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A.1 Lifetime distributions and life tables

1. Give lots of examples of settings in which we might model “lifetimes” using the framework
of survival analysis.

2. (a) Let L1, . . . , Ln be independent Exp(λ) random variables. Show that the maximum
likelihood estimator for λ is given by

λ̂ =
n

L1 + · · · + Ln
.

(b) The following data resulted from a life test of refrigerator motors (hours to burnout):

Hours to burnout

104.3 158.7 193.7 201.3 206.2
227.8 249.1 307.8 311.5 329.6
358.5 364.3 370.4 380.5 394.6
426.2 434.1 552.6 594.0 691.5

i. Assuming refrigerator motors have Exp(λ) lifetimes, determine the maximum
likelihood estimate for λ.

ii. Still assuming Exp(λ) lifetimes, calculate the Fisher information and construct
approximate 95% confidence intervals for λ and 1/λ using the approximate
Normal distribution of the maximum likelihood estimator.

iii. Still assuming Exp(λ) lifetimes, show that 2nλ/λ̂ ∼ χ2
2n. Let a be such that

P(2nλ/λ̂ ≤ a) = α/2 and b such that P(2nλ/λ̂ ≥ b) = α/2. Deduce an exact
95% confidence interval for 1/λ.

iv. Produce a histogram of the data and comment.

v. Merge columns of your histogram appropriately to test whether the hypothesis
of Exp(λ) lifetimes can be rejected. Use a χ2 goodness of fit test.

3. (a) Let T1, . . . , Tm be independent continuous nonnegative random variables with hazard
functions h1(·), . . . , hm(·). Prove that T = min(T1, . . . , Tm) has hazard function
h1(·) + · · · + hm(·).

(b) A Weibull distribution with rate k and exponent n has hazard rate ktn. Let T1, . . . Tm

be independent Weibull random variables with rate parameters k1, . . . km and with

common exponent n. Find the distribution of T = min(T1, . . . , Tm).

(c) A truncated exponential distribution with parameter λ and maximal age ω has density
proportional to λe−λt on [0, ω] and 0 elsewhere. Calcluate the hazard function of the
distribution. Find the limit in distribution as λ ↓ 0.

4. Suppose that lifetimes are exponentially distributed with rate µ, and that we have a
prior distribution on µ which is a gamma distribution with shape parameter α and rate

parameter β; that is,

fµ(m) =
βαmα−1e−βm

Γ(α)
.

Suppose we observe lifetimes T1, T2, . . . , Tn. Show that the posterior distribution on µ is
also a gamma distribution, and give its parameters.
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5. We can obtain a class of distributions known as exponential mixtures by replacing the rate
parameter of the exponential distribution by a positive random variable M , which may be
discrete or continuous.

The distribution of T conditional on M is given by

fT |M=λ(t) = λe−λt,

so that the density of T is given by

fT (t) =

∫ ∞

0
λe−λtfM (λ)dλ or fT (t) =

∑

λ

λe−λt
P(M = λ)

in the continuous case or discrete case respectively.

(a) Show that T has mean and variance given by

E(T ) = E

(

1

M

)

and Var(T ) = 2E

(

1

M2

)

−

(

E

(

1

M

))2

,

and survival function

F T (t) = MM (−t), where MM (c) = E(ecM )

is the moment generating function of M .

(b) Consider the distribution with hazard function

h(t) = ρ0 + ρ1e
ρ2t

where ρ0, ρ1 > 0. (If ρ2 > 0, this is known as a Gompertz-Makeham distribution).
Show that this distribution can be obtained as an exponential mixture provided
ρ2 ≤ 0, and determine the distribution of the mixing random variable M .
Hint: Calculate the moment generating function of a Poi(ν) random variable M̃ and

adjust as necessary.

6. Suppose we observe ℓ0 independent and identically distributed lifetimes and consider the
random variables behind associated lifetable entries dx and ℓx, x ≥ 0.

(a) Show that E(dx − qxℓx) = 0 and Var(dx − qxℓx) = qx(1 − qx)E(ℓx).

Hint: Condition on ℓx. What is the conditional distribution of dx given ℓx?

(b) Show that the MLE for q0 is q̂0 = d0/ℓ0. Is it unbiased? What is its variance? What

is the MLE q̂x for x ≥ 1? Is it unbiased? (Pay particular attention to different
values that ℓx may take.) Calculate the relevant Fisher information matrix, and use
it to give approximations to the variances of q̂x for large ℓ0, and estimates for these

variances induced by the observed values of q̂x.

7. List some of the reasons for changes in mortality rates over the last 150 years (in, for
example, the UK population, but of course more widely if you like).
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8. The survival times (in days after transplant) for the original n = 69 members of the
Stanford Heart Transplant Program were as follows:

Survival time after heart transplant (days)

15 3 624 46 127 64 1350 280 23 10
1024 39 730 136 1775 1 836 60 1536 1549

54 47 51 1367 1264 44 994 51 1106 897
253 147 51 875 322 838 65 815 551 66
228 65 660 25 589 592 63 12 499 305
29 456 439 48 297 389 50 339 68 26
30 237 161 14 167 110 13 1 1

This dataset is also at http://www.stats.ox.ac.uk/~winkel/StanfordHeart .

The aim of this exercise is to construct the associated lifetable.

(a) Complete the following table of counts dx of associated curtate survival times (in
years=365 days), counts ℓx of subjects alive exactly x years after their transplant,
total time ℓ̃x spent alive between x and x + 1 years after their transplant, by all
subjects: x 0 1 2 3 4

dx 8 4 3

ℓx

ℓ̃x 19.148 10.203 4.937 1.315

(b) Use the discrete method to calculate maximum likelihood estimates of qx, x = 0, . . . , 4.
Use the continuous method to calculate maximum likelihood estimates of µx+1/2,
x = 0, . . . , 4, under the assumption of constant mortality throughout each year, and
the induced estimates of qx. Comment on the differences.

(c) Estimate the probability to survive for 3 months

i. assuming fractional and integer parts of lifetimes are independent, and the
fractional part is uniform;

ii. assuming the force of mortality is constant over the first year;

iii. directly from the data using the discrete method.

9. In a certain population, the force of mortality of lifetimes T is believed to be constant over
ages xj−1 ≤ x < xj , j ≥ 1, where x0 = 0. Denote these unknown constants by γj , j ≥ 1.
You observe n full lifetimes T (1), . . . , T (n) ∼ T sampled from this population.

(a) Determine the likelihood function of the sample, in terms of the parameters γj , j ≥ 1.

(b) Let Lj be the total time spent alive between ages xj−1 and xj . Express Lj explicitly

in terms of T (1), . . . , T (n).

(c) Show that a maximum likelihood estimator for γj ∈ [0,∞), j ≥ 1, is given by
γ̂j = Dj/Lj if Lj > 0, where Dj is the number of deaths between ages xj−1 and xj .

(d) Denote hj = P(T ≤ xj |T > xj−1), j ≥ 1. Express hj , j ≥ 1, in terms of γj , j ≥ 1 and
deduce maximum likelihood estimators for the new parameters.

(e) Discretise K = sup{xj : j ≥ 0, xj ≤ T} and express the probability mass function pK

of K in terms of hj , j ≥ 1.

(f) Derive maximum likelihood estimators for hj based on an observation of the discrete

data K(1),K(2), . . . ,K(n).

http://www.stats.ox.ac.uk/~winkel/StanfordHeart
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