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B.6 Time change

1. (a) First note that

E




[2ny]∑

j=1

(Zj2−n − Z(j−1)2−n)2


 =

[2ny]∑

j=1

Var
(
(Bf(j2−n) − Bf((j−1)2−n)

)

=

[2ny]∑

j=1

(f(j2−n) − f((j − 1)2−n))

= f([2ny]2−n) − f(0) = f([2ny]2−n) → f(y),

as n→ ∞. For L2-convergence we then calculate

E






[2ny]∑

j=1

(Zj2−n − Z(j−1)2−n)2 − f(y)




2


= Var




[2ny]∑

j=1

(Zj2−n − Z(j−1)2−n)2


+ (f([2ny]2−n) − f(y))2

≤




[2ny]∑

j=1

(f(j2−n) − f((j − 1)2−n))2


Var(B2

1) + (f([2ny]2−n) − f(y))2

→ [f ]yVar(B2
1) = 0,

provided that f is continuous (and increasing). Convergence in L2 implies
convergence in probability.

(b) Note first that both Z and Z̃ are continuous. For marginal distributions, note
that Zy = Bf(y) ∼ Normal(0, f(y)) and, for yj ≤ y < yj+1,

Z̃y =

j∑

i=1

σi(Wyi
−Wyi−1

) + σj+1(Wy −Wyj
)

is the sum of independent σi(Wyi
−Wyi−1

) ∼ Normal(0, τ 2
i ), where

τ 2
i = σ2

i (yi − yi−1) =

∫ yi

yi−1

f ′(s)ds = f(yi) − f(yi−1),

and these variances add up to f(y), as well. As for joint distributions, Z and

Z̃ have independent increments: for 0 = u0 < u1 < . . . < un

Zuk
− Zuk−1

= Bf(uk) − Bf(uk−1) ∼ Normal(0, f(uk) − f(uk−1)),

are independent as increments of B; similarly, increments Z̃uk
− Z̃uk−1

, for
ylk−1 < uk−1 ≤ ylk and yrk−1 < uk < yrk , are independent as linear combina-
tions (for lk < rk, just a multiple for lk = rk) of increments of W

Z̃uk
− Z̃uk−1

= σlk(Wylk
−Wuk−1

) +

rk−1∑

i=lk+1

σi(Wyi
−Wyi−1

) + σrk(Wui
−Wyri−1)

∼ Normal(0, f(uk) − f(uk−1)).
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2. (a) Let 0 ≤ y0 ≤ . . . ≤ yn. Since f is increasing with range [0,∞), this implies
0 ≤ f(y0) ≤ . . . ≤ f(yn). By the independence of increments of X, the
following random variables are independent:

Zy0 = Xf(y0), Zy1 −Zy0 = Xf(y1) −Xf(y0), . . . , Zyn
−Zyn−1 = Xf(yn) −Xf(yn−1).

(b) Let yn ↓ y0. Then by right-continuity and monotonicity of f , either f(yn) =
f(y0) for n large enough (if f is locally constant to the RHS of y0) or f(yn) ↓
f(y0) (otherwise). In the first case trivially, in the second case by right-
continuity of X, we obtain Zyn

= Xf(yn) → Xf(y0) = Zy0.

Now let yn ↑ y0. Then by left limits and monotonicity of f , either f(yn) =
f(y0) for n large enough (if f is locally constant to the LHS of y0) or f(yn) ↑
f(y0) (otherwise). In the first case, Zyn

= Xf(yn) → Xf(y0) = Zy0, in the
second case Zyn

= Xf(yn) → Xf(y0)− = Zy0−.

(c) Note that E(eiλZy) = E(eiλXf(y)) = e−f(y)ψ(λ). If ψ(λ) = 0 for all λ ∈ R,
then X ≡ 0. Otherwise, let λ ∈ R such that ψ(λ) 6= 0. Then stationarity of
increments means for all x ≥ 0 and y ≥ 0 that

f(y+x)−f(y) = − 1

ψ(λ)
log
(
E(eiλ(Zy+x−Zy))

)
= − 1

ψ(λ)
log
(
E(eiλ(Zx))

)
= f(x).

but this is linearity of f .

(d) Since Zy = Xf(y) and Xf(y) is infinitely divisible, this is trivial. We have

E(eiλZy ) = e−f(y)ψ(λ)

= exp

(
−iλf(y)a− 1

2
λ2f(y)σ2 −

∫ ∞

−∞

(1 − eiλx − iλx1{|x|≤1})f(y)g(x)dx

)
,

so the characteristics are (f(y)a, f(y)σ2, f(y)g).

3. (a) Denote the jump intensity of X by λ and the jump density by h. Since f is
differentiable, it is continuous and the jumps of Z are ∆Zy = ∆Xf(y). Then

N((a, b] × (c, d]) = #{y ∈ (a, b] : ∆Zy ∈ (c, d]}
= #{t ∈ (f(a), f(b)] : ∆Xt ∈ (c, d]}

∼ Poi

(∫ b

a

f ′(y)dy

∫ d

c

λh(x)dx

)
.

We read off the intensity function as g(y, x) = f ′(y)λh(x). Z can be con-
structed from a Poisson point process (∆y)y≥0 with intensity function g as
Zy =

∑
s≤y ∆s, y ≥ 0.

(b) If ∆f(s) > 0, then ∆Zs = Xf(s)−Xf(s−) is an increment of X of length ∆f(s)
and so by stationarity of increments of X,

E(eγ∆Zs) = E(eγX∆f(s)) = exp

{
∆f(s)

∫

R

(eγx − 1)λh(x)dx

}
.

Since the jump sizes are continuously distributed, P(∆Zs = 0) is the proba-
bility of no jump in the time interval (f(s−), f(s)), i.e. e−λ∆f(s). If the jump
sizes are not continuously distributed, this probability may be bigger (if X
can return to 0 after several jumps).
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(c) Since Z and Z̃y = Z0
y +
∑

0≤s≤y Js have independent increments, we just check

E(eγ
eZy) = exp

{∫ y

0

f ′
0(s)ds

∫

R

(eγx − 1)λh(x)dx

}

∏

0≤s≤y

exp

{
∆f(s)

∫

R

(eγx − 1)λh(x)dx

}

= exp

{(
f0(y) +

∑

0≤s≤y

∆f(s)

)∫

R

(eγx − 1)λh(x)dx

}
= E(eγZy).

4. Take a Poisson process X of rate λ and a continuous function f with piecewise
constant derivative. Then the process Z = (Xf(y))y≥0 has jumps of size 1 only.
However, if there is an interval [yj−1, yj) with f ′(y) = σj 6= 1, y ∈ [yj−1, yj) and σj 6=
1 for some j ≥ 1, then there is positive probability that Z̃y =

∫ y
0

√
f ′(s)dXs has

jumps of size σj , specifically, there will be a Poi(λ(yj+1−yj)) number of such jumps
in the time interval (yj, yj+1]. Therefore, the processes have different distributions.
So only for f(y) = y, the distributions of the processes will coincide.

(a) To be specific, for f1(y) = y and f2(y) = 2y, we obtain

Xf2(y) ∼ Poi(2λy) and

Xy∑

k=1

√
f ′

2(Tk) =
√

2Xy,

only takes multiples of
√

2 as values.

(b) The wording of the question suggests to compare distributions for fixed y.

However, both processes have independent increments, so if Zy ∼ Z̃y, then for
0 ≤ x ≤ y

E(eγZy) = E(eγ(Zy−Zx))E(eγZx)

and

E(eγ(Zy−Zx)) = E(eγZy)/E(eγZx) = E(eγ
eZy)/E(eγ

eZx) = E(eγ(
eZy− eZx)).

and similarly, finite-dimensional distributions coincide. Since both processes
are right-continuous with left limits, they have the same distribution, so, by
the reasoning at the beginning of the solution to this question, f(y) = y is the
only possible function.

Alternatively, one can study the distribution of the first jump time. The process
Z̃ has the same jump times as X (unless f ′(y) = 0 for some y). For the time-
changed process Z this is related to Question A.2.1, since by Question A.6.3 the
jump counting measure is a Poisson counting measure.

5. (a) If Var(X1) < ∞ (and hence Var(Xt) = tVar(X1) and E(Xt) = tE(X1)) and
Var(τ1) =

∫∞

0
t2gτ (t)dt <∞, we check the stronger integrability condition

∫ ∞

−∞

z2g(z)dz =

∫ ∞

−∞

z2

∫ ∞

0

ft(z)gτ (t)dtdz
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=

∫ ∞

0

∫ ∞

−∞

z2ft(z)dzgτ (t)dt

=

∫ ∞

0

(Var(Xt) + (E(Xt))
2)gτ (t)dt

=

∫ ∞

0

(tVar(X1) + t2(E(X1))
2)gτ (t)dt <∞.

(b) If τ is a compound Poisson process, i.e.
∫∞

0
gτ (t)dt <∞, then

∫ ∞

−∞

g(z)dz =

∫ ∞

0

∫ ∞

−∞

ft(z)dzgτ (t)dt =

∫ ∞

0

gτ (t)dt <∞.

If X is a compound Poisson process with intensity λ and such that P(Xt ∈
(a, b)) =

∫ b
a
ft(x)dx for all (a, b) 6∋ 0 and P(Xt 6= 0) = 1 − e−λt, then

∫

R\{0}

g(z)dz =

∫ ∞

0

∫

R\{0}

ft(z)dzgτ (t)dt =

∫ ∞

0

(1 − e−λt)gτ (t)dt <∞.

Note that (a) and (b) deal, respectively, with the integrability condition for small
z and large z. The general case, when neither the conditions of (a) nor of (b)
are satisfied, we know that we still obtain a Lévy density, from the calculation
of characteristic functions in the lectures, but the integrability condition for Lévy
densities is difficult to check directly.


