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SLE AND α-SLE DRIVEN BY LÉVY PROCESSES1

BY QING-YANG GUAN AND MATTHIAS WINKEL2

Chinese Academy of Sciences and University of Oxford

Stochastic Loewner evolutions (SLE) with a multiple
√

κB of Brownian
motion B as driving process are random planar curves (if κ ≤ 4) or growing
compact sets generated by a curve (if κ > 4). We consider here more general
Lévy processes as driving processes and obtain evolutions expected to look
like random trees or compact sets generated by trees, respectively. We show
that when the driving force is of the form

√
κB + θ1/αS for a symmetric

α-stable Lévy process S, the cluster has zero or positive Lebesgue measure
according to whether κ ≤ 4 or κ > 4. We also give mathematical evidence that
a further phase transition at α = 1 is attributable to the recurrence/transience
dichotomy of the driving Lévy process. We introduce a new class of evolu-
tions that we call α-SLE. They have α-self-similarity properties for α-stable
Lévy driving processes. We show the phase transition at a critical coefficient
θ = θ0(α) analogous to the κ = 4 phase transition.

1. Introduction. Loewner evolutions are certain processes (Kt)t≥0 taking
values in the space of closed bounded subsets of the complex upper half plane H

(or other simply connected domains), driven by a càdlàg function U : [0,∞) → R.
They are best described via ordinary differential equations

∂tgt (z) = 2

gt (z) − U(t)
, g0(z) = z,

(1.1)
z ∈ H = {x + iy ∈ C :y ≥ 0},

as follows. ∂t is the right derivative as U is right-continuous. For each z ∈ H,
the solution of (1.1) is well defined on a time interval [0, ζ(z)). Then the process
Kt := {z ∈ H : ζ(z) ≤ t}, t ≥ 0, is a strictly increasing family of compact subsets
of H. We refer to Kt as the cluster.

Loewner [15] introduced these in the 1920s in a complex function-theoretic
framework of conformal mappings [the solutions gt : H \Kt → H of (1.1) are con-
formal mappings]. In the late 1990s, Schramm [20] noticed that U(t) = √

κBt for
a standard Brownian motion B leads to an interesting class of stochastic Loewner
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evolutions SLEκ , some of which he conjectured to be scaling limits of impor-
tant lattice models in statistical physics, subsequently proved in collaboration with
Lawler and Werner [13, 14] and by Smirnov [21]. Some introductory texts [11, 24]
are now available. Cardy [6] gives a recent review of mathematical progress and
further physical conjectures.

Brownian motion is a suitable driving process since its independent identi-
cally distributed (i.i.d.) increments translate into a composition of i.i.d. conformal
mappings that describe, in a sense, independent growth increments. Furthermore,
Loewner evolutions transform well under Brownian scaling, making SLEκ confor-
mally invariant: that is, on the one hand, the distribution of (Kt)t≥0 is invariant
under homotheties (the only conformal automorphisms of H leaving start and end
points 0 and ∞ fixed), up to a linear time change; on the other hand, we can
naturally consider SLEκ in other simply connected domains by application of a
conformal mapping.

In this paper we discard the Brownian scaling property and consider the
larger class of processes with stationary independent increments (Lévy processes)
as driving processes. Such processes are necessarily discontinuous (except for
Brownian motion, with drift). Whereas SLEκ is either a simple curve (κ ≤ 4) or
generated by a curve (κ > 4) [18, 20], here, roughly, each discontinuity corre-
sponds to a jump of the growth point on the boundary of the growing compact set.
This leads to tree-like structures. Beliaev and Smirnov [2] briefly mention such
models in a complex analysis context as examples of fractal domains with high
multifractal spectrum.

These models were recently introduced in the physics literature by Rushkin et al.
[19] who study driving processes of the form U(t) = √

κBt +θ1/αSt for a standard
Brownian motion B and an independent symmetric α-stable Lévy process S. They
observe two phase transitions:

1. The Brownian phase transition of SLEκ at κ = 4 is not affected by the additional
driving force θ1/αS. It can be expressed in terms of p(x) = P(ζ(x) < ∞) as
p(x) = 0 for all x ∈ R \ {0} for κ ≤ 4 versus p(x) > 0 for all x ∈ R \ {0} for
κ > 4. Due to the jumps, simulations look like trees and bushes, respectively.

2. There is another phase transition at α = 1, which in the simulations yields “iso-
lated trees/bushes” for 0 < α < 1 and “forests of trees/bushes” for 1 ≤ α < 2.

We strengthen their results from x ∈ R to z ∈ H and rigorously establish the fol-
lowing theorem.

THEOREM 1.1. Let (Kt)t≥0 be an SLE driven by Ut = √
κBt + θ1/αSt for

a Brownian motion B and an independent symmetric α-stable process S, with
ζ(z) = inf{t ≥ 0 : z ∈ Kt }. Then:

(i) if 0 ≤ κ ≤ 4 and U �≡ 0, then for all z ∈ H\{0}, we have P(ζ(z) = ∞) = 1;
(ii) if κ > 4 and 1 ≤ α < 2, then for all z ∈ H \ {0}, we have P(ζ(z) < ∞) = 1;
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(iii) if κ > 4 and 0 < α < 1, then for all z ∈ H \ {0}, we have 0 < P(ζ(z) <

∞) < 1 and limz→0,z∈H\{0} P(ζ(z) < ∞) = 1.

Our methods combined with some probabilistic reasoning allow us to deduce
the following corollary. Recall that Lévy processes Ct that are just the sums of
finite numbers of jumps �Cs in any bounded interval s ∈ [0, t] are called com-
pound Poisson processes. A Lévy process U is called recurrent (transient) if for
all a < 0 < b we have

∫ ∞
0 1{a<Ut<b} dt = ∞ (resp. < ∞) a.s.

COROLLARY 1.2. Suppose that in the notation of the theorem, the driving
process is changed as follows, in terms of Sc

t = St − ∑
s≤t �Ss1{|�Ss |>c}, that

is, S without its big jumps, for some c > 0, and independent compound Poisson
processes R and T , recurrent and transient, respectively:

(i) if Ut = √
κBt + θ1/αSc

t +Rt or Ut = √
κBt + θ1/αSc

t +Tt , and 0 ≤ κ ≤ 4,
but κ > 0 or θ > 0 to avoid trivialities, then for all z ∈ H \ {0}, we have P(ζ(z) =
∞) = 1;

(ii) if Ut = √
κBt + θ1/αSc

t + Rt and κ > 4 and 0 < α < 2, then for all z ∈
H \ {0}, we have P(ζ(z) < ∞) = 1;

(iii) if Ut = √
κBt + θ1/αSc

t + Tt , and κ > 4 and 0 < α < 2, then for all z ∈
H \ {0}, we have 0 < P(ζ(z) < ∞) < 1 and limz→0,z∈H\{0} P(ζ(z) < ∞) = 1.

This is strong evidence that the phase transition “at α = 1” is attributable to
the recurrence/transience dichotomy of Lévy processes. Under suitable regularity
conditions on P(|Ut | > x) ≈ x−α as x → ∞, such as regular variation, this is, of
course, equivalent to 1 ≤ α ≤ ∞ versus 0 < α ≤ 1, where a finer distinction is well
known at the critical value α = 1.

Since recurrence and transience are governed only by rare big jumps, we expect
that in the κ ≤ 4 case the phase transition is not reflected in the local geometry
of the cluster. Heuristically, in both cases pockets in the clusters will stabilize and
remain unchanged after a while; in the transient case even the big trees themselves
will remain unchanged eventually, whereas in the recurrent case bigger and bigger
trees, possibly from the far left and the far right, will almost meet above these un-
changed pockets, and this is reflected in the conformal mappings gt in that a whole
pocket is mapped onto a very small portion of the upper half plane that “disappears
in the limit” as t → ∞; for κ > 4 bigger bushes actually meet above pockets,
thereby incorporating the pockets in the cluster. We show in Proposition 3.5 that
the phase transition is reflected in the large-time asymptotics of the gt , thereby
making rigorous another observation in [19].

We leave the geometry of the cluster for further research, but establish the fol-
lowing result.

THEOREM 1.3. In the situation of Theorem 1.1, denote Lebesgue measure on
H by m and B(0, r) = {z ∈ H : |z| ≤ r} for r > 0. Then:
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(i) if 0 ≤ κ ≤ 4, then m(
⋃

t≥0 Kt) = 0 a.s.;
(ii) if κ > 4 and 1 ≤ α < 2, then m(H \ ⋃

t≥0 Kt) = 0 a.s.;
(iii) if κ > 4 and 0 < α < 1, then

lim
r↓0

m(
⋃

t≥0 Kt ∩ B(0, r))

m(B(0, r))
= 1 and lim

r↑∞
m(

⋃
t≥0 Kt ∩ B(0, r))

m(B(0, r))
= 0 a.s.

We actually believe that (ii) can be strengthened to
⋃

t≥0 Kt = H a.s. The other
extreme is when the driving process is a compound Poisson process U(t) = Ct

with successive jump times Jn, n ≥ 1, and jump heights Xn, n ≥ 1. C is piecewise
constant and hence the evolution can be decomposed and expressed as

gJn+t = ϑ−X1−···−Xn ◦ g0
t ◦ (ϑXn ◦ g0

Jn−Jn−1
) ◦ · · · ◦ (ϑX1 ◦ g0

J1
),

0 ≤ t < Jn+1 − Jn,n ≥ 0,

a composition of independent and identically distributed conformal mappings
ϑXj

◦ g0
Jj−Jj−1

, j ≥ 1, where g0
t (z) = √

z2 + 4t is the conformal mapping from

H \ [0,2
√

t i] to H that is associated with a driving function U0 ≡ 0 and ϑx(z) =
z−x is a translation by x ∈ R. The flow (ϑUt ◦gt )t≥0 is similar to flows of bridges
(on [0,1] instead of H) studied by Bertoin and Le Gall [4].

Clearly, (Kt)t≥0 is here a forest of trees growing from R, with g0
Jj−Jj−1

creating
branches and ϑXj

moving the growth point on the boundary. Specifically, Kt ∪R is
path connected and, more precisely, has the tree property that for all y, z ∈ Kt ∪ R

there is a simple path ρ : [0,1] → H, unique up to time parameterization, from
ρ(0) = y to ρ(1) = z with ρ(s) ∈ Kt ∪ R for all s ∈ [0,1]. If U is not a compound
Poisson process, for example, an α-stable Lévy process, we have been unable to
show that Kt ∪ R is path connected, but we believe that the following holds.

CONJECTURE 1. If Ut is a Lévy process with diffusion component
√

κBt for
some κ ≥ 0, then:

(i) if 0 ≤ κ ≤ 4, then Kt ∪ R has the tree property for all t ≥ 0. There is a
simple left-continuous function γ : (0,∞) → H such that Kt ∩ H = {γ (s) : 0 <

s ≤ t}, for all t ≥ 0;
(ii) if κ > 4, then Kt ∪R is generated by a left-continuous function γ : (0,∞) →

H in that H \ Kt is the unbounded connected component of H \ {γ (s) : 0 < s ≤ t},
for all t ≥ 0.

This conjecture is a theorem for Brownian SLEκ (see Rohde and Schramm [18]
and Lawler et al. [13]) when γ is indeed continuous. In the setting of Theorem 1.1,
the difficult part is to show path connectedness of R ∪ Kt , which is not obvious
as the logarithmic spiral (see Marshal and Rohde [16]) exemplifies. Heuristically,
the κ = 4 phase transition is not affected by the small jumps since locally, the
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Brownian fluctuations dominate jump fluctuations as is expressed, for example, in
(Uat/

√
a)t≥0 → √

κB in distribution as a ↓ 0, in the setting of the conjecture.
As a consequence of the scaling properties of (1.1) and Brownian motion of

the same index 2, for θ = 0, any κ ≥ 0 and a > 0, the process (
√

aKt)t≥0, where√
aKt = {√az : z ∈ Kt }, has the same distribution as (Kat )t≥0. The analogous

statement for a pure α-stable driving process, that is, κ = 0 and θ > 0, is not true:
the distributions of (a1/αKt)t≥0 and (Kat )t≥0 are different. Scaling of index 2 is
intrinsic to (1.1).

However, we can construct clusters (Kt)t≥0 such that (a1/αKt)t≥0 and (Kat )t≥0
have the same distribution by modifying (1.1) to

∂tgt (z) = 2|gt (z) − U(t)|2−α

gt (z) − U(t)
, g0(z) = z,

(1.2)
z ∈ H = {x + iy ∈ C :y ≥ 0},

for some 1 < α ≤ 2. This equation still defines a process (Kt)t≥0 of growing com-
pact subsets of H, for a given càdlàg driving process U , and has intrinsic scaling
properties of index α. We call this equation the α-Loewner equation. The most
interesting driving processes are α-stable processes, that is, κ = 0 in our setting.
We then derive the following phase transition.

THEOREM 1.4. Let 1 < α < 2. If (Kt)t≥0 is the α-SLE driven by Ut = θ1/αSt

for a symmetric α-stable process S, then there exists θ0(α) > 0 such that:

(i) if 0 < θ < θ0(α), then for all z ∈ H \ {0}, we have P(ζ(z) = ∞) = 1;
(ii) if θ > θ0(α), then for all z ∈ H \ {0}, we have P(ζ(z) < ∞) = 1.

Note that all driving processes are recurrent here, so the analogue to case (iii)
in the previous results does not arise. One could, however, for example, add a
transient compound Poisson process to the driving process and obtain the analogue
to case (iii). We will also deduce the analogue of Theorem 1.3.

COROLLARY 1.5. In the situation of Theorem 1.4, we have:

(i) if 0 ≤ θ < θ0(α), then m(
⋃

t≥0 Kt) = 0 a.s.;
(ii) if θ > θ0(α), then m(H \ ⋃

t≥0 Kt) = 0 a.s.

This class of growth processes (Kt)t≥0 seems new and interesting. Theorem 1.4
and the discussion before describe some parallels to the class SLEκ , κ ≥ 0. Our
methods are strong enough to prove these analogous results, even though the
functions gt that solve (1.2) are not conformal mappings. The canonical driving
processes are now jump processes, so we expect the self-similar clusters to be
trees or structures generated by trees. Again, such structures are easily rigorously
established for piecewise constant (e.g., compound Poisson) driving functions, but
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remain conjectural for stable processes. It would be interesting to know if α-SLE
driven by α-stable driving processes are scaling limits of natural lattice models.

The structure of this paper is as follows. In Section 2, we recall and extend
some preliminary results on fractional Laplacians, harmonic functions and hitting
time distributions; we also give an introduction to Loewner evolutions and provide
further and more detailed motivation for our class of driving functions. Sections
3 and 4 study the stochastic differential equation of Bessel type that is associated
with (1.1) for stochastic driving functions U and deal with the proof of Theo-
rem 1.1 in the cases z = x ∈ R and z ∈ H, respectively. In Section 5 we study the
increasing cluster Kt and prove Theorem 1.3. Section 6 is devoted to properties of
α-SLE and the proof of Theorem 1.4.

2. Preliminaries.

2.1. Symmetric α-stable processes and the fractional Laplacian. Symmetric
α-stable Lévy processes are Markov processes (St )t≥0 starting from S0 = 0, with
stationary independent increments and càdlàg sample paths, whose distribution is
given by

E(eiλSt ) = e−tψ(λ),

ψ(λ) = |λ|α =
∫

R\{0}
(
1 − eiλx + iλx1{|x|≤1}

)|x|−α−1 dx

for some 0 < α < 2. We use Chapter VIII of Bertoin [3] as our main reference.
We can include α = 2, where St = √

2Bt is a Brownian motion Bt , and S has as
generator the Laplacian �x = ∂2

x on R. Brownian motion has the scaling property
of index 2, called Brownian scaling property that (

√
κBt)t≥0 has the same distrib-

ution as (Bκt )t≥0. For 0 < α < 2, the process S has the scaling property of index α

that (θ1/αSt )t≥0 has the same distribution as (Sθt )t≥0. The infinitesimal generator
of S is the fractional Laplacian on R, defined by the formula

�α/2
x w(x) = lim

ε↓0
A(1,−α)

∫
{x′∈R:|x′−x|>ε}

w(x′) − w(x)

|x − x′|1+α
dx′,(2.1)

where w is a function on R such that the limit exists for all x ∈ R, and A(1,−α)

is the constant α2α−1π−1/2�((1 + α)/2)/�(1 − α/2). We refer to Stein [22] for
an introduction and properties of the fractional Laplacian. We recall here that the
domain of �

α/2
x includes the Schwarz space of rapidly decreasing functions. It will

be important in the sequel to apply (2.1) as a formal generator to functions where
the limit does not exist for all x ∈ R, such as power functions with a singularity at
zero.

LEMMA 2.1. For p ∈ R, define a function wp : R → R by wp(0) = 0 and

wp(x) = |x|p−1, x ∈ R \ {0},p �= 1; w1(x) = ln |x|, x ∈ R \ {0}.
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Then,

�α/2
x wp(x) = A(1,−α)γ (α,p)|x|p−α−1

(2.2)
for all x ∈ R \ {0}, and p ∈ (0, α + 1),

where γ (α,p) = α−1(p − 1)
∫ ∞

0 vp−2(|v − 1|α−p − (v + 1)α−p) dv for p �= 1 and
γ (α,1) = α−1 ∫ ∞

0 v−1(|v − 1|α−1 − (v + 1)α−1) dv.

PROOF. We assume without loss of generality that x > 0. By definition (2.1)
we have for p �= 1

�α/2
x wp(x)

= lim
ε↓0

A(1,−α)

∫
{x′:|x′−x|>ε}

|x′|p−1 − xp−1

|x − x′|1+α
dx′

= lim
ε↓0

A(1,−α)xp−α−1
∫
{x′:|x′−1|>ε}

|x′|p−1 − 1

|x′ − 1|1+α
dx′

= lim
ε↓0

A(1,−α)xp−α−1
∫
{x′:|x′|>ε}

|x′ + 1|p−1 − 1

|x′|1+α
dx′

(2.3)

= lim
ε↓0

A(1,−α)xp−α−1
∫ ∞
ε

|x′ + 1|p−1 + |x′ − 1|p−1 − 2

|x′|1+α
dx′

= A(1,−α)
(p − 1)xp−α−1

α

×
∫
{x′:x′>0}

(x′ + 1)p−2 + (x′ − 1)p−2I{x′>1} − (1 − x′)p−2I{0<x′≤1}
|x′|α dx′

= A(1,−α)
(p − 1)xp−α−1

α

∫ ∞
0

vp−2(|v − 1|α−p − (v + 1)α−p)
dv.

We use the transformation (x′ + 1)/x′ = v and (x′ − 1)/x′ = v in the last step
of (2.3). The case p = 1 can be proved in the same way. �

REMARK 2.1. By Lemma 2.1, it is easy to check that wα is a harmonic func-
tion on R\{0} for the symmetric α-stable process. When α > 1, wδ is subharmonic
and superharmonic on R \ {0} when δ ∈ (α,α + 1) ∪ (0,1) and δ ∈ [1, α), respec-
tively. When 0 < α < 1, wδ is subharmonic and superharmonic on R \ {0} when
δ ∈ [1, α + 1) ∪ (0, α) and δ ∈ (α,1), respectively. When α = 1, wδ is a subhar-
monic function on R \ {0} when δ ∈ (0,1) ∪ (1, α + 1).

By Lemma 4.2 in [7], we can alternatively express the coefficients in Lemma 2.1
as γ (α,p) = ∫ 1

0 ((up−1 − 1)(1 − uα−p)(1 − u)−1−α + (up−1 − 1)(1 − uα−p)(1 +
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u)−1−α) du for p �= 1 and γ (α,1) = ∫ 1
0 ((1 − uα−1) ln(u)(1 − u)−1−α + (1 −

uα−1) ln(u)(1 + u)−1−α) du. See also [5], Lemma 5.1, [9], Appendix, [19], Ap-
pendix for other expressions of these or closely related results.

2.2. Bessel-type processes and exit times. Let (Bt )t≥0 and (St )t≥0 be standard
Brownian motion and an independent symmetric α-stable process with generator
�

α/2
x , on a filtered probability space (�,F , (Ft )t≥0,P). Define Ut = √

κBt +
θ1/αSt and the conformal mappings (gt )t≥0 of SLE driven by Ut via (1.1). Let
ht = gt − Ut ; then we have the Bessel-type stochastic differential equation

dht (z) = 2dt

ht (z)
− dUt , h0(z) = z, z ∈ H \ {0}.(2.4)

ht(z) = h1,t (z) + ih2,t (z), t ≥ 0, is an H-valued Markov process, well defined
until hitting zero, for every z ∈ H \ {0} starting from z = z1 + iz2. The formal
generator of the process h is

Af (z) = −2z2

z2
1 + z2

2

∂z2f (z) + 2z1

z2
1 + z2

2

∂z1f (z) + κ

2
∂2
z1

f (z) + θ�α/2
z1

f (z).(2.5)

It will be convenient to adopt a Markov process setup (�,F , (Ft )t≥0, (ht )t≥0,

(Pz)z∈H\{0}), slightly abusing notation, where ht under Pz has the same distribu-
tion as ht (z) under P. In this vein, ζ = inf{t ≥ 0 : ht− = 0 or ht− = Ut −Ut−}. We
make a convention that ht = ϒ , a cemetery point ϒ /∈ H, for t ≥ ζ and f (ϒ) = 0
for any function f . For a Borel set D ⊂ H, denote GD(z, dz′) = ∫ ∞

0 P D
t (z, dz′) dt ,

where (P D
t (z, dz′))t≥0 is the transition kernel for the process (ht )t≥0 killed when

leaving D.

LEMMA 2.2. Let D be an open subset of H bounded away from 0, that is,
such that B(0, r) ⊆ Dc for some r > 0. Let τ = inf{t ≥ 0 :ht /∈ D} be the exit
time from D, where ht is as in (2.4). Then for every Borel set B ⊆ D

c
and every

z ∈ D,

Pz{hτ ∈ B} =
∫
D

GD(z, dz′)
∫
{z′′

1∈R:z′′
1+iz′

2∈B}
θA(1,−α)

|z′′
1 − z′

1|1+α
dz′′

1,(2.6)

where z′ = z′
1 + iz′

2.

PROOF. We only need to prove that

Ezf (hτ ) = θA(1,−α)

∫
D

GD(z, dz′)
∫ ∞
−∞

f (z′′
1 + iz′

2)

|z′′
1 − z′

1|1+α
dz′′

1,(2.7)



SLE AND α-SLE DRIVEN BY LÉVY PROCESSES 1229

for each C2 function f on H with compact support satisfying suppf ⊆ D
c
. In fact,

by Dynkin’s formula (see, e.g., Itô [10]), we have for all z ∈ D

Ezf (hτ ) = Ez

∫ τ

0
Af (ht ) dt = Ez

∫ τ

0
θ�α/2

z1
f (ht ) dt

=
∫ ∞

0

∫
D

P D
t (z, dz′)θ�

α/2
z′

1
f (z′) dt

= θA(1,−α)

∫
D

GD(z, dz′)
∫ ∞
−∞

f (z′′
1 + iz′

2)

|z′′
1 − z′

1|1+α
dz′′

1,

which is (2.7). �

Let b > a > 0 and define “inner” and “outer” exit times of h1,t from {x ∈ R :a <

|x| < b} as

τa,b = inf{t ≥ 0 : |h1,t | ≤ a; |h1,s | < b,∀s ≤ t},
(2.8)

τb,a = inf{t ≥ 0 : |h1,t | ≥ b; |h1,s | > a,∀s ≤ t},
where inf ∅ = +∞. Let μa,b(z, dx′) and μb,a(z, dx′) be the conditional probabil-
ity distributions under Pz of h1,τa,b

and h1,τb,a
on events {τa,b < ∞} and {τb,a <

∞}, respectively. Set Ua,b = {z ∈ H :a < ‖z‖ < b}, where ‖z‖ = ‖z1 + iz2‖ =
max{|z1|, |z2|}. Denote similarly

τa,b = inf{t ≥ 0 :‖ht‖ ≤ a,‖hs‖ < b,∀s ≤ t},
(2.9)

τb,a = inf{t ≥ 0 :‖ht‖ ≥ b,‖hs‖ > a,∀s ≤ t},
and let μa,b(z, dx′) and μb,a(z, dx′) be the conditional probability distributions of
h1,τ a,b

and h1,τ b,a
on events {τa,b < ∞, h2,τ a,b

�= a} and {τb,a < ∞}, respectively.

LEMMA 2.3. Let b > a > 0, then the following assertions are true:

(1) Let z ∈ H such that a < |z1| < b. Then μa,b(z, dx) is absolutely continuous
on {x : |x| < a} with density function x �→ ϕa,b(z, x); μb,a(z, dx) is absolutely
continuous on {x : |x| > b} with density function x �→ ϕb,a(z, x) such that for
all |x| < a/3, respectively |x| > 2b,

ϕa,b(z, x) <
3 · 23+4α

a
, ϕb,a(z, x) < 23+4α (2b)αα

|x|1+α
.(2.10)

(2) Let z ∈ Ua,b ⊂ H. Then μa,b(z, dx) is absolutely continuous on {x : |x| < a}
with density function x �→ ϕa,b(z, x); μb,a(z, dx) is absolutely continuous on
{x : |x| > b} with density function x �→ ϕb,a(z, x) such that the same upper
bounds as in (2.10) hold.
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PROOF. We only prove (2) as the proof of (1) is similar. Let |x| ≥ |x′| ≥ 2b.
Then for any |u| < b, we have

2−2−2α |x′|1+α

|x|1+α
≤ |x′ − u|1+α

|x − u|1+α
≤ 22+2α |x′|1+α

|x|1+α
.(2.11)

Let z ∈ H such that z ∈ Ua,b. For |x| > b, denote

f (x) = 1

Pz{τa,b > τb,a}
∫
Ua,b

θA(1,−α)

|x − z′
1|1+α

GUa,b
(z, dz′).(2.12)

By Lemma 2.2, we know that f is the density of μb,a on {x : |x| > b}. By (2.11)
and (2.12), we see that for |x| > x′ = 2b

2−2−2α (2b)1+α

|x|1+α
f (2b) ≤ f (x) ≤ 22+2α (2b)1+α

|x|1+α
f (2b).(2.13)

Hence we have

2
∫ ∞

2b
2−2−2α (2b)1+α

|x|1+α
f (2b)dx ≤

∫ −2b

−∞
f (x) dx +

∫ ∞
2b

f (x) dx ≤ 1,

which leads to f (2b) ≤ b−1α22α . Thus the assertion concerning μb,a follows
from (2.13).

Now let |x| ≤ |x′| ≤ a/3. Then for any |u| > a we have

2−2−2α ≤ |u − x′|1+α

|u − x|1+α
≤ 22+2α.(2.14)

Denote

f (x) = 1

Pz{τa,b < τb,a, h2,τ a,b
�= a}

(2.15)

×
∫
Ua,b

θA(1,−α)

|z′
1 − x|1+α

GUa,b
(z, dz′), |x| < a.

By definition of μa,b and Lemma 2.2, we know that f is the density of μa,b on
{x : |x| < a}. By (2.16) and (2.17), we see that for |x| < x′ = a/3

2−2−2αf (a/3) ≤ f (x) ≤ 22+2αf (a/3).(2.16)

Hence we have ∫ a/3

−a/3
2−2−2αf (a/3) dx ≤

∫ a/3

−a/3
f (x) dx ≤ 1,

which leads to f (a/3) ≤ 3a−121+2α . Thus the assertion concerning μa,b follows
from (2.16). �
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REMARK 2.2. Let g(x) = ln |x| or g(x) = |x|p−1 for x �= 0 and 0 < p <

α + 1. By Lemma 2.3, we see that
∫

gμa,b,
∫

gμb,a ,
∫

gμa,b and
∫

gμb,a are all
finite.

Whether conditional distributions such as μa,b have atoms at a and −a depends
on the so-called creeping properties of Lévy processes (and how they are affected
by a drift); see Millar [17] and Vigon [23]. Specifically, there will be atoms if
κ > 0. The measure μb,a will have atoms at b and −b if κ > 0, or if κ = 0 and
α < 1.

2.3. Growing clusters, Loewner evolutions and independent increments. The
Riemann mapping theorem implies that for a compact set K ⊂ H such that H \ K

is simply connected, the family of conformal mappings k : H \ K → H is a set of
three real dimensions. Since ∞ /∈ K , it is natural to choose k(∞) = ∞, the only
point one can consistently fix for all compact sets K , with compositions of such
conformal mappings in mind. The expansion at infinity then takes the form

k(z) = a

(
z + b + hcap(K)

z

)
+ O

(
1

z2

)
for remaining parameters a > 0 and b ∈ R,

where hcap(K) is called the half-plane capacity (see Lawler [11], Section 3.4). It
measures the size of K . Any increasing process (Kt)t≥0 of compact sets with con-
tinuously increasing capacities can be (time-)parameterized such that hcap(Kt) =
2t . Choosing a = 1 is natural; b = bg := 0 is one choice specifying a family of
conformal mappings (gt )t≥0. Under the local growth condition⋂

ε>0

{gt (z) : z ∈ Kt+ε \ Kt } = {single point} =: {U(t)} for all t ≥ 0,(2.17)

where C denotes the closure of a Borel set C ⊂ H; this growth point b = bh(t) :=
−U(t) is another choice for the parameter b specifying another family of confor-
mal mappings (ht )t≥0. It can be checked that (Kt)t≥0 is then the Loewner evo-
lution driven by (U(t))t≥0, the family (gt )t≥0 solves Loewner’s differential equa-
tion (1.1) (see Lawler [11], Section 4.1), and ht (z) = gt (z)−U(t) solves the Bessel
equation (2.4) when integrating suitable test functions. In general, (U(t))t≥0 may
be just measurable. However, we will assume in the sequel that (U(t))t≥0 is càdlàg.
The local growth condition, even with a càdlàg function (U(t))t≥0, is strictly
weaker than the condition

g−1
t ({U(t)}) := ⋂

ε>0

g−1
t (B(U(t), ε))

(2.18)
= ⋂

ε>0

Kt+ε \ Kt = {single point} =: {γ (t)},
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for a càdlàg function γ : (0,∞) → H, where B(x, ε) = {z ∈ H : |z − x| ≤ ε}.
In general, even under the local growth condition, equality may fail. If equal-
ity holds, one can ask whether (Kt)t≥0 is generated by a function γ in a suit-
able class of functions, that is, H \ Kt is the unbounded connected component of
H \ {γ (s),0 < s ≤ t}, or even whether H ∩ Kt = {γ (s−),0 < s ≤ t}, that is,{

z ∈ H \ Kt− : lim
ε↓0

gt−ε(z) = U(t−)

}
= H ∩ Kt \ Kt− = {γ (t−)}.(2.19)

In fact, SLEκ for 4 < κ < 8 are examples where (2.18) holds but (2.19) fails—
further points in the left-hand member of (2.19) are called “swallowed points.” The
logarithmic spiral of Marshal and Rohde [16] is an example where (2.18) fails—
here the otherwise well-defined and continuous function γ has neither left nor right
limits at the time of the singularity, even though the driving function (U(t))t≥0 is
continuous. Werner [24] remarks that one can build examples with a dense set of
such singularities at different scales. In a rather more regular setting, it is shown in
[16] that 1/2-Hölder continuity of (U(t))t≥0 with small norm is sufficient for the
existence and continuity of a simple curve γ .

Let us discuss further the geometric reasons for the choice of parameters, as they
provide further motivation for stochastic driving functions that are linear combi-
nations of stable processes with stationary independent increments. The first was
∞ �→ ∞. Alternatively, one could fix x �→ x for any specific x ∈ R, the bound-
ary of H, provided x /∈ K but K need not be compact. This is related to Loewner
evolutions “from 0 to x,” rather than “from 0 to ∞.”

Now let (Kt)t≥0 be a Loewner evolution driven by any measurable function
(U(t))t≥0, growing “from 0 to ∞”; denote the associated solution to Loewner’s
equation by (gt )t≥0. The only conformal coordinate changes that leave zero and
infinity fixed are homotheties z �→ cz inviting us to investigate k̃t (z) = cgt (z/c),
t ≥ 0. Clearly, these conformal mappings grow (cKt)t≥0, where hcap(cKt) =
c2 hcap(Kt), so that we reparameterize kt = k̃c−2t and obtain

∂tkt (z) = 2

kt (z) − cUc−2t

, k0(z) = z, z ∈ H,(2.20)

so that (cKc−2t )t≥0 is a Loewner evolution driven by (cUc−2t )t≥0. This is the scal-
ing property of index 2 that is therefore intrinsic to Loewner’s equation.

PROPOSITION 2.4 ([12, 18] for SLEκ ). (a) A family (Kt)t≥0 of random com-
pact sets is generated by a flow ht : H \ Kt → H with stationary independent “in-
crements” hs,t = ht ◦ h−1

s , s ≤ t , if and only if the driving function (U(t))t≥0 has
the finite-dimensional distributions of a Lévy process.

(b) If (U(t))t≥0 is a Lévy process, then the distribution of (
√

aKa−1t )t≥0 is the
same as that of (Kt)t≥0 if and only if (U(t))t≥0 is a multiple of Brownian motion.
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(c) If U = √
κB +θ1/αS for a Brownian motion B and an independent symmet-

ric stable process of index α ∈ (0,2), then (
√

aKa−1t )t≥0 has the same distribution

as a Loewner evolution driven by Ũ = √
κB + θ̃1/αS, where θ̃ = aα/2−1θ .

PROOF. For (a) just note that for fixed s ≥ 0 and h
(s)
t = hs+t ◦ h−1

s , we have
by (2.4)

dh
(s)
t (z) = dhs+t (h

−1
s (z)) = 2dt

hs+t (h
−1
s (z))

− dUs+t = 2dt

h
(s)
t (z)

− dU
(s)
t ,

h
(s)
0 (z) = z, z ∈ H \ {0},

where U
(s)
t = Us+t − Us , and this easily yields the result. (b) and (c) are simple

consequences of the scaling properties of Loewner’s equation, (2.20), and of B

and S (see Section 2.1). �

The property in (b) is called conformal invariance. For any simply connected do-
main D ⊂ C, D �= C, one can now uniquely define SLEκ from one boundary point
α to another boundary point β by conformal mappings f : H → D with f (0) = α

and f (∞) = β , up to a linear time change. For any other Lévy process, the defini-
tion is not unique. However, note that for the driving processes in (c), the properties
of SLE studied in this paper do not depend on θ .

3. R-valued Bessel-type processes driven by U = √
κB + θ1/αS. By (2.4),

it is easy to see that (ht (x))0≤t<ζ(x) is R-valued for all x ∈ R \ {0}. In this case
their formal generator A reduces to

Af (x) = 2

x
∂xf (x) + κ

2
∂2
xf (x) + θ�α/2

x f (x) for all x ∈ R \ {0}.

PROPOSITION 3.1. When 0 ≤ κ ≤ 4 and 0 < α < 2, we have ζ(x) = ∞ a.s.
for all x ∈ R \ {0}.

PROOF. We will use the same notation as in Lemma 2.1 and always assume
that κ > 0. The case κ = 0 can be proved similarly.

Case 1. 0 < α ≤ 1. By Lemma 2.1, we have for y ∈ R \ {0}

Aw1(y) = 2

y
∂yw1(y) + κ

2
∂2
yw1(y) + θ�α/2

y w1(y)

≥ θ�α/2
y w1(y) = θA(1,−α)γ (α,1)|y|−α ≥ 0.

For 0 < a < b, let τa,b and τb,a be the inner and outer exit times defined in (2.8).
Let μa,b and μb,a be the corresponding conditional probability distribution. By
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Dynkin’s formula we have

ln |x| ≤ Px{τa,b < τb,a}
∫
{|y|≤a}

ln |y|μa,b(x, dy)

+ Px{τa,b > τb,a}
∫
{|y|≥b}

ln |y|μb,a(x, dy).

Therefore

Px{τa,b < τb,a} ≤ ln |x| − ∫
{|y|≥b} ln |y|μb,a(x, dy)∫

{|y|≤a} ln |y|μa,b(x, dy) − ∫
{|y|≥b} ln |y|μb,a(x, dy)

.(3.1)

By Lemma 2.3 we know that
∫
{|y|≥b} ln |y|μb,a(x, dy) is bounded for fixed b uni-

formly in a < b. Letting a ↓ 0 in (3.1), we get ζ = ∞, Px-a.s.
Case 2. 0 < κ < 4,1 < α < 2. Let f1 = w3/2−2/κ . First we prove the case

κ ≥ 2. By Lemma 2.1 we have for y �= 0

Af1(y) =
(

2

y
∂y + κ

2
∂2
y

)
w3/2−2/κ (y) + θ�α/2

y w3/2−2/κ (y)

=
(

1

2
− 2

κ

)(
1 − κ

4

)
|y|−3/2−2/κ(3.2)

+ θA(1,−α)γ

(
α,

3

2
− 2

κ

)
|y|1/2−2/κ−α.

Noticing that (1
2 − 2

κ
)(1 − κ

4 ) < 0, we can find a constant c such that Af1(y) −
cf1(y) < 0 for all y �= 0. Again by Dynkin’s formula we obtain

f1(x) ≥ Ex[e−cτa,bf1(hτa,b
)] + Ex[e−cτb,af1(hτb,a

)].(3.3)

If Px{ζ < ∞} > 0, we can choose b,T ∈ R big enough such that Px{lima↓0 τa,b <

T } > 0. Hence by (3.3), we get f1(x) ≥ e−cT Px{lima↓0 τa,b < T }a1/2−2/κ +
Ex[e−cτb,af1(hτb,a

)], which is impossible when taking a ↓ 0. When 0 < κ < 2,
we can take f1 = w1/2 and use the same method.

Case 3. κ = 4,1 < α < 2. By Lemma 2.1 we have ( 2
y
∂y + 2∂2

y )w1(y) = 0.
Therefore for y �= 0 and c > 0 we have

A(w1 + cw3−α)(y)

= c

(
2

y
∂y + 2∂2

y

)
w3−α(y) + θ�α/2

y w1(y) + cθ�α/2
y w3−α(y)

(3.4)
= 2c(2 − α)2|y|−α + θA(1,−α)γ (α,1)|y|−α

+ cθA(1,−α)γ (α,3 − α)|y|2−2α.

By (3.4) and noticing that −α < 2−2α, we can find c large enough and r > 0 small
enough such that Af2(y) > 0 for |y| < r , y �= 0. Then following the same method
as in case 1, we can prove Px{τ0,r < τr,0} = 0, which leads to the conclusion. �
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PROPOSITION 3.2. When 4 < κ and 1 ≤ α < 2, we have ζ(x) < ∞ a.s. for
all x ∈ R \ {0}.

PROOF. We will use the same notation as in Lemmas 2.1 and 2.3. Without loss
of generality we assume x > 0.

Case 1. 2 − 4/κ ≤ α < 2. In this case γ (α,2 − 4/κ) ≤ 0. We get by Lemma 2.1
that Aw2−4/κ ≤ 0. By Dynkin’s formula we have

Px{τa,b < τb,a}
(3.5)

≥
∫
{|y|≥b} |y|1−4/κμb,a(x, dy) − |x|1−4/κ∫

{|y|≥b} |y|1−4/κμb,a(x, dy) − ∫
{|y|≤a} |y|1−4/κμa,b(x, dy)

.

By Lemma 2.3, letting a ↓ 0 and then b ↑ ∞, we get the conclusion.
Case 2. 1 < α < 2 − 4/κ . By Lemma 2.1, we can check Awα < 0. Hence we

can get the same conclusion by the method above.
Case 3. α = 1. By Lemma 2.1, we can check that there exists a number c > 0

satisfying Aw3/2−2/κ (y) < 0 for 0 < |y| < c. Hence we obtain limy↓0 Py{τ0,c <

τc,0} = 1 by Dynkin’s formula. Now, by the Markov property, we only need to
prove that Px{τa,∞ < ∞} = 1 for all a > 0 and x �= 0. Here τa,∞ = infb>a τa,b.

By Lemma 2.1, we have Aw1(y) < 0 for y �= 0. Hence we have by Dynkin’s
formula

Px{τa,b < τb,a} ≥ ln |x| − ∫
{|y|≥b} ln |y|μb,a(x, dy)∫

{|y|≤a} ln |y|μa,b(x, dy) − ∫
{|y|≥b} ln |y|μb,a(x, dy)

.

By Lemma 2.3, letting b ↑ ∞, we have Px{τa,∞ < ∞} = 1. �

LEMMA 3.3. Let 4 < κ and 0 < α < 1. There exist constants k1, k2 > 0 de-
pending on κ,α, θ such that:

Px{ζ = ∞} > k2 for all x ≥ k1.(3.6)

PROOF. By Lemma 2.1, we can choose c large enough such that
Awα/2+1/2(y) < 0 for |y| > c/2. Hence we have

Px{τc/2,b > τb,c/2}

≥
∫
{|y|≤c/2} |y|α−1μb,a(x, dy) − cα−1∫

{|y|≤c/2} |y|α−1μa,b(x, dy) − ∫
{|y|≥b} |y|α−1μb,a(x, dy)

, c < x < b.

By Lemma 2.3, letting b ↑ ∞, we get the conclusion. �

PROPOSITION 3.4. Let 4 < κ and 0 < α < 1. There exists constant c > 0 such
that:

(a)
1

c
|x|1−4/κ < Px{ζ = ∞} < c|x|1−4/κ , 0 < |x| ≤ 1;

(b)
1

c
|x|α−1 < Px{ζ < ∞} < c|x|α−1, |x| > 1.
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PROOF. First we prove the upper bound in (a). Define functions u1(y) =
|y|1−2/κ ∧ 2 and u2(y) = |y|1−4/κ ∧ 2. Now we suppose 1 − 2/κ < α. By
Lemma 2.1 and direct calculation we have

1

c1
< lim|y|↓0

|�α/2
y u1(y)|/|y|1−2/κ−α < c1;

(3.7)
1

c2
< lim|y|↓0

|�α/2
y u2(y)|/|y|1−4/κ−α < c2,

for some positive constants c1 and c2. Choose a small positive real number c3 such
that u2(y) − c3u1(y) > 0 for y �= 0. We have, for 0 < |y| < 1,

A(u2 − c3u1)(y) = −c3(1 − 2/κ)|y|−1−2/κ + θ�α/2
y (u2 − c3u1)(y).(3.8)

Let f1 = u2 − c3u1. By (3.7) and (3.8), we can find a positive real number c4
such that Af1(y) < 0 for y �= 0 and |y| < c4. Applying the same notation as in
Proposition 3.1, we have for 0 < a < c4

Px{τa,c4 > τc4,a} ≤ f1(x)∫
|y|≥c4

f1(y)μc4,a(x, dy) − ∫
|y|≤a f1(y)μa,c4(x, dy)

.

By Lemma 2.3, letting a ↓ 0 in the equality above, we have

Px{ζ = ∞} ≤ Px{τ0,c4 > τc4,0} ≤ x1−4/κ

lima↓0
∫
|y|≥c4

f1(y)μc4,a(x, dy)
,

which gives the second inequality in (a). When 1 − 2/κ ≥ α, we can prove the
upper bound in the same way as above by noticing that

1

c
< lim|y|↓0

|�α/2
y u(y)|/ ln |y| < c when β = α;

(3.9)
|�α/2

y u(y)| < c, y ∈ (−1,1) when β > α,

for some constant c depending on β and α, where u(y) = |y|β ∧ 2. This can be
checked directly; see also Proposition 2.3 in [8] and Proposition 2.5 in [7].

Next we prove the lower bound in (a). We use the notation k1 and k2 as in
Lemma 3.3. Let u3(y) = |y|1−4/κ ∧ M for some M > 0. Choose M big enough
such that Au3(y) > 0 for 0 < |y| < k1. By this fact and applying the same method
as above, we can prove that for some constant c5

Px{τk1,0 < τ0,k1} ≥ c5|x|1−4/κ , 0 < x < k1.

Hence by the Markov property and Lemma 3.3 we get Px{ζ = ∞} ≥ k2c5|x|1−4/κ

and complete the proof of (a). We omit the proof of (b) as it can be proved by
similar discussions. �
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To end this section that dealt with

p(x) = Px(ζ < ∞)

= Px(ht− = 0 or ht− = Ut − Ut− for some t ≥ 0), x ∈ R \ {0},
we briefly turn to a related quantity studied by [19], namely,

p̃(x) = Px

(
lim inf
t→∞ |ht | = 0

)
with the convention |ht | = |ϒ | = 0 for t ≥ ζ .

While p(x) has a geometric meaning, p̃(x) does not, so it is of limited interest
for the study of the growing clusters. However, it is of some interest in the study
of recurrence and transience of Bessel-type processes and it exhibits the phase
transition at α = 1 observed in [19]. Our methods allow us to rigorously establish
their result.

PROPOSITION 3.5. In the situation of Theorem 1.1:

(a) if 1 ≤ α < 2, then p̃(x) = 1 for all x ∈ R \ {0};
(b) if 0 < α < 1 and κ > 4, then p̃(x) = p(x) ∈ (0,1) for all x ∈ R \ {0};
(c) if 0 < α < 1 and 0 ≤ κ ≤ 4, then p̃(x) = 0 for all x ∈ R \ {0}.
PROOF. First let κ > 4. Clearly p̃(x) ≥ p(x), so the case 1 ≤ α < 2 follows

from Proposition 3.2. For the upper bound in the case 0 < α < 1, we only need
to prove that lim|x|↓0 p(x) = 1, by the Markov property. This is due to the lower
bound of p(x) derived from Proposition 3.4(a).

Now let 0 ≤ κ ≤ 4. For 1 < α < 2, using the methods of the previous propo-
sitions, it is easy to check that f (x) = |x|(α−1)/2 is a superharmonic function
for (ht )t≥0 on (−∞,N) ∪ (N,∞) if N is big enough. For α = 1 take f (x) =
log |x| − |x|−1/2. Hence for x ∈ R \ {0}

Px{τN < ∞} = 1,(3.10)

where τN = inf{t ≥ 0 : |ht | < N}. For any 0 < a < N we can construct a func-
tion that is subharmonic on (−N,−a) ∪ (a,N), for example, of the form f (x) =
|x|−11{|x|>a/2} +M1{|x|≤a/2} for big enough M , to prove that there is a q > 0 such
that

Px{τa,2N < ∞} > q, |x| < N.(3.11)

Hence, we get Px{τa < ∞} = 1 for all x by (3.10), (3.11) and the Markov property.
For 0 < α < 1 and 0 ≤ κ < 4, we can prove the result using the superhar-

monic function f (x) = |x|β for β = (1 − 4/κ) ∨ (α − 1). When κ = 4, set
f (x) = |x|(α−1)/2. This function is superharmonic on (−∞,−N) ∪ (N,∞) for
N big enough and then we can prove that lim|x|↑∞ p̃(x) = 0. Therefore, we can
prove the assertion by the Markov property and by the fact that ht has arbitrarily
big jumps. �
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REMARK 3.1. A Markov process ht in R \ {0} is called recurrent (tran-
sient) if for all nonempty relatively compact open sets B ⊂ R \ {0} we have∫ ∞

0 1{ht∈B} dt = ∞ (resp. < ∞) a.s. In our setting it can be shown that (ht )t≥0

is recurrent if 1 ≤ α < 2 and 0 ≤ κ ≤ 4, and transient otherwise.

4. H-valued Bessel-type processes driven by U = √
κB + θ1/αS. In this

section we consider the problem whether the Bessel-type process on the complex
upper half plane, given in (2.4), can hit 0. Denote this process by ht (z) = h1,t (z)+
ih2,t (z) and z = z1 + iz2. For z ∈ H, we have that

dh1,t (z) = 2h1,t (z) dt

h2
1,t (z) + h2

2,t (z)
− dUt , h1,0(z) = z1,

(4.1)

dh2,t (z) = −2h2,t (z) dt

h2
1,t (z) + h2

2,t (z)
, h2,0(z) = z2.

4.1. The subcritical phase 0 < κ < 4. We have to prepare some results to deal
with the hitting problem. For δ > 0, denote by Vδ = {z = z1 + iz2 : 0 < z2 ≤ δ|z1|)}
the double wedge of slope δ, and τδ = inf{t ≥ 0 :ht ∈ Vδ} the first entrance time.

LEMMA 4.1. If κ > 0, then for each δ > 0 and z ∈ H,

Pz{τδ < ∞} = 1.(4.2)

PROOF. The proof is in five parts.
1. We reduce the proof to small z. We only need to prove (4.2) when z /∈ Vδ .

Without loss of generality we assume that δ < 1. Let s > 0 and denote

dδ,s = inf{t ≥ 0 :ht ∈ Vδ or h2,t ≤ s}.
We claim that dδ,s < ∞. This is actually true for every càdlàg driving function. In
fact, if dδ,s = ∞, then

lim
t→∞h2,t = z2 + lim

t→∞

∫ t

0

−2h2,u du

h2
1,u + h2

2,u

≤ z2 − lim
t→∞

∫ t

0

2s du

z2
2/δ

2 + z2
2

= −∞,

which is absurd for a process in H. Next, by the Markov property,

Pz{τδ < ∞} = Pz{hdδ,s ∈ Vδ} + Pz{hdδ,s /∈ Vδ, τδ < ∞}
(4.3)

= Pz{hdδ,s ∈ Vδ} + Ez

[
I{hdδ,s

/∈Vδ}Phdδ,s
{τδ < ∞}].

Notice that h2,dδ,s = s on {hdδ,s /∈ Vδ, dδ,s < ∞}, and (4.3) implies that we only
need to prove (4.2) when 0 < |z1| < z2/δ and z2 small enough.
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2. Locally, the Brownian fluctuations dominate the stable fluctuations. As
a−1/αSat has the same distribution as St for a > 0, we have

P
{
θ1/α|St | ≤ 1

2

√
2κt ln ln(1/t)

}
= P

{|S1| ≤ 1
2θ−1/αt1/2−1/α

√
2κ ln ln(1/t)

} → 1,

when t ↓ 0. Hence we can find t0 such that P{θ1/α|St | ≤ 1
2

√
2κt ln ln(1/t)} ≥ 1/2

for 0 < t < t0. Now let s > 0 such that

s < t0 ∧ 2 exp
{
−1

2
exp

288

κδ2

}
=: t1(4.4)

and let z ∈ H such that 0 < |z1| < s/δ and z2 = s. By (4.4), for 0 < t < s,

P
{
Ut ≥

√
2κt ln ln(1/t)/2

}
≥ P

{
Bt ≥

√
2t ln ln(1/t)

}
P

{
θ1/α|St | ≤

√
2κt ln ln(1/t)/2

}
(4.5)

≥ 1

2
P

{
B1 ≥

√
2 ln ln(1/t)

}
≥ 1

4
√

2π ln(1/t)
√

2 ln ln(1/t)
.

The last inequality of (4.5) follows from
∫ ∞
x e−y2/2 dy ≥ 1

2x
e−x2/2 dy for x > 1.

3. h2,t decreases quickest if h1,t = 0, and h1,t reflects high values of Ut . By
(4.1), for each y > 0 with h2,0 = y we have

h2,u > y/2 when 0 < u < 3y2/16.(4.6)

Therefore, if Us2/16 ≥ s

√
2κ ln ln(16/s2)/8, then by (4.4) and (4.6),

|h1,s2/16| =
∣∣∣∣z1 +

∫ s2/16

0

2h1,u

h2
1,u + h2

2,u

du − Us2/16

∣∣∣∣
≥ |Us2/16| − s/δ −

∫ s2/16

0

2

s
du

≥ s

√
2κ ln ln(4/s2)/8 − 2s/δ

≥ s/δ,

which leads to {
Us2/16 ≥ s

√
2κ ln ln(16/s2)/8

} ⊆ {τδ ≤ s2/16}.(4.7)
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By (4.5) and (4.7), we obtain

Pz{τδ ≤ s2/16} ≥ P
{
Us2/16 ≥ s

√
2κ ln ln(16/s2)/8

}
(4.8)

≥ 1

8
√

2π ln(4/s)
√

2 ln(2 ln(4/s))
.

4. Consider a positive starting height s0 < t1 and levels s0/2n, n ≥ 1. We con-
trol τδ between successive levels. Define Tn = inf{t ≥ 0 :h2,t = s0/2n}, n ≥ 1 and
T0 = 0. Let pn = Pz{τδ ∈ (Tn−1, Tn]}. By (4.6) and (4.8) we have

p1 ≥ 1

8
√

2π ln(4/s0)
√

2 ln(2 ln(4/s0))
.

By the Markov property, (4.6) and (4.8), we have

pn = Ez

[
Pz

[
τδ ∈ (Tn−1, Tn]|FTn−1

]]
≥ Ez

[
I{τδ>Tn−1}PhTn−1

{
|h1,Tn−1 | < s0/(2

n−1δ), τδ ≤
(

s0

2n−1

)2

/16
}]

≥ 1

8
√

2π(ln(4/s0) + (n − 1) ln 2)
√

2 ln(2 ln(4/s0) + 2(n − 1) ln 2)

× Pz{τδ > Tn−1}
= 1

8
√

2π(ln(4/s0) + (n − 1) ln 2)
√

2 ln(2 ln(4/s0) + 2(n − 1) ln 2)

×
(

1 −
n−1∑
k=1

pk

)
.

5. We conclude. Now the proof is complete if we show
∑

n≥1 pn = 1. Otherwise,
we would have

∑
n≥1 pn < 1 and∑

n≥1

pn ≥ ∑
n≥1

1

8
√

2π(ln(4/s0) + (n − 1) ln 2)
√

2 ln(2 ln(4/s0) + 2(n − 1) ln 2)

×
(

1 −
n−1∑
k=1

pk

)

≥ ∑
n≥1

1

8
√

2π(ln(4/s0) + (n − 1) ln 2)
√

2 ln(2 ln(4/s0) + 2(n − 1) ln 2)

×
(

1 − ∑
k≥1

pk

)
= ∞,
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which is a contradiction, so we must have
∑

n≥1 pn = 1 as required. �

LEMMA 4.2. Let z = z1 +iz2 ∈ H and let 0 < κ < 4. Then for any ε > 0, there
exists δ > 0 such that Pz{ζ < ∞} < ε for z ∈ Vδ , the double wedge of slope δ.

PROOF. For convenience, we will use the notation of Lemmas 2.1 and 2.2. For
example, we still use notation τa,b and τb,a for the inner and outer exit times of
(h1,t )t≥0 from {x ∈ R :a < |x| < b}. We also denote the exit time by τ = τa,b ∧
τb,a . For c ≥ 0 and a C2 function f , set

Acf (y) = 2y

y2 + c2 ∂yf (y) + κ

2
∂2
yf (y) + θ�α/2

y f (y) for y �= 0.(4.9)

Let β = (2/κ − 1/2) ∧ (1 − α) if α < 1 and β = (2/κ − 1/2) ∧ 1/2 if 1 ≤ α < 2.
Then we have 4κ−1(1 +β)−1 − 1 > 0. Let 0 < k < ε1/β ∧ 1 and let δ be a positive
number such that

δ < k

√
4

κ(1 + β)
− 1.(4.10)

Define f = w1−β . Noticing that �α/2w1−β(y) ≤ 0, and applying (4.10), we have
for any |y| > kz1 and 0 ≤ c ≤ δz1

Acf (y) ≤ 2y

y2 + c2 ∂yf (y) + κ

2
∂2
yf (y)

= β

|y|2+β

(
2y2

y2 + c2 − κ(1 + β)

2

)
(4.11)

≤ −β

|y|2+β

(
2

1 + δ2/k2 − κ(1 + β)

2

)
≤ 0.

Let τ = τa,b ∧ τb,a for kz1 ≤ a < z1 < b. By Dynkin’s formula,

Ezf (h1,τ ) = z
−β
1 + Ez

∫ τ

0
Ah2,u

f (h1,u−) du.(4.12)

Hence by (4.11) and h2,u ≤ δz1, we obtain Ezf (h1,τ ) ≤ z
−β
1 . Therefore, by Re-

mark 2.2

Pz{ζ < ∞} ≤ lim
b↑∞Pz{τkz1,b < τb,kz1}

≤ lim
b↑∞

z
−β
1 − ∫

{|y|≥b} |y|−βμb,kz1(dy)∫
{|y|≤kz1} |y|−βμkz1,b(z, dy) − ∫

{|y|≥b} |y|−βμb,kz1(z, dy)

≤ kβ < ε,

which completes the proof for 0 < κ < 4. �
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THEOREM 4.3. Let 0 < κ < 4. For any z ∈ H \ {0}, we have Pz{ζ = ∞} = 1.

PROOF. When z2 = 0, the conclusion follows from Proposition 3.1. When
z2 > 0, the conclusion follows from Lemmas 4.1 and 4.2. �

4.2. The supercritical phase κ > 4. We first show that we control the return
time to the imaginary axis outside an asymptotically negligible event. This will be
useful when we choose regeneration points on the imaginary axis.

LEMMA 4.4. (1) Let κ > 4, 1 ≤ α < 2 and let z = z1 + iz2 ∈ H \ {0}. Denote
τ̃ = inf{t ≥ 0 : h1,t− = 0}. Then τ̃ < ∞ with probability 1.

(2) Moreover, for all κ > 4 and 0 < α ≤ 2, there exist a constant c and an event
� such that

Ez[I�τ̃ ] ≤ c|z1|1−4/κ , Pz[�c] < c|z1|1−4/κ for 0 < |z1| < 1.(4.13)

Specifically we can take � to be {ω ∈ � : τ0,2(ω) < τ2,0(ω)} in (4.13).

PROOF. Define Ac by (4.9). By Lemma 2.1, we have Acwβ ≤ 0 for β = α ∧
(2 − 4/κ). Then, applying the same method as in the proof of Proposition 3.2, we
can prove (1).

Now let α ≥ 2 − 4/κ . By the same arguments as in (3.5) we have

Pz{τ0,2 > τ2,0} ≤ z
1−4/κ
1∫

{|y|≥2} |y|1−4/κμ2,0(z, dy)
.(4.14)

Let f (x) = x2 ∧ M for x ∈ R and M > 0. Choose M big enough such that
θ�α/2f (y) ≥ −κ/2 for |y| ≤ 2. Set � = {τ0,2 < τ2,0}. Taking the notation of
Lemma 4.2, we have by Dynkin’s formula

Ez[f (h1,τ0,2∧τ2,0)] ≥ z2
1 + Ez

[
I�

∫ τ̃

0
Ah2,u

f (h1,u−) du

]

≥ z2
1 + Ez

[
I�

∫ τ̃

0

( 4h2
1,u−

h2
1,u− + h2

2,u

+ κ

2

)
du

]
(4.15)

≥ κ

2
Ez[I�τ̃ ].

By (4.14), we have

Ez[f (h1,τ0,2∧τ2,0)] ≤ Mz
1−4/κ
1∫

{|y|≥2} |y|1−4/κμ2,0(z, dy)
.

Hence (4.13) follows from (4.15).
For the proof of the case 0 < α < 1, the argument of Proposition 3.4 is easily

adapted and transferred to the upper half plane as above. It also applies to 1 ≤ α <

2 − 4/κ . �
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LEMMA 4.5. Let β > 0. Let (an)n≥0 be a sequence of positive numbers such

that a1 < (1 + 1/β)−1/β and an+1 ≤ an − a
1+β
n /β . Then

an ≤ (a
−β
1 + n − 1)−1/β for all n ≥ 1.

PROOF. It is easy to see that the assertion is true for n = 1. Now suppose that
the assertion is true for n = k. Notice that f (x) = x + xβ+1/β is a increasing
function on (0, (1 + 1/β)−1/β); we have

ak+1 ≤ ak − a
β+1
k /β

≤ (a
−β
1 + k − 1)−1/β − (a

−β
1 + k − 1)−(β+1)/β/β ≤ (a

−β
1 + k)−1/β,

which completes the proof. �

THEOREM 4.6. Let κ > 4. Then the following assertions are true:

(1) When 1 ≤ α < 2, then for any z ∈ H \ {0}, we have Pz{ζ < ∞} = 1.
(2) When 0 < α < 1, then lim|z|↓0 Pz{ζ < ∞} = 1.

PROOF. (1) When z2 = 0, the conclusion follows from Proposition 3.2. Next,
we assume z2 > 0 and, without loss of generality, z1 > 0. By Proposition VIII.4
in [3], there exists a constant positive number k1 such that

P{|S1| > x} ≤ k1x
−α for all x > 0.(4.16)

Denote β = 1/4 − 1/κ . Let a1 be an arbitrary positive number such that

a1 < z2 ∧
(

β

10

)1/β

<

(
1 + 1

β

)−1/β

.(4.17)

Denote η0 = 0 and ξ1 = inf{t ≥ 0 :h2,t = a1 − a
1+β
1 /β}. By (4.1), we can check

ξ1 < ∞ a.s. Set

η1 = inf{t ≥ ξ1 :h1,t = 0}.
By the Markov property and Lemma 4.4 we have η1 < ∞ a.s. Define by induction

an+1 = h2,ηn; ξn+1 = ηn + 5a
2+β
n+1

4β
;

bn+1 = an+1 − a
1+β
n+1

β
; ηn+1 = inf{t ≥ ξn+1 :h1,t = 0}.

By the definitions above and Lemma 4.4 we see that ξn ≤ ηn < ξn+1 ≤ ηn+1 < ∞,
and these are sums of decreasing amounts of waiting time and subsequent return
times of ht to the imaginary axis. We will show that for almost all n ≥ 1, we have
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good control of real and imaginary parts of ht so as to deduce that we reach zero
in finite time. Specifically, set

En = ⋂
t∈[ηn−1,ξn]

{|h1,t | ≤ an}; Hn = {h2,ξn ≤ bn}.(4.18)

Next we prove a lemma for preparation. �

LEMMA 4.7. We have, for all n ≥ 2,

Pz[Ec
n|Fηn−1] ≤

√
160κ

βπ
aβ/2
n exp

{
−βa

−β
n

40κ

}
+ 10k1θ

41−αβ
a2+β−α
n ;(4.19)

En ⊆ Hn.(4.20)

PROOF. Denote ξ ′
n = inf{t ≥ 0 :h2,t = an/2}. By (4.1), we can prove

h2,ξn > an/2.(4.21)

In fact, if h2,ξn ≤ an/2 we have ξ ′
n < ξn and hence

an

2
= h2,ξ ′

n
= an +

∫ ξ ′
n

ηn−1

−2h2,u

h2
1,u + h2

2,u

du

≥ an −
∫ ξ ′

n

ηn−1

2

h2,u

du(4.22)

> an − 5a1+β
n /β.

By (4.22), we have an < 10a
1+β
n /β ≤ 10a

β
1 an/β , which contradicts (4.17).

By (4.17), (4.21) and (4.1), for ηn−1 < t ≤ ξn, we have

|h1,t | =
∣∣∣∣ ∫ t

ηn−1

2h1,u

h2
1,u + h2

2,u

du + Ut − Uηn−1

∣∣∣∣
≤ |Ut − Uηn−1 | +

∫ ξn

ηn−1

4

an

du

(4.23)
= |Ut − Uηn−1 | + 5a1+β

n /β

≤ |Ut − Uηn−1 | + an/2.

By the reflection principle and (4.16),

Pz

[
sup

ηn−1<t≤ξn

|Ut − Uηn−1 | > an/2
∣∣∣ηn−1

]
≤ 2Pz

[√
κ|Bξn − Bηn−1 | > an/4|ηn−1

]
+ 2Pz[θ1/α|Sξn − Sηn−1 | > an/4|ηn−1](4.24)
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≤ 2Pz

[|B1| > β1/2a−β/2
n /

√
20κ|ηn−1

]
+ 2Pz

[
|S1| >

(
4β

5θ

)1/α

a1−(2+β)/α
n /4

∣∣∣ηn−1

]

≤
√

160κ

βπ
aβ/2
n exp

{
−βa

−β
n

40κ

}
+ 10k1θ

41−αβ
a2+β−α
n .

Combining (4.23) and (4.24), we obtain the first inequality in (4.19).
Now suppose |h1,u| ≤ an when ηn−1 ≤ u ≤ ξn. Then we have

2h2,u

h2
1,u + a2

n/4
>

4

5an

.

By (4.21),

h2,ξn = an +
∫ ξn

ηn−1

−2h2,u

h2
1,u + h2

2,u

du ≤ an −
∫ ξn

ηn−1

4

5an

du = an − a1+β
n /β = bn,

which proves (4.20). �

CONTINUATION OF THE PROOF OF THEOREM 4.6. Denote

τ̃0,n = ηn ∧ inf{t ≥ ξn :h1,t = 0, |h1,u| < 2 for ξn < u < t};
(4.25)

τ̃2,n = ηn ∧ inf{t ≥ ξn :h1,t = 2, |h1,u| > 0 for ξn < u < t}.
By Lemma 4.4, there exists a constant k2 > 0 such that

Ez

[
I{τ̃0,n<τ̃2,n}(ηn − ξn)|Fξn

]
< k2|h1,ξn |1/2−2/κ ,

(4.26)
Pz[τ̃0,n > τ̃2,n|Fξn] < k2|h1,ξn |1/2−2/κ ,

when 0 < |h1,ξn | < 1. Denote Fn = {τ̃0,n < τ̃2,n} ∩ En and set F = ⋂
n≥2 Fn. By

definition of a2, (4.20) and Lemma 4.5

N−1⋂
n=2

En ⊆
N⋂

n=1

{an ≤ (a
−β
1 + n − 1)−1/β} for all N ∈ N.(4.27)

Write dn = a
−β
1 + n − 1. By (4.17), (4.18), (4.26) and (4.27),

Pz[F ] = lim
N→∞Pz

[
N⋂

n=2

Fn

]

= lim
N→∞Ez

[
I⋂N−1

n=2 Fn
IEN

Pz[τ̃0,N > τ̃2,N |FξN
]]

≥ lim
N→∞Ez

[
I⋂N−1

n=2 Fn
IEN

(1 − k2|h1,ξN
|1/2−2/κ)

]
(4.28)
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≥ lim
N→∞Ez

[
I⋂N−1

n=2 Fn
IEN

(1 − k2|aN |1/2−2/κ)
]

≥ lim
N→∞Ez

[
I⋂N−1

n=2 Fn
IEN

(1 − k2d
−2
N )

]
= lim

N→∞(1 − k2d
−2
N )Ez

[
I⋂N−1

n=2 Fn
Pz[EN |FηN−1]

]
≥ lim

N→∞(1 − k2d
−2
N )

× Ez

[
I⋂N−1

n=2 Fn

(
1 −

√
160κ

βπ
a

β/2
N exp

{
−βa

−β
N

40κ

}
− 10k1θ

41−αβ
a

2+β−α
N

)]
≥ lim

N→∞(1 − k2d
−2
N )

×
(

1 −
√

160κ

βπ
d

−1/2
N exp

{
−βdN

40κ

}
− 10k1θ

41−αβ
d

−1−(2−α)/β
N

)

× Pz

[
N−1⋂
n=2

Fn

]

≥
∞∏

n=1

(1 − k2d
−2
n )

×
(

1 −
√

160κ

βπ
d−1/2
n exp

{
−βdn

40κ

}
− 10k1θ

41−αβ
d−1−(2−α)/β
n

)

≥ 1 −
∞∑

n=1

(
k2d

−2
n +

√
160κ

βπ
d−1/2
n exp

{
−βdn

40κ

}
+ 10k1θ

41−αβ
d−1−(2−α)/β
n

)
.

By the definition of dn and (4.28), we have

lim
a1↓0

Pz[F ] = 1.(4.29)

Set ξ = limn→∞ ξn. By Lebesgue’s monotone convergence theorem, (4.17), (4.26)
and (4.27),

Ez[IF (ξ − ξ1)]
= lim

n→∞Ez[IF (ξn − ξ1)]

= lim
n→∞

n∑
k=2

Ez[IF (ξk − ηk−1)] + lim
n→∞

n∑
k=2

Ez[IF (ηk−1 − ξk−1)]

= lim
n→∞

n∑
k=2

Ez

[
IF

5a
2+β
k

4β

]
(4.30)
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+ lim
n→∞

n∑
k=2

Ez

[
Ez[IF (ηk−1 − ξk−1)|Fξk−1]

]

≤
∞∑

k=2

Ez

[
IF

5d
−1−2/β
k

4β

]

+
∞∑

k=2

Ez

[
Ez

[
I⋂k−1

s=1 Es
I{τ̃0,k−1>τ̃2,k−1}(ηk−1 − ξk−1)|Fξk−1

]]

≤
∞∑

k=2

5d
−1−2/β
k

4β

+
∞∑

k=2

Ez

[
I⋂k−1

s=1 Es
Ez

[
I{τ̃0,k−1>τ̃2,k−1}(ηk−1 − ξk−1)|Fξk−1

]]

≤
∞∑

k=2

5d
−1−2/β
k

4β
+

∞∑
k=2

Ez

[
I⋂k−1

s=1 Es
k2|h1,ξk−1 |1/2−2/κ ]

≤
∞∑

k=2

5d
−1−2/β
k

4β
+

∞∑
k=2

k2Ez

[
I⋂k−1

s=1 Es
a

1/2−2/κ
k−1

]

≤
∞∑

k=2

5d
−1−2/β
k

4β
+

∞∑
k=2

k2d
−2
k−1

< ∞.

By (4.27), we see that F ⊆ {limn→∞ an = 0}. Hence by the definition of ξ , we see
h2,ξ = 0 on F . From this fact and Proposition 3.2, we know ζ < ∞ on F . Notice
a1 can be arbitrarily small; we obtain the conclusion by (4.29).

By the same proof as above we see that (2) can also be proved. �

4.3. Remaining critical and boundary values κ = 4 and κ = 0. For z = z1 +
iz2 with z2 ≥ 0, denote

w̃p(z) = (z2
1 + z2

2)
(p−1)/2, p �= 1; w̃1 = ln(z2

1 + z2
2).(4.31)

For function f on the upper half plane, we set

Af (z) = −2z2

z2
1 + z2

2

∂z2f (z) + 2z1

z2
1 + z2

2

∂z1f (z) + κ

2
∂2
z1

f (z) + θ�α/2
z1

f (z).(4.32)

LEMMA 4.8. For 0 < p < α + 1 and θ = 0,

Aw̃p = p − 1

2
(z2

1 + z2
2)

(p−5)/2(
(κ − 4)z2

2 + (
4 + κ(p − 2)

)
z2

1
)
,

(4.33)
Aw̃1 = (κ − 4)(z2

1 + z2
2)

−2(z2
2 − z2

1).
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PROOF. When p �= 1, we have

Af (z) = −2(p − 1)(z2
1 + z2

2)
(p−5)/2z2

2 + 2(p − 1)(z2
1 + z2

2)
(p−5)/2z2

1

+ 1

2
κ(p − 1)(z2

1 + z2
2)

(p−3)/2 + 1

2
κ(p − 1)(p − 3)(z2

1 + z2
2)

(p−5)/2z2
1

= (p − 1)(z2
1 + z2

2)
(p−5)/2

(
−2z2

2 + 2z2
1 + κ

2
(z2

1 + z2
2) + κ

2
(p − 3)z2

1

)
= p − 1

2
(z2

1 + z2
2)

(p−5)/2(
(κ − 4)z2

2 + (
4 + κ(p − 2)

)
z2

1
)
.

The second equality can also be verified directly. �

REMARK 4.1. By (4.33), when θ = 0 we have

Aw̃2−4/κ = (κ − 4)2

2κ
(z2

1 + z2
2)

−3/2−2/κz2
2,(4.34)

and hence Aw̃1 = 0 for κ = 4.

LEMMA 4.9. For each 0 < p < α + 1, there exists a constant c such that

|�α/2
z1

w̃p(z)| ≤ c(|z1|p−1−α ∧ |z2|p−1−α) for z �= 0, |z| < 1, z ∈ H.(4.35)

PROOF. First we see the case p < 1. We claim that function

ϕ(t) := lim
ε↓0

∫
{y:|y|>ε}

((y + 1)2 + t2)(p−1)/2 − (1 + t2)(p−1)/2

|y|1+α
dy

is bounded for t ∈ [−1,1]. In fact, we have for |t | ≤ 1

|ϕ(t)| =
∣∣∣∣ ∫ ∞

−∞
I{|y|>1/2}

((y + 1)2 + t2)(p−1)/2 − (1 + t2)(p−1)/2

|y|1+α
dy

∣∣∣∣
+

∣∣∣∣ ∫ 1/2

−1/2

[((
(y + 1)2 + t2)(p−1)/2

− (1 + t2)(p−1)/2 − (p − 1)(1 + t2)(p−3)/2y
)
(|y|1+α)−1]

dy

∣∣∣∣
≤

∫ ∞
−∞

I{|y|>1/2}
|y + 1|p−1 + 1

|y|1+α
dy

+
∫ 1/2

−1/2

[(
|p − 1|

((
1

2

)2

+ t2
)(p−3)/2

|y|2

+ |(p − 1)(p − 3)|
(

3

2

)2((
1

2

)2

+ t2
)(p−5)/2

|y|2
)
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× (|y|1+α)−1
]
dy

≤
∫ ∞
−∞

I{|y|>1/2}
|y + 1|p−1 + 1

|y|1+α
dy

+
∫ 1/2

−1/2

|p − 1|23−p + |(p − 1)(p − 3)|(3/2)22p−5

|y|α−1 dy

< ∞,

which gives the bound of ϕ on [−1,1]. We denote this bound by c1. Hence for
|z2/z1| ≤ 1, we have

|�α/2
z1

w̃p(z)|

=
∣∣∣∣ lim
ε↓0

A(1,−α)

∫
{y:|y−z1|>ε}

(y2 + z2
2)

(p−1)/2 − (z2
1 + z2

2)
(p−1)/2

|y − z1|1+α
dy

∣∣∣∣
= A(1,−α)|z1|p−α−1(4.36)

×
∣∣∣∣ lim
ε↓0

∫
{y:|y−1|>ε}

(y2 + (z2/z1)
2)(p−1)/2 − (1 + (z2/z1)

2)(p−1)/2

|y − 1|1+α
dy

∣∣∣∣
≤ c1A(1,−α)|z1|p−α−1.

On the other hand,

|�α/2
z1

w̃p(z)|
= A(1,−α)|z1|p−α−1

× lim
ε↓0

∣∣∣∣ ∫{y:|y|>ε}
((y + 1)2 + (z2/z1)

2)(p−1)/2 − (1 + (z2/z1)
2)(p−1)/2

|y|1+α
dy

∣∣∣∣
(4.37)

= A(1,−α)|z2|p−α−1

× lim
ε↓0

∣∣∣∣ ∫{y:|y|>ε}
((y + (z1/z2))

2 + 1)(p−1)/2 − (1 + (z1/z2)
2)(p−1)/2

|y|1+α
dy

∣∣∣∣.
By similar calculations as above, we can also find a positive number c2 such that

lim
ε↓0

∣∣∣∣ ∫{y:|y|>ε}
((y + (z1/z2))

2 + 1)(p−1)/2 − (1 + (z1/z2)
2)(p−1)/2

|y|1+α
dy

∣∣∣∣(4.38)

≤ c2

for |z1/z2| < 1. Combining (4.36), (4.37) and (4.38), we get

|�α/2
z1

w̃p(z)| ≤ (c1 + c2)A(1,−α)(|z1|p−α−1 ∧ |z2|p−α−1)

which completes the proof for p < 1. The case p ≥ 1 can be checked with the
same method. �
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THEOREM 4.10. Let κ = 4. Then for any z ∈ H\{0}, we have Pz{ζ = ∞} = 1.

PROOF. As in the case of the real line, we need to construct a continuous
function f which is subharmonic with respect to A on a pointed neighborhood of
zero and satisfies

lim|z|↓0
f (z) = −∞; lim|z|↑∞f (z) ≥ 0.(4.39)

First we see the case α > 1. Let f1 be a continuous function on H such that

f1(z) = −w̃2−α/2, |z| ≤ 1, z ∈ H; f1(z) = 0, |z| > 2, z ∈ H.

By (4.35) we can check that there exists a positive number c1 such that

|�α/2
z1

f1(z)| ≤ c1(|z1|1−3α/2 ∧ |z2|1−3α/2) for |z| < 1/2, z ∈ H.(4.40)

By (4.33) and (4.35), there exist positive numbers c2 and c3 such that

Af1(z) ≥ c2(z
2
1 + z2

2)
−(α+2)/4 for θ = 0 and z ∈ H,(4.41)

and

|�α/2
z1

w̃1(z)| ≤ c3(|z1|−α ∧ |z2|−α), z ∈ H.(4.42)

Denote f = f1 + w̃1. It is easy to see that f satisfies (4.39). By (4.40), (4.41),
(4.42), and noticing that −(α + 2)/2 < −α < 1 − 3α/2, we get

lim|z|↓0
Af (z) = ∞.

Hence by (2) in Lemma 2.3 and Dynkin’s formula we finish the proof of α > 1.
When 0 < α ≤ 1, the proof is still valid provided that we define f1 by

f1(z) = −w̃1+α/2, |z| ≤ 1, z ∈ H; f1(z) = 0, |z| > 2, z ∈ H.

When θ = 0 we can simply choose f = w̃1. �

Next we consider the pure jump case, that is, κ = 0. The proof for this case is
similar to the case of 0 < κ < 4. For δ, γ > 0, denote Vγ,δ = {z = (z1, z2) : 0 <

z2 ≤ δ|z1|γ /2} and σγ,δ = inf{t ≥ 0 :ht ∈ Vγ,δ}.
LEMMA 4.11. If κ = 0 and 0 < α < 2, then for each δ > 0 and z ∈ H,

Pz{σα,δ < ∞} = 1.(4.43)

PROOF. We only need to prove (4.43) when z /∈ Vα,δ . Without loss of general-
ity we assume that δ < 1. By arguments similar to the case of 0 < κ < 4, we only
need to prove (4.43) when 0 < |z1|α/2 < z2/δ and z2 small enough.

Now let s > 0 such that

s < 4 exp
{−1

2 exp{3(24/α)δ−2/αθ−1/α}} =: t1(4.44)
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and let z ∈ H such that 0 < |z1|α/2 < s/δ and z2 = s. By Proposition VIII.4 in [3],
there exists a positive number k1 such that for 0 < t < s,

P{Ut ≥ (θt)1/α ln ln(1/t)} = P{S1 ≥ ln ln(1/t)} ≥ k1(ln ln(1/t))−α.(4.45)

We claim that if Us2/16 ≥ 2−4/αθ1/αs2/α ln ln(16/s2), then

|h1,u| ≥ (s/δ)2/α for some u ∈ (0, s2/16].(4.46)

If this is not true, by (4.6) and (4.44),

|h1,s2/16| =
∣∣∣∣z1 +

∫ s2/16

0

2h1,u

h2
1,u + h2

2,u

du − Us2/16

∣∣∣∣
≥ |Us2/16| − (s/δ)2/α −

∫ s2/16

0

8(s/δ)2/α

s2 du

≥ 2−4/αθ1/αs2/α ln ln(16/s2) − 2(s/δ)2/α

≥ (s/δ)2/α,

which leads to a contradiction. By (4.46)

{Us2/16 ≥ 2−4/αθ1/αs2/α ln ln(16/s2)} ⊆ {σα,δ ≤ s2/16}.(4.47)

By (4.45) and (4.47), we obtain

Pz{σα,δ ≤ s2/16} ≥ P{Us2/16
(4.48)

≥ 2−4/αθ1/αs2/α ln ln(16/s2)} ≥ k1( ln ln(16/s2))−α.

Let s0 be a positive number such that s0 < t1/4. Define Tn = inf{t ≥ 0 :h2,t =
s0/2n}, n ≥ 1 and T0 = 0. Let pn = Pz{σα,δ ∈ (Tn−1, Tn]}. By the Markov prop-
erty, (4.6) and (4.48), we have

pn = Ez

[
Pz

[
σα,δ ∈ (Tn−1, Tn]|FTn−1

]]
≥ Ez

[
I{σα,δ>Tn−1}PhTn−1

{
|h1,Tn−1 |α/2 < s0/(2

n−1δ), σα,δ ≤
(

s0

2n−1

)2/
16

}]
≥ k1

(
ln

(
2(n + 1)

)
ln 2 − 2 ln s0

)−α
Pz{σα,δ > Tn−1}

≥ k1
(
ln

(
2(n + 1)

)
ln 2 − 2 ln s0

)−α

(
1 −

n−1∑
k=1

pk

)
.

Hence we can prove (4.43) by the same method as in the case of 0 < κ < 4. �

Recall that we denote τa,b = inf{t > 0 :h1,t ≤ a;h1,u < b, for all 0 ≤ u < t}.

LEMMA 4.12. Let z = (z1, z2) ∈ H \ {0}, κ = 0.
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(1) If 0 < α ≤ 1, then Pz{ζ < ∞} = 0.
(2) If 1 < α < 2, for any ε > 0, there exists δ > 0 such that Pz{0, τ0,c(θ,α) <

τc(θ,α),0} < ε for z satisfying 0 < |z2|/|z1|α/2 < δ and 0 < |z1| < c(θ,α) :=
(2A(1,−α)γ (α, 1

2)θ)−1/(2−α).

PROOF. For convenience, we will use the notation of Lemma 4.2. Here we set

Acf (y) = 2y

y2 + c2 ∂yf (y) + θ�α/2
y f (y) for y ∈ R \ {0},(4.49)

for any C2 function f . When 0 < α < 1, we can check that Acw(α+1)/2(y) < 0 for
y �= 0. We can also check that Acw1(y) ≥ 0 for y �= 0. Hence we can prove (1) by
Dynkin’s formula.

Next we assume 1 < α < 2. Let 0 < |z1| < c(θ,α). For any ε > 0, let 0 < k <

ε2 ∧ 1 and let δ be a positive number such that

δ <

(
kα

2A(1,−α)γ (α,1/2)θ

)1/2

.(4.50)

Define f = w1/2. We claim that Acf < 0 if

k|z1| < |y| < c(θ,α), 0 ≤ c ≤ δ|z1|α/2.(4.51)

In fact, when k2|z1|2 < |y|2 < δ2|z1|α , by (4.50)

Acf (y) = −|y|1/2

y2 + c2 + A(1,−α)γ

(
α,

1

2

)
θ |y|−1/2−α

≤ |y|−1/2−α

( −|y|α
y2 + δ2|z1|α + A(1,−α)γ

(
α,

1

2

)
θ

)
(4.52)

≤ |y|−1/2−α

(−kα

2δ2 + A(1,−α)γ

(
α,

1

2

)
θ

)
≤ 0.

Similarly, when c(θ,α)2 > |y|2 ≥ δ2|z1|α ,

Acf (y) ≤ |y|−1/2−α

(−|y|α
2y2 + A(1,−α)γ

(
α,

1

2

)
θ

)
≤ 0.(4.53)

Combining (4.52) and (4.53), we get the claim. Thus, applying Dynkin’s formula
to f , we have

Pz

{
τ0,c(θ,α) < ∞}
≤ Pz

{
τk|z1|,c(θ,α) < τc(θ,α),k|z1|

}
≤ |z1|−1/2 − ∫

{|y|≥c(θ,α)} |y|−1/2μc(θ,α),k|z1|(z, dy)∫
{|y|≤k|z1|} |y|−1/2μk|z1|,c(θ,α)(z, dy) −∫

{|y|≥c(θ,α)} |y|−1/2μc(θ,α),k|z1|(z, dy)

≤ k1/2 < ε,



SLE AND α-SLE DRIVEN BY LÉVY PROCESSES 1253

which completes the proof. �

THEOREM 4.13. Let κ = 0 and 0 < α < 2. For any z ∈ H \ {0}, we have
Pz{ζ = ∞} = 1.

PROOF. When z2 = 0, the conclusion follows from Lemma 3.1. When z2 > 0
and 0 < α ≤ 1, the conclusion follows from Lemmas 4.11 and 4.12.

Next we assume 1 < α < 2 and z ∈ H. For any n ∈ N and ε > 0, by Lemma 4.12,
there exists δn > 0 such that Pz{τ0,c(θ,α) < τ0,c(θ,α)} < ε/2n for 0 < |z1| <

c(θ,α). For any z ∈ H, define τ1 = inf{t > 0;ht ∈ Vδn,α} and σ1 = inf{t ≥
τ1; |h1,t | > c(θ,α)}. Define by induction, τn = inf{t ≥ σn−1;ht ∈ Vδn,α, |h1,t | <

c(θ,α)/2} and σn = inf{t ≥ τn; |h1,t | > c(θ,α) or ht− = 0} for n ≥ 2. By Lem-
mas 4.11 and 4.12 as well as the quasi-left continuity of paths, we have

Pz{ζ < ∞} =
∞∑

n=1

Pz{σn = ζ < ∞} + Pz

[ ∞⋂
n=1

{σn < ζ < ∞}
]

≤
∞∑

n=1

ε

2n
= ε,

which completes the proof. �

4.4. Proofs of Theorem 1.1 and Corollary 1.2. The statement of Theorem 1.1
is contained in Theorems 4.3, 4.6, 4.10 and 4.13. To prove Corollary 1.2, we just
note that the generator of the stable process with all jumps of size exceeding c

removed has as its generator

�
α/2
x|c w(x) = lim

ε↓0
A(1,−α)

∫
{y:ε<|y−x|<c}

w(y) − w(x)

|x − y|1+α
dy,

and a computation as in Lemma 2.1 shows that

�
α/2
x|c wp(x) = A(1,−α)|x|p−1−α

(
γ (α,p) − p − 1

α

∫ 1+x/c

1−x/c
vp−2|1 − v|α−p dv

)
and for x small enough, the rightmost factor has the same sign as γ (α,p). It can
now be checked that all arguments can be adapted.

5. The increasing cluster of SLE driven by U = √
κB + θ1/αS. Denote the

lifetime of (ht (z))t≥0 starting at h0(z) = z ∈ H by ζ(z) as in Section 2.2 and define

Kt = {z ∈ H, ζ(z) ≤ t},
the associated family of strictly increasing compact sets in H, and H \ Kt the
associated simply connected open set. First note that unlike the Brownian case, Kt

is not always connected by the following lemma.

PROPOSITION 5.1.

P{Kt is a disconnected set in H} > 0 for all t > 0.
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PROOF. Let t > 0. Set τ = inf{s ≥ 0 : |Us | > 1}. By (2.4) we have for u < τ

|hu(z)| = |z +
∫ u

0

2

hs(z)
ds − Uu| ≥ |z| −

∫ u

0

2

|hs(z)| ds − 1.

Hence we can check that

Kτ− ⊆ B(0,2t + 2) for τ < t .(5.1)

Denote Loewner’s conformal mapping associated with Kτ by gτ , and

B = {
Uτ − Uτ− > 2 sup{|g1,τ (z)| : z ∈ B(0,2t + 2)} + (4t + 5)

}
.

By (5.1), we have

B ⊆ {Kτ is a disconnected set}.(5.2)

Set B ′ = {|Us − Uτ | ≤ 1, τ < s < τ + t}. By similar arguments as for (5.1) we
have

gτ

(
B(0,2t + 2)

) ∩ B(Uτ ,2t + 2) = ∅ �⇒ Kτ− ∩ Kt \ Kτ− = ∅.(5.3)

As P[B ∩ B ′] = P[B]P[B ′] > 0, by (5.1)–(5.3), we get the conclusion. �

PROOF OF THEOREM 1.3. In what follows we denote Lebesgue mea-
sure on H by m(·). Recall that Theorem 1.3 claims the following: (1) When
κ ≤ 4, we have m(

⋃
t>0 Kt) = 0, a.s. (2) When κ > 4 and 1 ≤ α < 2, we

have m(H \ ⋃
t>0 Kt) = 0, a.s. (3) When κ > 4 and 0 < α < 1, we have

limr↓0 m(B(0, r) ∩ (
⋃

t>0 Kt))/m(B(0, r)) = 1, a.s. and limr↑∞ m(B(0, r) ∩
(
⋃

t>0 Kt))/m(B(0, r)) = 0 a.s.
First we show that the lifetime function ζ(ω, z) is measurable from (� ×

H,F ⊗ B(H)) to ([0,∞],B([0,∞])). Denote τ z
a = inf{t ≥ 0 :ht (z) ∈ B(0, a)}

for h0(z) = z and a > 0. For any r > 0, we have

{(ω, z) : ζ(ω, z) ≤ r} =
∞⋃

k=1

∞⋂
l=1

{(ω, z) : z ∈ H, |z| > 1/k, τ z
1/l(ω) ≤ r}.

Hence we only need to show that {(ω, z) : z ∈ H, |z| > a, τ z
b (ω) ≤ r} ∈ F ⊗ B(H)

for any a > b > 0. As the coefficient function of the stochastic differential equa-
tion (2.4) is Lipschitz and satisfies the linear growth condition outside any neigh-
borhood of zero, by Theorem 6.4.3 in [1], we know that (ht (z))t≥0, z ∈ H, have
the flow property before hitting B(0, b). Therefore we have {(ω, z) : z ∈ H, |z| >

a, τz
b (ω) < r} ∈ F ⊗ B(H).

Now let κ ≤ 4. By Theorem 1.1(i), we have

E
[
m

({z : ζ(z) < ∞})] = E

[∫
H

I{ζ(z)<∞}m(dz)

]
=

∫
H

E
[
I{ζ(z)<∞}

]
m(dz)(5.4)

=
∫

H

Pz{ζ < ∞}m(dz) = 0,
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which leads to (1). Similarly, by Theorem 1.1(ii), when κ > 4 and 1 ≤ α < 2, we
have for any n > 0

E
[
m

({z : ζ(z) < ∞}, |z| < n
)] = E

[∫
H

I{|z|<n}I{ζ(z)<∞}m(dz)

]
=

∫
H

I{|z|<n}E
[
I{ζ(z)<∞}

]
m(dz) = m({z : |z| < n}).

Hence, we have m(H \ ⋃
t>0 Kt) = 0, a.s. (3) can be proved by Theorem 1.1(iii)

and the same method. �

6. β-SLE driven by α-stable processes. Let (St )t≥0 be the standard symmet-
ric α-stable Lévy process. For simplicity we take (St )t≥0 as the standard Brownian
motion when α = 2. For 1 < β ≤ 2 define the following generalized SLE (gt )t≥0,
which we call β-SLE:

∂tg(z) = 2|gt (z) − θ1/αSt |2−β

gt (z) − θ1/αSt

, g0(z) = z, z ∈ H \ {0},
1 < β ≤ 2,0 < α ≤ 2;

where the derivative above is the right derivative as St is right-continuous. Let
ht (z) = gt (z) − θ1/αSt ; then we have

dht (z) = 2|ht (z)|2−β

ht (z)
dt − θ1/α dSt , h0(z) = z, z ∈ H \ {0}.(6.1)

Here (ht (z))t≥0 is again a well-defined stochastic process up to hitting zero. In fact,
similarly to the SLE model we could use a much more general driving process in
the above stochastic differential equation. In our setting, when x ∈ R, (ht (x))t≥0
is an R-valued Markov process and its generator Aα,β,θ acting on C2 function f

is

Aα,β,θf (y) = 2|y|2−β

y
∂yf (y) + θ�α/2

y f (y) for all y �= 0, 1 < β ≤ 2.(6.2)

We also denote simply ht = ht (x), where h0 = x under Px . Also the lifetime of ht

is again denoted by ζ .

PROPOSITION 6.1. Let θ > 0, 1 < β < 2, and x ∈ R with x �= 0. The follow-
ing statements are valid:

(a) If α > β , then lim sup|x|↓0 Px{ζ = ∞}|x|−δ < ∞ and lim sup|x|↑∞ Px{ζ <

∞}|x|δ < ∞ for all 0 < δ < α − 1.
(b) If α = β , there is a phase transition at θ0(α) = 2/(A(1,−α)|γ (α,1)|) as

follows:

Px(ζ < ∞) = 1 if θ > θ0(α) and Px(ζ = ∞) = 1 if 0 < θ ≤ θ0(α).
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(c) If α < β , then Px(ζ = ∞) = 1.

PROOF. (a) Let 0 < δ < α − 1. By Lemma 2.1 we can find a positive constant
c1 such that Aα,β,θw1+δ(y) < 0 if 0 < |y| < c1. Hence for 0 < a < x < c1 we have

Px{ζ = ∞} ≤ lim
a↓0

Px{τa,c1 > τc1,a}

≤ lim
a↓0

∫
{|y|≤a} |y|δμc1,a(x, dy) − xδ∫

{|y|≤a} |y|δμa,c1(x, dy) − ∫
{|y|≥c1} |y|δμc1,a(x, dy)

(6.3)

= xδ
/

lim
a↓0

∫
{|y|≥c1}

|y|δμc1,a(x, dy),

which gives the first conclusion in (a). Again by Lemma 2.1 we can find a positive
constant c2 such that Aα,β,θw1−δ(y) < 0 if |y| > c2. Similarly we have for 0 <

c2 < x < b

Px{ζ < ∞} ≤ lim
b↑∞Px{τb,c2 > τc2,b}

(6.4)
≤ x−δ

/
lim
b↑∞

∫
|y|≤c2

|y|−δμc2,b(x, dy),

which gives the second conclusion in (a).
(b) Let β = α. Define the function

ϕ(p) = 2(1 − p)

A(1,−α)γ (α,p)
, p �= 1

and

ϕ(1) = 2

A(1,−α)|γ (α,1)| = θ0(α).

By Lemma 2.1, we can check that ϕ is a strictly increasing continuous function on
(0, α) and

ϕ(0+) := lim
p↓0

ϕ(p) > 0; lim
p↑α

ϕ(p) = ∞.(6.5)

Denote by ϕ−1 the inverse function of ϕ on (ϕ(0+),∞). By Lemma 2.1 and (6.2)
we have Aα,β,θwϕ−1(θ) = 0 for θ ∈ (ϕ(0+),∞). Hence when θ ∈ (ϕ(0+),∞),
with the help of harmonic function wϕ−1(θ) we can prove the conclusion by
the same method as in Section 3. When θ ∈ (0, ϕ(0+)] we can check that
Aα,β,θw1 > 0, which also leads to our conclusion.

(c) By Lemma 2.1 we can find a positive constant c3 such that Aα,β,θw0 −
c3w0 < 0. We can prove (c) by this fact and the same method as in Case 2 of
Proposition 3.1. �
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The behavior in (a) is new. It did not occur in the same way for SLE since
Brownian forcing is at the same time at the top of the self-similarity range α ∈
(0,2] and the critical forcing where the phase transition occurs, in particular, where
in the upper phase the force is strong enough to overcome the potential of the
singularity of ht at zero. For β-SLE driven by an α-stable process with α > β , the
forcing is more than just strong enough to overcome the singularity at zero, but on
the other hand, the outward drift is stronger and makes ht transient, so that there
is positive probability that ht does not hit zero. In this, there are similarities with
κ > 4 and transient driving force for SLE.

If α = 2 > β , this can only happen if R ∩ ⋃
t≥0 Kt = [a, b] for some −∞ <

a < 0 < b < ∞. This means that the β-SLE cluster then grows more in the vertical
direction, whereas adding a transient driving force to SLE yields clusters that grow
more in the horizontal direction (and necessarily by disconnecting jumps).

In what follows we concentrate on the critical and as such most interesting case
β = α. We will show that the phase transition indicated in Proposition 6.1 can be
extended from z = x ∈ R to z ∈ H in strong analogy to the well-known κ = 4 phase
transition. Recall for δ > 0, we denote by Vδ = {z = z1 + iz2 : 0 < z2 ≤ δ|z1|)} the
double wedge of slope δ and by τδ = inf{t ≥ 0 :ht ∈ Vδ} the first entrance time
of h.

LEMMA 6.2. Let θ > 0. Then for each δ > 0 and z ∈ H,

Pz{τδ < ∞} = 1.(6.6)

PROOF. By arguments similar to the case of Lemma 4.1, we only need to
prove (4.43) when 0 < |z1| < z2/δ and z2 small enough. By (6.1), for each y > 0
with h2,0 = y we have

h2,u > y/2 when 0 < u < yα/22+α.(6.7)

Now let s > 0 such that

s < 161/α exp
{
− 1

α
exp{3 · 24/αδ−1θ−1/α}

}
=: t1(6.8)

and let z ∈ H such that 0 < |z1| < s/δ and z2 = s.
We claim that if Ssα/16 ≥ 2−4/αsln ln(16/sα), then:

|h1,u| ≥ s/δ for some u ∈ (0, sα/16].(6.9)

If this is not true, by (6.7) and (6.8),

|h1,sα/16| =
∣∣∣∣z1 +

∫ sα/16

0

2h1,u

(h2
1,u + h2

2,u)
α/2

du − θ1/αSsα/16

∣∣∣∣
≥ |θ1/αSsα/16| − s/δ −

∫ sα/16

0

21+α

sα−1δ
du

≥ 2−4/αθ1/αs ln ln(16/sα) − 2s/δ

≥ s/δ,
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which leads to a contradiction. By (6.9)

{Ssα/16 ≥ 2−4/αs ln ln(16/sα)} ⊆ {τδ ≤ sα/16}.(6.10)

By (4.45) and (6.10), we obtain

Pz{τδ ≤ sα/16} ≥ P {Usα/16 ≥ 2−4/αθ1/αs ln ln(16/sα)}
(6.11)

≥ k1(ln ln(16/sα))−α.

Let s0 be a positive number such that s0 < t1. Define Tn = inf{t ≥ 0 :h2,t = s0/2n},
n ≥ 1 and T0 = 0. Let pn = Pz{τδ ∈ (Tn−1, Tn]}. By the Markov property, (6.7) and
(6.11), we have

pn = Ez

[
Pz

[
τδ ∈ (Tn−1, Tn]|FTn−1

]]
≥ Ez

[
I{τδ>Tn−1}PhTn−1

{
|h1,Tn−1 |α/2 < s0/(2

n−1δ), τδ ≤
(

s0

2n−1

)α/
16

}]
≥ k1

(
ln

(
α(n − 1) ln 2 + 4 ln 2 − α ln s0

))−α
Pz{τδ > Tn−1}

≥ k1
(
ln

(
α(n − 1) ln 2 + 4 ln 2 − α ln s0

))−α

(
1 −

n−1∑
k=1

pk

)
.

Hence we can complete the proof by the same arguments as in Lemma 4.1. �

PROPOSITION 6.3. Let 1 < α < 2 and 0 < θ < θ0(α). For any z ∈ H \ {0}, we
have Pz{ζ = ∞} = 1.

PROOF. When z2 = 0, the conclusion follows from Proposition 6.1. When
z2 > 0, by Lemma 6.2 we only need to prove that, for any ε > 0, there exists δ > 0
such that Pz{ζ < ∞} < ε for z satisfying 0 < |z2|/|z1| < δ. For c ≥ 0 and C2

function f , set

Aα,θ
c f (y) = 2y

(y2 + c2)α/2 ∂yf (y) + θ�α/2
y f (y) for y �= 0.(6.12)

Let θ ∈ (0, θ0(α)) and define

b = ϕ−1
(

θ0(α) + (θ ∨ ϕ(0+))

2

)
.

By the definition of ϕ, we see that 0 < b < 1. Set θ1 = θ/ϕ(b). It is easy to see that
θ1 < 1. Let 0 < k < ε1/(1−b) ∧ 1 and let δ be a positive number such that

δ < k

√
θ

−2/α
1 − 1.(6.13)
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Define f = wb and applying (6.13), we have for any |y| > k|z1| and 0 ≤ c ≤ δ|z1|

Aα,θ
c f (y) = 2(b − 1)|y|b−1

(y2 + c2)α/2 + θA(1,−α)γ (α, b)|y|b−1−α

≤ b − 1

|y|α+1−b

(
2

(1 + δ2/k2)α/2 + θA(1,−α)γ (α, b)/(b − 1)

)

= b − 1

|y|α+1−b

(
2

(1 + δ2/k2)α/2 − 2θ/ϕ(b)

)
(6.14)

= b − 1

|y|α+1−b

(
2

(1 + δ2/k2)α/2 − 2θ1

)
≤ 0.

By (6.14) and the same calculation as in Lemma 4.2 we have

Pz{ζ < ∞} ≤ k1−b < ε,

which completes the proof. �

Next we consider the case θ > θ0(α). First we prepare a result corresponding to
Lemma 4.4.

LEMMA 6.4. Let 1 < α < 2 and θ > θ0(α). Let z = (z1, z2) ∈ H \ {0}. Denote
τ̃ = inf{t ≥ 0 :h1,t− = 0}. Then τ̃ < ∞ with probability 1. Moreover, there exist a
constant c and an event � such that

Ez[I�τ̃ ] < c|z1|ϕ−1(θ)−1, Pz[�c] < c|z1|ϕ−1(θ)−1

(6.15)
for 0 < |z1| < 1.

Specifically we can take � to be {τ0,2 < τ2,0} in (6.15).

PROOF. We omit the proof as it is the same as for Lemma 4.4. �

LEMMA 6.5. Let 1 < α < 2 and θ > θ0(α). Let δ > 0 be such that
(ϕ−1(θ) − 1)(1 − δ/α) − 2δ =: r > 0. Then there exists a constant number k3,
depending on α, δ and θ , such that for any a > 0 and z = iz2

Pz{L < aα+δ/δ} ≤ k3a
2δ where L =

∫ 3ar

0
I{|h1,t |<a} dt.(6.16)

PROOF. It is obvious that we can also assume a to be small enough such that

16aδ < δ, a(ϕ−1(θ)−1)(1−δ/α)−2δ > aα+δ/δ.(6.17)
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Denote τ(s) = inf{t : t ≥ s, h1,t = 0} − s for s > 0. By (6.15), we have

Pz

{|h1,aα+δ/δ| < a1−δ/α, τ (aα+δ/δ) ≥ a(ϕ−1(θ)−1)(1−δ/α)−2δ}
≤ ca2δ + ca(ϕ−1(θ)−1)(1−δ/α)(6.18)

≤ 2ca2δ.

We claim that{
sup

0<t≤aα+δ/δ

|h1,t | ≥ a

}
⊆

{
sup

0<t≤aα+δ/δ

θ1/α|St | ≥ a/8
}
,(6.19)

{
sup

0<t≤aα+δ/δ

|h1,t | ≥ a1−δ/α

}
⊆

{
sup

0<t≤aα+δ/δ

θ1/α|St | ≥ a1−δ/α/8
}
.(6.20)

Let t ′ = inf{t : |h1,t | ≥ a}, t ′′ = sup{t ≤ t ′ : |h1,t | < a/2} and suppose that ω be-
longs to the left-hand side of (6.19); then by the first inequality of (6.17)

a/2 ≤ |h1,t ′ − h1,t ′′−|

=
∣∣∣∣ ∫ t ′

t ′′
2h1,u

(h2
1,u + h2

2,u)
α/2

du − θ1/αSt ′ + θ1/αSt ′′−
∣∣∣∣

≤ |θ1/α(St ′ − St ′′−)| +
∫ t ′

t ′′
2h1−α

1,u du(6.21)

≤ |θ1/α(St ′ − St ′′−)| + 4a1+δ/δ

≤ |θ1/α(St ′ − St ′′−)| + a/4,

which proves (6.19). We omit the proof of (6.20) as the proof is the same. By the
reflection principle we have

P

{
sup

0<t≤aα+δ/δ

θ1/α|St | ≥ a/8
}

≤ 2P{|Saα+δ/δ| ≥ θ−1/αa/8}

≤ 2P{|S1| ≥ δ1/αθ−1/αa−δ/α/8}(6.22)

≤ 21+3αk1θδ−1aδ.

Similarly we have

P

{
sup

0<t≤aα+δ/δ

θ1/α|St | ≥ a1−δ/α/8
}

≤ 21+3αk1θδ−1a2δ.(6.23)

By (6.17)–(6.20), (6.22) and (6.23),

Pz{L < aα+δ/δ}
≤ Pz

{
a ≤ sup

0<t≤aα+δ/δ

|h1,t | < a1−δ/α,L < aα+δ/δ

}
(6.24)
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+ Pz

{
sup

0<t≤aα+δ/δ

|h1,t | ≥ a1−δ/α

}

≤ Pz

{
a ≤ sup

0<t≤aα+δ/δ

|h1,t | < a1−δ/α,

τ (aα+δ/δ) < a(ϕ−1(θ)−1)(1−δ/α)−2δ,L < aα+δ/δ

}
+ Pz

{
sup

0<t≤aα+δ/δ

|h1,t | < a1−δ/α,

τ (aα+δ/δ) ≥ a(ϕ−1(θ)−1)(1−δ/α)−2δ

}
+ 21+3αk1θδ−1a2δ

≤ Pz

{
a ≤ sup

0<t≤aα+δ/δ

|h1,t | < a1−δ/α,

τ (aα+δ/δ) < a(ϕ−1(θ)−1)(1−δ/α)−2δ,

sup
τ(aα+δ/δ)≤t≤τ(aα+δ/δ)+aα+δ/δ

|h1,t | ≥ a

}
+ 21+3αδ−1(k1θ + c)a2δ

≤ Pz

{
sup

0<t≤aα+δ/δ

|h1,t | ≥ a, sup
τ(aα+δ/δ)≤t≤τ(aα+δ/δ)+aα+δ/δ

|h1,t | ≥ a

}
+ 21+3α(δ−1k1θ + c)a2δ

≤ 21+3α(
δ−1k1θ + c + (k1θδ−1)221+3α)

a2δ,

which completes the proof. �

PROPOSITION 6.6. Let 1 < α < 2 and θ > θ0(α). Let z ∈ H \ {0}. Then
Pz{ζ < ∞} = 1.

PROOF. The proof will follow the arguments for Theorem 4.6 with some tech-
nical differences. Fix z = z1 + iz2 ∈ H. When z2 = 0, the conclusion follows from
Proposition 6.1. Next, we assume z2 > 0 and, without loss of generality, z1 > 0.
Denote β > 0 small enough such that(

ϕ−1(θ) − 1
)
(1 − β/α) ≥ 6β,(6.25)

(ϕ−1(θ) − 1)(1 − β/α) − 2β

2α

(
ϕ−1(θ) − 1

) ≥ 2β.(6.26)

Write α̃ = (ϕ−1(θ) − 1)(1 − β/α) − 2β . Let a1 be an arbitrary positive number
such that

a1 < z2 ∧
(

β

β + 1

)1/β

and a
1+β
1 /β < a1/2.(6.27)
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Denote η0 = 0 and ξ1 = inf{t ≥ 0 :h2,t = a1}. Set

b1 = a1 − a
1+β
1

β
; η1 = inf{t ≥ ξ1 :h1,t = 0}.

By Lemma 6.4 we have η1 < ∞ a.s. Define by induction

an+1 = h2,ηn; ξn+1 = ηn + 3aα̃
n+1;

bn+1 = an+1 − a
1+β
n+1

β
; ηn+1 = inf{t ≥ ξn+1 :h1,t = 0}.

Let Ln = ∫ ξn
ηn−1

I{|h1,t |<an} dt . Define events

En = {Ln ≥ 2α/2aα+β
n /β};

Gn = {|h1,ξn | > 8aα̃/2α
n };(6.28)

Hn = {h2,ξn ≤ bn}.
Next we prove the following assertions:

Gn ⊆
{
θ1/α sup

ηn−1<t<ξn

|Sξn − St | > aα̃/2α
n

}
,(6.29)

En ⊆ Hn,(6.30)

Pz[Ec
n ∪ Gn|Fηn−1] ≤ (

6θk1 + 2αβ/(α+β)k3
)
a2β
n .(6.31)

Suppose that θ1/α supηn−1<t<ξn
|Sξn − St | ≤ a

α̃/2α
n ; we will check (6.29) by

proving that |h1,ξn | ≤ 8a
α̃/2α
n . Otherwise we can find t ′ ∈ (ηn−1, ξn) such that

|h1,t ′−| ≤ a
α̃/2α
n and |h1,t | ≥ a

α̃/2α
n for t ∈ (t ′, ξn). So we have

|h1,ξn | =
∣∣∣∣ ∫ ξn

ηn−1

2h1,u

(h2
1,u + h2

2,u)
α/2

du − θ1/αSξn + θ1/αSηn−1

∣∣∣∣
≤

∣∣∣∣ ∫ ξn

t ′
2h1,u

(h2
1,u + h2

2,u)
α/2

du − θ1/αSξn + θ1/αSt ′−
∣∣∣∣ + |h1,t ′−|

≤
∣∣∣∣ ∫ ξn

t ′
2h1−α

1,u du

∣∣∣∣ + 2aα̃/2α
n(6.32)

≤ 6aα̃(1+α)/2α
n + 2aα̃/2α

n

≤ 8aα̃/2α
n .

Now suppose that Ln ≥ 2α/2a
α+β
n /β . If h2,ξn < an/2, by the second inequality

of (6.27), we see that (6.30) is true. When h2,ξn ≥ an/2, we have

h2,ξn = an +
∫ ξn

ηn−1

−2h2,u

(h2
1,u + h2

2,u)
α/2

du
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≤ an −
∫ ξn

ηn−1

an

(h2
1,u + a2

n)
α/2

du

≤ an − 2−α/2
∫ ξn

ηn−1

I{|h1,t |<an}a1−α
n du

≤ an − a1+β
n /β = bn,

which completes the proof of (6.30). Equation (6.31) can be proved by Lemma 6.5,
(6.29), (6.30) and the following results:

Pz

[
θ1/α sup

ηn−1<t<ξn

|Sξn − St | > aα̃/2α
n

∣∣∣Fηn−1

]
≤ 2Pz[|Sξn−ηn−1 | > θ−1/αaα̃/2α

n |Fηn−1](6.33)

≤ 2Pz[|S1| > 3−1/αθ−1/αa−α̃/2α
n |Fηn−1] ≤ 6θk1a

α̃/2
n ≤ 6θk1a

2β
n ,

where we used (6.25) in the last inequality of (6.33).
As for SLE we denote

τ̃0,n = inf{t ≥ ξn :h1,t = 0, |h1,u| < 2 for ξn < u < t};
(6.34)

τ̃2,n = inf{t ≥ ξn :h1,t ≥ 2, |h1,u| > 0 for ξn < u < t}.
By Lemma 6.4, there exists a constant k4 > 0 such that

Ez

[
I{τ̃0,n<τ̃2,n}(ηn − ξn)|Fξn

]
< k4|h1,ξn |ϕ

−1(θ)−1,
(6.35)

Ez

[
I{τ̃0,n>τ̃2,n}|Fξn

]
< k4|h1,ξn |ϕ

−1(θ)−1,

when 0 < |h1,ξn | < 1. Denote Fn = {τ̃0,n < τ̃2,n} ∩ (En ∩ Gc
n) and set F =⋂

n≥1 Fn. By (6.30) and Lemma 4.5

N−1⋂
n=1

(En ∩ Gc
n) ⊆

N⋂
n=1

{an < (a
−β
1 + n − 1)−1/β} ∀N ∈ N.(6.36)

Write dn = a
−β
1 + n − 1. By (6.26), (6.31), (6.35) and (6.36),

Pz[F ] = lim
N→∞Pz

[
N⋂

n=1

Fn

]

= lim
N→∞Ez

[
I⋂N−1

n=1 Fn
IEN∩Gc

N
Pz[τ̃0,N < τ̃2,N |FξN

]]
≥ lim

N→∞Ez

[
I⋂N−1

n=1 Fn
IEN∩Gc

N

(
1 − k4|h1,ξN

|ϕ−1(θ)−1)]
≥ lim

N→∞Ez

[
I⋂N−1

n=1 Fn
IEN∩Gc

N

(
1 − 23(ϕ−1(θ)−1)k4|aN |(ϕ−1(θ)−1)α̃/2α)]

(6.37)
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≥ lim
N→∞Ez

[
I⋂N−1

n=1 Fn
IEN∩Gc

N

(
1 − 23(ϕ−1(θ)−1)k4d

−2
N

)]
= lim

N→∞
(
1 − 23(ϕ−1(θ)−1)k4d

−2
N

)
Ez

[
I⋂N−1

n=1 Fn
Pz[EN ∩ Gc

N |FηN−1]
]

≥ lim
N→∞

(
1 − 23(ϕ−1(θ)−1)k4d

−2
N

)(
1 − (

6θk1 + 22β/(α+β)k3
)
a

2β
N

)
× Pz

[
N−1⋂
n=1

Fn

]

≥
∞∏

n=1

(
1 − 23(ϕ−1(θ)−1)k4d

−2
n

)(
1 − (

6θk1 + 22β/(α+β)k3
)
d−2
n

)

≥ 1 −
∞∑

n=1

(
6θk1 + 22β/(α+β)k3 + 23(ϕ−1(θ)−1)k4

)
d−2
n .

By the definition of dn and (6.37), we have

lim
a1↓0

Pz[F ] = 1.(6.38)

By Lebesgue’s monotone convergence theorem, (6.26), (6.35) and (6.36),

Ez[IF ζ ] = lim
n→∞Ez[IF ξn]

= lim
n→∞

n∑
k=1

Ez[IF (ξk − ηk−1)] + lim
n→∞

n∑
k=1

Ez[IF (ηk−1 − ξk−1)]

≤
∞∑

k=1

3Ez[IF d
α̃/β
k ]

+
∞∑

k=1

Ez

[
Ez

[
I⋂k−1

s=1(Es∩Gc
s)
I{τ̃0,k−1>τ̃2,k−1}(ηk−1 − ξk−1)|Fξk−1

]]

≤
∞∑

k=1

3d
α̃/β
k +

∞∑
k=1

Ez

[
I⋂k−1

s=1(Es∩Gc
s)

23(ϕ−1(θ)−1)k4|h1,ξk−1 |(ϕ
−1(θ)−1)α̃/2α]

≤
∞∑

k=1

3d
α̃/β
k +

∞∑
k=1

23(ϕ−1(θ)−1)k4Ez

[
I⋂k−1

s=1(Es∩Gc
s)
a

(ϕ−1(θ)−1)α̃/2α
k−1

]

≤
∞∑

k=1

3d−4
k +

∞∑
k=1

23(ϕ−1(θ)−1)k4d
−2
k−1

< ∞,

which completes the proof. �
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PROOFS OF THEOREM 1.4 AND COROLLARY 1.5. The statement of Theo-
rem 1.4 is contained in Propositions 6.3 and 6.6. The proof of the corollary is the
same as for SLE with the help of these propositions. �
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