A.1 Lifetime distributions and life tables

- 1. Give lots of examples of settings in which we might model "lifetimes" using the framework of survival analysis.
- 2. (a) Let L_1, \ldots, L_n be independent $\text{Exp}(\lambda)$ random variables. Show that the maximum likelihood estimator for λ is given by

$$\hat{\lambda} = \frac{n}{L_1 + \dots + L_n}.$$

(b) The following data resulted from a life test of refrigerator motors (hours to burnout):

	Hours to burnout							
104.3	158.7	193.7	201.3	206.2				
227.8	249.1	307.8	311.5	329.6				
358.5	364.3	370.4	380.5	394.6				
426.2	434.1	552.6	594.0	691.5				

- i. Assuming refrigerator motors have $\text{Exp}(\lambda)$ lifetimes, determine the maximum likelihood estimate for λ .
- ii. Still assuming $\text{Exp}(\lambda)$ lifetimes, calculate the Fisher information and construct approximate 95% confidence intervals for λ and $1/\lambda$ using the approximate Normal distribution of the maximum likelihood estimator.
- iii. Still assuming $\operatorname{Exp}(\lambda)$ lifetimes, show that $2n\lambda/\hat{\lambda} \sim \chi_{2n}^2$. Let a be such that $\mathbb{P}(2n\lambda/\hat{\lambda} \leq a) = \alpha/2$ and b such that $\mathbb{P}(2n\lambda/\hat{\lambda} \geq b) = \alpha/2$. Deduce an exact 95% confidence interval for $1/\lambda$.
- iv. Produce a histogram of the data and comment.
- v. Merge columns of your histogram appropriately to test whether the hypothesis of $\text{Exp}(\lambda)$ lifetimes can be rejected. Use a χ^2 goodness of fit test.
- 3. (a) Let T_1, \ldots, T_m be independent continuous nonnegative random variables with hazard functions $h_1(\cdot), \ldots, h_m(\cdot)$. Prove that $T = \min(T_1, \ldots, T_m)$ has hazard function $h_1(\cdot) + \cdots + h_m(\cdot)$.
 - (b) A Weibull distribution with rate k and exponent n has hazard rate kt^n . Let T_1, \ldots, T_m be independent Weibull random variables with rate parameters k_1, \ldots, k_m and with common exponent n. Find the distribution of $T = \min(T_1, \ldots, T_m)$.
 - (c) A truncated exponential distribution with parameter λ and maximal age ω has density proportional to $\lambda e^{-\lambda t}$ on $[0,\omega]$ and 0 elsewhere. Calculate the hazard function of the distribution. Find the limit in distribution as $\lambda \downarrow 0$.
- 4. Suppose that lifetimes are exponentially distributed with rate μ , and that we have a prior distribution on μ which is a gamma distribution with shape parameter α and rate parameter β ; that is,

$$f_{\mu}(m) = \frac{\beta^{\alpha} m^{\alpha - 1} e^{-\beta m}}{\Gamma(\alpha)}.$$

Suppose we observe lifetimes T_1, T_2, \ldots, T_n . Show that the posterior distribution on μ is also a gamma distribution, and give its parameters.

5. We can obtain a class of distributions known as exponential mixtures by replacing the rate parameter of the exponential distribution by a positive random variable M, which may be discrete or continuous.

The distribution of T conditional on M is given by

$$f_{T|M=\lambda}(t) = \lambda e^{-\lambda t},$$

so that the density of T is given by

$$f_T(t) = \int_0^\infty \lambda e^{-\lambda t} f_M(\lambda) d\lambda \quad \text{or} \quad f_T(t) = \sum_{\lambda} \lambda e^{-\lambda t} \mathbb{P}(M = \lambda)$$

in the continuous case or discrete case respectively.

(a) Show that T has mean and variance given by

$$\mathbb{E}(T) = \mathbb{E}\left(\frac{1}{M}\right)$$
 and $\operatorname{Var}(T) = 2\mathbb{E}\left(\frac{1}{M^2}\right) - \left(\mathbb{E}\left(\frac{1}{M}\right)\right)^2$,

and survival function

$$\overline{F}_T(t) = \mathcal{M}_M(-t), \quad \text{where } \mathcal{M}_M(c) = \mathbb{E}(e^{cM})$$

is the moment generating function of M.

(b) Consider the distribution with hazard function

$$h(t) = \rho_0 + \rho_1 e^{\rho_2 t}$$

where $\rho_0, \rho_1 > 0$. (If $\rho_2 > 0$, this is known as a Gompertz-Makeham distribution). Show that this distribution can be obtained as an exponential mixture provided $\rho_2 \leq 0$, and determine the distribution of the mixing random variable M.

Hint: Calculate the moment generating function of a $Poi(\nu)$ random variable M and adjust as necessary.

- 6. Suppose we observe ℓ_0 independent and identically distributed lifetimes and consider the random variables behind associated lifetable entries d_x and ℓ_x , $x \ge 0$.
 - (a) Show that $\mathbb{E}(d_x q_x \ell_x) = 0$ and $\operatorname{Var}(d_x q_x \ell_x) = q_x (1 q_x) \mathbb{E}(\ell_x)$. Hint: Condition on ℓ_x . What is the conditional distribution of d_x given ℓ_x ?
 - (b) Show that the MLE for q_0 is $\hat{q}_0 = d_0/\ell_0$. Is it unbiased? What is its variance? What is the MLE \hat{q}_x for $x \geq 1$? Is it unbiased? (Pay particular attention to different values that ℓ_x may take.) Calculate the relevant Fisher information matrix, and use it to give approximations to the variances of \hat{q}_x for large ℓ_0 , and estimates for these variances induced by the observed values of \hat{q}_x .
- 7. List some of the reasons for changes in mortality rates over the last 150 years (in, for example, the UK population, but of course more widely if you like).

8.	The survival times	(in days after	transplant) for t	the original	n = 69	members	of the
	Stanford Heart Tra	nsplant Progra	m were as follows	:			

	Survival time after heart transplant (days)									
15	3	624	46	127	64	1350	280	23	10	
1024	39	730	136	1775	1	836	60	1536	1549	
54	47	51	1367	1264	44	994	51	1106	897	
253	147	51	875	322	838	65	815	551	66	
228	65	660	25	589	592	63	12	499	305	
29	456	439	48	297	389	50	339	68	26	
30	237	161	14	167	110	13	1	1		

This dataset is also at http://www.stats.ox.ac.uk/~winkel/StanfordHeart.

The aim of this exercise is to construct the associated lifetable.

(a) Complete the following table of counts d_x of associated curtate survival times (in years=365 days), counts ℓ_x of subjects alive exactly x years after their transplant, total time $\tilde{\ell}_x$ spent alive between x and x+1 years after their transplant, by all subjects:

x	0	1	2	3	4
d_x			8	4	3
ℓ_x					
$ \tilde{\ell}_x $		19.148	10.203	4.937	1.315

- (b) Use the discrete method to calculate maximum likelihood estimates of q_x , x = 0, ..., 4. Use the continuous method to calculate maximum likelihood estimates of $\mu_{x+1/2}$, x = 0, ..., 4, under the assumption of constant mortality throughout each year, and the induced estimates of q_x . Comment on the differences.
- (c) Estimate the probability to survive for 3 months
 - i. assuming fractional and integer parts of lifetimes are independent, and the fractional part is uniform;
 - ii. assuming the force of mortality is constant over the first year;
 - iii. directly from the data using the discrete method.
- 9. In a certain population, the force of mortality of lifetimes T is believed to be constant over ages $x_{j-1} \le x < x_j$, $j \ge 1$, where $x_0 = 0$. Denote these unknown constants by γ_j , $j \ge 1$. You observe n full lifetimes $T^{(1)}, \ldots, T^{(n)} \sim T$ sampled from this population.
 - (a) Determine the likelihood function of the sample, in terms of the parameters γ_j , $j \geq 1$.
 - (b) Let L_j be the total time spent alive between ages x_{j-1} and x_j . Express L_j explicitly in terms of $T^{(1)}, \ldots, T^{(n)}$.
 - (c) Show that a maximum likelihood estimator for $\gamma_j \in [0, \infty)$, $j \geq 1$, is given by $\hat{\gamma}_j = D_j/L_j$ if $L_j > 0$, where D_j is the number of deaths between ages x_{j-1} and x_j .
 - (d) Denote $h_j = \mathbb{P}(T \le x_j | T > x_{j-1}), j \ge 1$. Express $h_j, j \ge 1$, in terms of $\gamma_j, j \ge 1$ and deduce maximum likelihood estimators for the new parameters.
 - (e) Discretise $K = \sup\{x_j : j \ge 0, x_j \le T\}$ and express the probability mass function p_K of K in terms of h_j , $j \ge 1$.
 - (f) Derive maximum likelihood estimators for h_j based on an observation of the discrete data $K^{(1)}, K^{(2)}, \ldots, K^{(n)}$.