
∫

[0,∞)2
(1− e−qs)ϑn,h(ds, d y)

≤
∫

s∈[0,∞)
(1− e−qs)2n

∫

r∈[0,∞)
P
�

τr ∈ ds, Hr ∈ [2−n − h, 2−n]
�

dr

= 2n

∫

[0,2−n]

E
�

�

1− e−qτr
�

1{Hr∈[2−n−h,2−n]}
�

dr

≤ 2n

∫

[0,2−n]

E
�

�

1− e−qτ2−n
�

1{Hr∈[2−n−h,2−n]}
�

dr

≤ 2n(h∧ 1)
�

1− e−2−nk(q,0)
�

≤ (h∧ 1)k(q, 0). (22)

For the third term we mimick the previous calculation to get
∫

[0,∞)2

�

1−
uq(−h+ y)

uq(0)

�

ϑn,h(ds, d y)

= E

 

2n

∫

r∈[0,2−n∧h]

�

1−
uq((−h+Hr)∧ 0)

uq(0)

�

dr

!

=:Υ(h).

We now exploit the fact [8, Corollary 2] that x 7→ e−ρ(q)xuq(−x) is decreasing, and also 1− e−x ≥
x − x2/2, to see, for h≤ 2−n

Υ(h) ≤ 2n

 

h−
uq(−h)
uq(0)

E

 

∫ h

0

e−ρ(q)Hr dr

!!

= 2n
�

h−
uq(−h)
uq(0)

1

k(0,ρ(q))
(1− e−hk(0,ρ(q)))

�

≤
�

1−
uq(−h)
uq(0)

�

+ h
1

2
k(0,ρ(q)),

and similarly for h> 2−n,

Υ(h)≤ 2n
�

2−n −
uq(−h)
uq(0)

�

2−n + 2−2n k(0,ρ(q))
2

��

.

Together, this yields an upper bound for all h ∈ (0,∞)

Υ(h)≤
�

1−
uq(−h)
uq(0)

�

+
1

2
k(0,ρ(q))(h∧ 1). (23)

Thus (20) follows from (21), (22) and (23). In view of the fact that Λ(d t, dh) is a Lévy measure
of a subordinator the RHS of (20) will be Λ(d t, dh)-integrable if 1− uq(−h)/uq(0) is Λ(d t, dh)-
integrable. First using Fubini’s Theorem in (16), followed by Fatou’s Lemma, because of (18) and
the simple inequality

1−
uq(−h)
uq(0)

≤ 1− e−qt uq(−h)
uq(0)

,
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we get

lim inf
n→∞

ẑn ≥
∫

(t,h)∈(0,∞)2

�

1−
uq(−h)
uq(0)

�

Λ(d t, dh).

On the other hand, (13) gives limn→∞ zn = ρ(q) < ∞. Moreover, bzn ≤ zn and we conclude that
1− uq(−h)/uq(0) is Λ(d t, dh)-integrable. Thus (20), together with the Dominated Convergence
Theorem, implies (16) and then (15). �

Lemma 6. Assume that X is of unbounded variation and that X possesses a partial right inverse.
Then

lim
n→∞

ezn = κ+

∫

(0,∞)
(1− e−qu)Λ(d t, {0}).

Proof. This proof is based on [1, Theorem VI.18], which yields E(1 − e−qT+x ) = k(q, 0)V q(x),
where V q(x) =

∫∞
0
E(e−qτs ; Hs ≤ x)ds. Also, V q(x) ∼ x as x ↓ 0, since V q is differentiable with

vq(0+) = 1, by dominated convergence, as H has unit drift coefficient. Then note that

ezn = 2nE
�

�

1− e−qT{2−n}
�

1{O2−n=0,T+
2−n<∞ or T+

2−n=∞}

�

= 2nE
��

1− e−qT+
2−n

�

1{O2−n=0,T+
2−n<∞ or T+

2−n=∞}

�

and so, we obtain the required formula from (6) noting η= 0 in the unbounded variation case

x−1E
�

1− e−qT+x
�

− x−1E
�

�

1− e−qT+x
�

1{Ox>0,T+x <∞}

�

−→ κ+
∫

(t,h)∈(0,∞)×[0,∞)
(1− e−qt)Λ(d t, dh)−

∫

(t,h)∈(0,∞)2
(1− e−qt)Λ(d t, dh).

�

Although this is not necessary for our proof of Lemma 6, we would like to mention that we can
calculate explicitly ezn or, as Andreas Kyprianou pointed out to us, we can extend (11):

Proposition 7. In the relevant case δ = 1 of the setting of (11), cf. (6), we also have

P(T+x ∈ d t, Ox = 0)d x = P(T+x = GT+x − ∈ d t, Ox = 0, x − X T+x − = 0; T+x <∞)d x =U (d t, d x),

Proof. Indeed, note that for H−1
x = inf{s ≥ 0 : Hs > x} we have Ox = 0 iff ∆HH−1

x
= 0 and

T+x = τH−1
x

for a.e. x ≥ 0 a.s., so that as H has unit drift coefficient δ = 1,

∫

x∈(0,∞)

∫

t∈(0,∞)
e−αt−β xP(T+x ∈ d t, Ox = 0)d x = E

�
∫ ∞

0

e−ατH−1
x
−βHH−1

x 1{∆HH−1
x
=0}d x

�

= E
�
∫ ∞

0

e−ατH−1
x
−βHH−1

x dH−1
x

�

= E
�
∫ ∞

0

e−ατs−βHs ds

�

=

∫

(x ,t)∈(0,∞)2
e−αt−β xU (d t, d x).

�

Proof of Theorem 3. Let X be a Lévy process that possesses a partial right inverse. If X is of
unbounded variation, we have limn→∞ zn = ρ(q) by (13); and (14) together with Lemma 5 and
Lemma 6 proves the claim.



580 Electronic Communications in Probability

When X is of bounded variation we refer to [8, Section 5.3] which discusses in this case the
Laplace exponent ρ(q) of the partial right inverse and how the right inverse relates to ladder
processes.
This establishes (9). The characteristics can now be read off by inverting the Laplace transform
uq(−y)/uq(0) = E(e−qT{−y} ; T{−y} <∞) for y ≥ 0, where we recall uq(0) = uq(0+), which entails
P(T{0} = 0) = 1. �

Let us briefly explore the context of the last part of this proof. For y = 0, note that P(T{0} =
0) = 1 is a trivial consequence of the definition T{0} = inf{t ≥ 0 : X t = 0}. Indeed, this is
the appropriate notion to use in the light of Theorem 1, where excursions below the supremum
ending at zero before passing positive do not get marked by a further return time T>{0} = inf{t >
0 : X t = 0}, which in the bounded variation case would have Laplace transform E(e−qT>{0} ; T>{0} <
∞) = uq(0−)/uq(0+)< 1, see e.g. [6, Theorem 43.21].

Proof of Corollary 4. Suppose that X has a partial right inverse. In terms of the characteristics
(κK ,ηK ,ΛK) of the minimal partial right inverse K , this is indeed a full right inverse if ρ(0+) =
κK = 0. But if X is recurrent (and has a partial right inverse), then X does not drift to −∞, so
κ= 0, and P(T{−y} =∞) = 0 for all y ∈ R, so indeed

κK = κ+

∫

[0,∞)2
P(T{−y} =∞)Λ(ds, d y) = 0. �

Similarly, it is also straightforward to show that in the transient case X possesses a full right inverse
if and only if X drifts to +∞ and has no positive jumps in that Π((0,∞)) = 0.

3 The excursion measure away from K; proof of Theorem 1

Although Theorem 1 is more refined than Theorem 3, it is now a straightforward consequence.

Proof of Theorem 1 and Corollary 2. The proof relies crucially on [8, Theorem 2]. First recall
that the semigroup within excursions away from the right inverse is (P†

t (y, dz), t ≥ 0). With
this, the excursion measure nZ is uniquely determined by its entrance laws. Let us first check
that the entrance laws given in (8) satisfy (3), which is (vi) of [8, Theorem 2]. A standard
excursion measure computation similar to the proof of that theorem together with the Wiener-
Hopf factorization gives directly

∫ ∞

0

e−qt

∫

R
eiλy
enR

t (d y)d t =
k(q, 0)

q

∫

R\{0}
eiλxP(Rγ(q) ∈ d x)

=
k(q, 0)

q

�

E(eiλRγ(q))− P(Rγ(q) = 0)
�

=
k(q, 0)bk(q, 0)

qbk(q, iλ)
−η=

k(q,−iλ)
q+ψ(λ)

−η, (24)

where bk(α,β) is the Laplace exponent of the bivariate descending ladder process, which is the
ascending ladder process of −X , and where γ(q) is an independent exponential random variable

with rate parameter q; we recall Rγ(q)
d
= X γ(q) = inf{Xs, 0≤ s ≤ γ(q)}; the Wiener-Hopf identity

k(q, 0)
k(q,−iλ)

bk(q, 0)
bk(q, iλ)

=
q

q+ψ(λ)
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can be found in [2, Formulas (4.3.4) and (4.3.7)].
Next we compute the joint transform of the remaining part of the RHS of (8).

∫ ∞

0

e−qt

∫

[0,t]×[0,∞)

∫

R
eiλz P†

t−s(y, dz)Λ(ds, d y)d t

=

∫

[0,∞)×(0,∞)
e−qs

∫ ∞

s

e−q(t−s)Ey(e
iλX t−s ; T{0} > t − s)d tΛ(ds, d y)

=
1

q

∫

[0,∞)×(0,∞)
e−qsEy(e

iλXγ(q) ; T{0} > γ(q))Λ(ds, d y),

where γ(q) is an independent exponential random variable with rate parameter q. Also recall

Py(T{0} ≤ γ(q)) = E(e−qT{−y}) =
uq(−y)
uq(0)

, where uq(0) = uq(0+),

so that

qeiλy

q+ψ(λ)
= Ey(e

iλXγ(q)) = Ey(e
iλXγ(q) ; T{0} > γ(q)) +Ey(e

iλXγ(q) ; T{0} ≤ γ(q))

= Ey(e
iλXγ(q) ; T{0} > γ(q)) + Py(T{0} ≤ γ(q))E(eiλXγ(q))

= Ey(e
iλXγ(q) ; T{0} > γ(q)) +

uq(−y)
uq(0)

q

q+ψ(λ)
.

Thus we have computed Ey(eiλXγ(q) ; T{0} > γ(q)). Hence
∫ ∞

0

e−qt

∫

[0,t]×[0,∞)

∫

R
eiλz P†

t−s(y, dz)Λ(ds, d y)d t

=
1

q+ψ(λ)

∫

[0,∞)×(0,∞)
e−qs

�

eiλy −
uq(−y)
uq(0)

�

Λ(ds, d y).

Next observe that by using (6) and adding the numerator of the first term in (24) we get

k(q,−iλ) +

∫

[0,∞)×(0,∞)
e−qs

�

eiλy −
uq(−y)
uq(0)

�

Λ(ds, d y)

= κ+ηq− iλ+

∫

[0,∞)2

�

1− e−qs+iλy + e−qs+iλy − e−qs uq(−y)
uq(0)

�

Λ(ds, d y) = ρ(q)− iλ,

where the last equality holds by Theorem 3. Together with (24), this proves (8) since (3) holds
for the measure on the RHS of (8).
To finish the proof of Theorem 1, we note that the RHS of (7) is Markovian with semi-group
(P†

t (y, dz), t ≥ 0) and check that the RHS of (7) has as entrance laws the RHS of (8). Specifically,

(enR ⊕K)({ω ∈ D :ω(t) ∈ dz;ζ(ω)> t})
= enR({ω1 ∈ D :ω1(t) ∈ dz;ζ+(ω1)> t})

+

∫

{ω1∈D:ζ+(ω1)≤t}
K(ω1; {ω2 ∈ D :ω2(t − ζ+(ω1)) ∈ dz;ζ(ω2)> t − ζ+(ω1)})enR(dω1)

= enR
t (dz) +

∫

[0,t]×[0,∞)
P†

t−s(y, dz)Λ(ds, d y)
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since enR({ω1 ∈ D : ζ+(ω1) ∈ ds,ω1(ζ+(ω1)) ∈ d y}) = Λ(ds, d y). �

A Alternative proof of Theorem 3

Suppose that X possesses right inverses. We introduce an alternative construction that we first
use to sketch a heuristic proof of Theorem 3. Informally, for all n ≥ 0 we approximate K by the
ascending ladder time process τ, but when an excursion away from the supremum with eR

x(∆τx) =
∆Hx > 2−n appears, our approximation eK(n) of K makes a jump whose size is the length of this
excursion plus the time needed by X to return to the starting height Hx− = X τx−

= Xτx−
of the

excursion, after which we iterate the procedure. Then X
eKx (n)

evolves like an ascending ladder
height process H with jumps of sizes exceeding 2−n removed.
Let us formalize this. Fix n≥ 0. Consider the bivariate subordinator (τ, H). To begin an inductive
definition, let

S1(n) = inf
�

x ≥ 0 : ∆Hx > 2−n	

eKx(n) = τx , 0≤ x < S1(n)

eKS1(n)(n) = inf
n

t ≥ τS1(n) : X t = XτS1(n)−

o

, if S1(n)<∞.

Given (eKx(n), 0 ≤ x ≤ Sm(n)) and Tm(n) = eKSm(n)(n) <∞, let X (m)t (n) = XTm(n)+t − XTm(n), t ≥ 0.
With (τ(m)(n), H(m)(n)) as the bivariate ladder subordinator of X (m)(n), define

Sm+1(n) = Sm(n) + inf
¦

x ≥ 0 : ∆H(m)x (n)> 2−n
©

eKSm(n)+x(n) = Tm(n) +τ
(m)
x (n), 0≤ x < Sm+1(n)− Sm(n)

eKSm+1(n)(n) = Tm(n) + inf

¨

t ≥ τ(m)Sm+1(n)−Sm(n)
(n) : X (m)t (n) = X (m)

τ
(m)
Sm+1(n)−Sm(n)

(n)−
(n)

«

.

Thus we have defined eKx(n) for all x ≥ 0 and n≥ 0 a.s. Now it must be expected that

Kx = inf
y>x

sup
n≥0

eKLn(y)(n) = lim
n→∞

eKx(n), where Ln(y) = inf{x ≥ 0 : X
eKx (n)
≥ y − 2−n}. (25)

To derive formula (10) of Theorem 3, consider the Poisson point process (∆eKx(n), x ≥ 0) whose
intensity measure we can calculate from ((∆τx ,∆Hx), x ≥ 0) using standard thinning (keep if
∆Hx ≤ 2−n, modify if ∆Hx > 2−n), marking by independent T{−∆Hx } if ∆Hx > 2−n and mapping
(∆τx ,∆Hx , T{−∆Hx }) 7→∆τx + T{−∆Hx } =∆eKx(n) of Poisson point processes, as

Λ
eK(n)(d t) =

∫

y∈[0,2−n]

Λ(d t, d y) +

∫

(s,y)∈[0,∞)×(2−n,∞)
P
�

s+ T{−y} ∈ d t
�

Λ(ds, d y),

which converges to the claimed expression, as n→∞. We now make this approach rigorous, the
main task being to rigorously establish a variant of (25).
To simplify notation, let us assume in the sequel that X possesses a full right inverse. In the case
where only partial right inverses exist we can follow the construction above until the first m ≥ 0
for which H(m)(n) is killed before its first jump of size exceeding 2−n. If we denote the resulting
process by (eKx(n), 0 ≤ x < eξ(n)), we can insert suitable restrictions to events such as {eξ(n) > x}
into the following arguments.



Right inverses of Lévy processes 583

Lemma 8. Let eKx(n) be as above. Then ((eKx(n), X
eKx (n)
), x ≥ 0) is a bivariate subordinator with drift

coefficient (η, 1) and Lévy measure

eΛn(d t, dz) = Λ(d t, dz ∩ [0,2−n]) +

∫

(s,y)∈[0,∞)×(2−n,∞)
P(s+ T{−y} ∈ d t, 0 ∈ dz)Λ(ds, d y).

Proof. Let eHx(n) = X
eKx (n)

. Then (eK(n), eH(n)) inherits the drift coefficient (η, 1) from (τ, H). By

standard thinning properties of Poisson point processes, ((∆eKx(n),∆ eHx(n)), 0 ≤ x < S1(n)) has
the distribution of a Poisson point process with intensity measure Λ(d t, dz ∩ [0,2−n]) run up to
an independent exponential time S1(n) with parameter λ= Λ([0,∞)× (2−n,∞)), and

P(∆eKS1(n) ∈ d t,∆ eHS1(n) ∈ dz) = λ−1

∫

[0,∞)×(2−n,∞)
P(s+ T{−y} ∈ d t, 0 ∈ dz)Λ(ds, d y).

By the strong Markov property of X at Tm(n), m ≥ 1, the process ((∆eKx(n),∆ eHx(n)), x ≥ 0) with
points at Sm(n), m ≥ 1, removed, is a Poisson point process with intensity measure Λ(d t, dz ∩
[0, 2−n]) independent of the removed points, which we collect in independent and identically
distributed vectors (Sm(n)− Sm−1(n),∆eKSm(n)(n),∆ eHSm(n)(n)), m ≥ 1. By standard superposition
of Poisson point processes, the result follows. �

Lemma 9. With eKx(n) as above, we have

Kx = inf
y>x

sup
n≥0

eKLn(y)(n), where Ln(y) = inf{x ≥ 0 : X
eKx (n)
≥ y − 2−n}.

Proof. By construction, the process (X
eKx (n)

, x ≥ 0) has no jumps of size exceeding 2−n, so that

x − 2−n ≤ X
eKLn(x)(n)

≤ x . Note that we have eKLn(x)(n)≤ Kx . Let us define eKx by

eKx = lim inf
n→∞

eKLn(x)(n) = lim
n→∞

inf
m≥n

eKLm(x)(m)≤ sup
n≥0

eKLn(x)(n)≤ Kx ,

where the limit in the middle member of this sequence of inequalities is an increasing limit of
stopping times. Since X is right-continuous and quasi-left-continuous [1, Proposition I.7], we
obtain

x − 2−n ≤ X infm≥n eKLm(x)
≤ x ⇒ X

eKx
= lim

n→∞
X infm≥n eKLm(x)

= x a.s.

Now, it is standard to argue that X
eKq
= q holds a.s. simultaneously for all q ∈ Q ∩ [0,∞) and,

since x 7→ eKx is increasing and X right-continuous, infy>x eKy = infq∈Q∩(x ,∞) eKq ≤ Kx is a right-
continuous right inverse. Since K is the minimal right-continuous right inverse, infy>x eKy = Kx .

�

Lemma 10. Let eKx(n) be as above. Then for all x ≥ 0 there is convergence along a subsequence
(nk)k≥0 of limk→∞ eKx(nk) = Kx a.s.

Proof. Denote by L eb Lebesgue measure on [0,∞). By Lemma 8, eH(n) has drift coefficient 1, so
eHx(n)≥ x and L eb({ eHz(n), 0≤ z ≤ x}) = x a.s., and the distribution of eHx(n) is such that

E
�

e−β eHx (n)
�

= exp

(

−xβ − x

∫

[0,2−n]

(1− e−β y)ΛH(d y)

)

→ e−xβ for all β ≥ 0.
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Therefore, eHx(n)→ x in probability, and there is a subsequence (nk)k≥0 along which convergence
holds almost surely. Now let ε > 0. Then there is (random) N ≥ 0 such that for all nk ≥ N , we
have x ≤ eHx(nk)≤ x + ε. Therefore,

limsup
k→∞

eKx(nk)≤ inf
ε>0

Kx+ε = Kx .

Since Ln(x)≤ x a.s., the previous lemma implies the claimed convergence. �

Proof of Theorem 3. This proof is for the case where X has a full right inverse and we only prove
(9). The general case can be adapted. By Lemma 10, we can approximate Kx = limk→∞ eKx(nk).
The Laplace exponent of eKx(nk) follows from Lemma 8 and this yields

ρ(q) = − ln
�

E
�

e−qK1
��

=− lim
k→∞

ln
�

E
�

e−qeK1(nk)
��

= ηq+ lim
k→∞

∫

[0,∞)×[0,2−nk ]

(1− e−qs)Λ(ds, d y)

+ lim
k→∞

∫

[0,∞)×(2−nk ,∞)

∫

[0,∞)×[0,∞)
(1− e−qt)P(s+ T{−y} ∈ d t, 0 ∈ dz)Λ(ds, d y)

= ηq+

∫

[0,∞)×{0}
(1− e−qs)Λ(ds, d y) +

∫

[0,∞)×(0,∞)

�

1− e−qsE
�

e−qT{−y}
��

Λ(ds, d y).

�
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