

Figure 12.1: Kaplan-Meier estimates of survival in maintenance (black) and non-maintenance groups in the AML study.

Table 15.1: Output of the coxph function run on the aml data set.

| $\operatorname{coxph}(\operatorname{formula} = \operatorname{Surv}(\operatorname{time}, \operatorname{status}) \sim x,  \operatorname{data} = \operatorname{aml})$ |          |                             |          |              |       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|----------|--------------|-------|--|--|--|--|
|                                                                                                                                                                    | coef     | $\exp(\operatorname{coef})$ | se(coef) | $\mathbf{Z}$ | р     |  |  |  |  |
| $\times$ Nonmaintained                                                                                                                                             | 0.916    | 2.5                         | 0.512    | 1.79         | 0.074 |  |  |  |  |
| Likelihood ratio                                                                                                                                                   | o test=3 | 3.38 on 1 df                | p=0.065  | 8 n=         | 23    |  |  |  |  |

The z is simply the Z-statistic for testing the hypothesis that  $\beta = 0$ , so  $z = \hat{\beta}/SE(\hat{\beta})$ . We see that z = 1.79 corresponds to a p-value of 0.074, so we would not reject the null hypothesis at level 0.05.

| Time | $n_{i1}$ | $n_{i2}$ | $d_{i1}$ | $d_{i2}$ | $\sigma_i^2$ | Peto weight |
|------|----------|----------|----------|----------|--------------|-------------|
| 5    | 11       | 12       | 0        | 2        | 0.476        | 0.958       |
| 8    | 11       | 10       | 0        | 2        | 0.474        | 0.875       |
| 9    | 11       | 8        | 1        | 0        | 0.244        | 0.792       |
| 12   | 10       | 8        | 0        | 1        | 0.247        | 0.750       |
| 13   | 10       | 7        | 1        | 0        | 0.242        | 0.708       |
| 18   | 8        | 6        | 1        | 0        | 0.245        | 0.661       |
| 23   | 7        | 6        | 1        | 1        | 0.456        | 0.614       |
| 27   | 6        | 5        | 0        | 1        | 0.248        | 0.519       |
| 30   | 5        | 4        | 0        | 1        | 0.247        | 0.467       |
| 31   | 5        | 3        | 1        | 0        | 0.234        | 0.416       |
| 33   | 4        | 3        | 0        | 1        | 0.245        | 0.364       |
| 34   | 4        | 2        | 1        | 0        | 0.222        | 0.312       |
| 43   | 3        | 2        | 0        | 1        | 0.240        | 0.260       |
| 45   | 3        | 1        | 0        | 1        | 0.188        | 0.208       |

Table 16.1: Data for testing equality of survival in AML experiment.

When the weights are all taken equal, we compute Z = -1.84, whereas the Peto weights — which reduce the influence of later observations — give us Z = -1.67. This yields one-sided p-values of 0.033 and 0.048 respectively — a marginally significant difference — or two-sided p-values of 0.065 and 0.096.