B. 3 Construction of Lévy processes

1. (a) First note that $e^{\Psi(\gamma)}=\mathbb{E}\left(e^{\gamma X_{1}}\right)$ implies that $\mathbb{E}\left(e^{\gamma X_{1 / m}}\right)=e^{\Psi(\gamma) / m}$ since stationarity and independence of increments implies $\mathbb{E}\left(e^{\gamma X_{1 / m}}\right)^{m}=e^{\Psi(\gamma)}$, then $\mathbb{E}\left(e^{\gamma X_{q}}\right)=e^{q \Psi(\gamma)}$, and then the right-continuity of sample paths implies that $X_{q} \rightarrow X_{t}$ almost surely and hence also in distribution, as $q \downarrow t$. Therefore, characteristic functions converge and $\mathbb{E}\left(e^{\gamma X_{q}}\right)=e^{q \Psi(\gamma)} \rightarrow e^{t \Psi(\gamma)}$.
Now we use the independence and stationarity of increments to see

$$
\begin{aligned}
\mathbb{E}\left(\exp \left\{\gamma X_{t}\right\} \mid \mathcal{F}_{s}\right) & =\exp \left\{\gamma X_{s}\right\} \mathbb{E}\left(\exp \left\{\gamma\left(X_{t}-X_{s}\right)\right\}\right) \\
& =\exp \left\{\gamma X_{s}\right\} \exp \{(t-s) \Psi(\gamma)\}
\end{aligned}
$$

(b) The argument in (a) applies, with $\gamma=i \lambda$ and ψ instead of Ψ as appropriate. Recall that moment generating functions do not exist for all random variables, but characteristic functions always exist (because $x \mapsto e^{i \lambda x}$ is bounded).
(c) The following argument can more easily be carried out for moment generating functions, but applies more generally if done for characteristic functions.
Differentiate $\mathbb{E}\left(\exp \left\{i \lambda X_{t}\right\}\right)=e^{-t \psi(\lambda)}$ with respect to λ at $\lambda=0$ to get $i \mathbb{E}\left(X_{t}\right)=-t \psi^{\prime}(0)$ (see Grimmett-Stirzaker 5.7 for a statement and reference to the proof). The claim follows since $\mu=\mathbb{E}\left(X_{1}\right)$ must now be the slope of this linear function.
Now, we use the independence and stationarity of increments to see

$$
\mathbb{E}\left(X_{t}-t \mu \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(X_{s}+\left(X_{t}-X_{s}\right)-t \mu \mid \mathcal{F}_{s}\right)=X_{s}+(t-s) \mu-t \mu=X_{s}-s \mu
$$

(d) Differentiate $\mathbb{E}\left(\exp \left\{i \lambda X_{t}\right\}\right)=e^{-t \psi(\lambda)}$ twice with respect to λ at $\lambda=0$ to get $-\mathbb{E}\left(X_{t}^{2}\right)=-t\left(\psi^{\prime \prime}(0)-t\left(\psi^{\prime}(0)\right)^{2}\right)$, so $\operatorname{Var}\left(X_{t}\right)=t \psi^{\prime \prime}(0)$, where now $\sigma^{2}=$ $\operatorname{Var}\left(X_{1}\right)=\psi^{\prime \prime}(0)$.
Now we use the independence and stationarity of increments to see

$$
\begin{aligned}
\mathbb{E}\left(\left(X_{t}-t \mu\right)^{2} \mid \mathcal{F}_{s}\right)= & \mathbb{E}\left(\left(X_{s}-s \mu\right)^{2}+2\left(X_{s}-s \mu\right)\left(X_{t}-X_{s}-(t-s) \mu\right)\right. \\
& \left.+\left(X_{t}-X_{s}-(t-s) \mu\right)^{2} \mid \mathcal{F}_{s}\right) \\
= & \left(X_{s}-s \mu\right)^{2}+2\left(X_{s}-s \mu\right) \mathbb{E}\left(X_{t}-X_{s}-(t-s) \mu\right) \\
& +\operatorname{Var}\left(X_{t}-X_{s}\right) \\
& \left(X_{s}-s \mu\right)^{2}+(t-s) \sigma^{2} .
\end{aligned}
$$

2. (a) If $\kappa \in(-1, \infty)$, then

$$
\int_{0}^{\infty} g(x) d x=\int_{0}^{\infty} x^{\kappa} e^{-x} d x=\Gamma(\kappa+1)<\infty
$$

The Poisson point process is hence of the form of Example 18 and so $\left(C_{t}\right)_{t \geq 0}$ is a compound Poisson process with intensity $\Gamma(\kappa+1)$ and $\operatorname{Gamma}(\kappa+1,1)$ jump distribution with density

$$
h(x)=\frac{1}{\Gamma(\kappa+1)} x^{\kappa} e^{-x}, \quad x>0
$$

(b) The counting measures associated to $\left(\Delta_{t}\right)_{t \geq 0}$ and $\left(\Delta_{t}^{(n)}\right)_{t \geq 0}$ are

$$
\begin{aligned}
N((a, b] \times(c, d]) & =\#\left\{t \in(a, b]: \Delta_{t} \in(c, d]\right. \\
& \sim \operatorname{Poi}\left((b-a) \int_{c}^{d} g(x) d x\right), \quad 0 \leq a<b, 0<c<d \\
N_{n}((a, b] \times(c, d]) & =N((a, b] \times((c, d] \cap(1 / n, \infty)) \\
& \sim \operatorname{Poi}\left((b-a) \int_{c}^{d} g(x) 1_{\{x>1 / n\}} d x\right), 0 \leq a<b, 0<c<d .
\end{aligned}
$$

N_{n} inherits the properties of a Poisson counting measure from N. We read off the intensity function $g_{n}(x)=g(x), x>1 / n, g_{n}(x)=0, x \leq 1 / n$. The argument of (a) shows that $C_{t}^{(n)}$ is a compound Poisson process.
(c) $C_{t}^{(n)}$ increases as $n \rightarrow \infty$. We can study the limit of moment generating functions, whether or not the limit is finite. We get, as $n \rightarrow \infty$,

$$
\mathbb{E}\left(e^{\gamma C_{t}^{(n)}}\right)=\exp \left\{\int_{1 / n}^{\infty}\left(e^{\gamma x}-1\right) g(x) d x\right\} \downarrow \exp \left\{\int_{0}^{\infty}\left(e^{\gamma x}-1\right) g(x) d x\right\}
$$

and because for $\gamma<0$

$$
\int_{0}^{\infty}\left(e^{\gamma x}-1\right) g(x) d x<\infty \Longleftrightarrow \int_{0}^{\infty}(1 \wedge x) g(x) d x<\infty
$$

and by Lemma 21, we need to investigate the right hand condition. We check that

$$
\int_{1}^{\infty} g(x) d x<\infty, \quad \text { and } \quad \int_{0}^{1} x g(x) d x<\infty \Longleftrightarrow \kappa+1>-1
$$

as required.
(d) We can write

$$
C_{s}-C_{s}^{(n)}=\sum_{r \leq s} \Delta_{r} 1_{\left\{\Delta_{r} \leq 1 / n\right\}} \leq \sum_{r \leq t} \Delta_{r} 1_{\left\{\Delta_{r} \leq 1 / n\right\}}=C_{t}-C_{t}^{(n)}
$$

and putting a supremum over $s \leq t$ on the left hand side, we get the required estimate (as an equality because we can take $s=t$ on the left. Now we showed in (c) that $C_{t}^{(n)} \rightarrow C_{t}$ a.s., and so we deduce here that

$$
\sup _{s \leq t}\left|C_{s}^{(n)}-C_{s}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

i.e. that the convergence is locally uniform.
(e) By Proposition 40(ii), we have for $m \leq n$

$$
\begin{aligned}
\mathbb{E}\left(\left|C_{t}^{(n)}-\mathbb{E}\left(C_{t}^{(n)}\right)-\left(C_{t}^{(m)}-\mathbb{E}\left(C_{t}^{(m)}\right)\right)\right|^{2}\right) & =\operatorname{Var}\left(C_{t}^{(n)}-C_{t}^{(m)}\right) \\
& =\int_{1 / n}^{1 / m} x^{2} g(x) d x
\end{aligned}
$$

and this decreases to zero as $n \geq m \rightarrow \infty$ if and only if $\int_{0}^{1} x^{2} g(x) d x<\infty$, i.e. $\kappa>-3$. In this case, $\left(C_{t}^{(n)}-\mathbb{E}\left(C_{t}^{(n)}\right)\right)_{n \geq 1}$ is a Cauchy sequence that converges by completeness of \mathbb{R} (and the associated L^{2} space of \mathbb{R}-valued random variables).
The limiting process $\left(X_{t}, t \geq 0\right)$ is a Lévy process, since for $0 \leq t_{0}<t_{1}<$ $\ldots<t_{m}$, we have that

$$
\begin{aligned}
& \mathbb{E}\left(\exp \left\{\sum_{j=1}^{m} \gamma_{j}\left(X_{t_{j}}-X_{t_{j-1}}\right)\right\}\right) \\
& \quad=\lim _{n \rightarrow \infty} \mathbb{E}\left(\exp \left\{\sum_{j=1}^{m} \gamma_{j}\left(C_{t_{j}}^{(n)}-C_{t_{j-1}}^{(n)}-\left(t_{j}-t_{j-1}\right) \mathbb{E}\left(C_{1}^{(n)}\right)\right)\right\}\right) \\
& \quad=\lim _{n \rightarrow \infty} \prod_{j=1}^{n} \mathbb{E}\left(\exp \left\{\gamma_{j}\left(C_{t_{j}}^{(n)}-C_{t_{j-1}}^{(n)}-\left(t_{j}-t_{j-1}\right) \mathbb{E}\left(C_{1}^{(n)}\right)\right)\right\}\right) \\
& \quad=\prod_{j=1}^{m} \mathbb{E}\left(\exp \left\{\gamma_{j}\left(X_{t_{j}}-X_{t_{j-1}}\right)\right\}\right)
\end{aligned}
$$

and so X has (i) independent increments and (ii) the distributions in the third line only depend on $\left(t_{j}-t_{j-1}\right)$ and this is preserved in the limit in the fourth line. (iii) Right-continuity and left limits are preserved under uniform convergence.
3. (a) Just note that for subordinators $0 \leq X_{t}<\infty$ a.s., and this implies that $1 \geq e^{-\mu X_{t}}>0$ a.s. and then also $1 \geq \overline{\mathbb{E}}\left(e^{-\mu X_{t}}\right)>0$ as required. Therefore, Φ_{t} is well-defined.
(b) The first equality follows as in A.3.1(a), first for rational $t \geq 0$ and then, by right-continuity of paths and since a.s. convergence implies convergence in distribution, hence of moment generating functions. The scaling relation for fixed t translates to

$$
\Phi_{t / c}\left(c^{1 / \alpha} \mu\right)=-\ln \left(\mathbb{E}\left(\exp \left\{-\mu c^{1 / \alpha} X_{t / c}\right\}\right)\right)=-\ln \left(\mathbb{E}\left(e^{-\mu X_{t}}\right)\right)=\Phi_{t}(\mu)
$$

and therefore, for $t=1, c=\mu^{-\alpha}$, we deduce the second equality from this and from the first equality

$$
\mu^{\alpha} \Phi(1)=\frac{1}{c} \Phi(1)=\Phi_{1 / c}(1)=\Phi(\mu)
$$

(c) Clearly $\mu \mapsto e^{-\mu X_{t}}$ is a.s. decreasing and so is hence $\mu \mapsto \mathbb{E}\left(e^{-\mu X_{t}}\right)$, strictly decreasing if $X_{t}>0$ with positive probability. Now, $\Phi(\mu)=\Phi(1) \mu^{\alpha}$ is clearly differentiable for $\mu>0$, and so

$$
\frac{\partial}{\partial \mu} \mathbb{E}\left(e^{-\mu X_{t}}\right)=\frac{\partial}{\partial \mu} e^{-t \Phi(1) \mu^{\alpha}}=-t \Phi(1) \alpha \mu^{\alpha-1} e^{-t \Phi(1) \mu^{\alpha}}
$$

and this is negative only for $\alpha>0$ (or $\alpha=0$ but then $\mu \mapsto \mathbb{E}\left(e^{-\mu X_{t}}\right)$ is constant). To show that also $\alpha \leq 1$ note that $\mu \mapsto e^{-\mu X_{t}}$ is also a.s. convex,
and hence so is $\mu \mapsto \mathbb{E}\left(e^{-\mu X_{t}}\right)$. Now, $\Phi(\mu)$ is also twice differentiable so that

$$
\frac{\partial^{2}}{\partial \mu^{2}} \mathbb{E}\left(e^{-\mu X_{t}}\right)=t \Phi(1) \alpha \mu^{\alpha-2} e^{-t \Phi(1) \mu^{\alpha}}\left(t \Phi(1) \alpha \mu^{\alpha}-(\alpha-1)\right)
$$

and this is nonnegative for all $\mu>0$ if and only if $\alpha \leq 1$.
(d) Note that, (by monotone convergence), as $\mu \downarrow 0$,

$$
t \Phi(1) \alpha \mu^{\alpha-1} e^{-t \Phi(1) \mu^{\alpha}}=\mathbb{E}\left(X_{t} e^{-\mu X_{t}}\right) \uparrow \mathbb{E}\left(X_{t}\right),
$$

where the left-hand side increases to ∞ for $\alpha \in(0,1)$.
(e) Note that $\Phi(0)=0$ implies that the equation holds for $\mu=0$ no matter what g is. Now differentiate both sides with respect to μ to get

$$
\Phi(1) \alpha \mu^{\alpha-1}=\int_{0}^{\infty} e^{-\mu x} x g(x) d x
$$

Remember that the density of the Gamma $(1-\alpha, \mu)$ distribution is $f(x)=$ $(\Gamma(1-\alpha))^{-1} \mu^{1-\alpha} x^{-\alpha} e^{-\mu x}$. Therefore, we can (and have to, by the Uniqueness Theorem for moment generating functions) take

$$
g(x)=\frac{\Phi(1) \alpha}{\Gamma(1-\alpha)} x^{-\alpha-1}, \quad x>0
$$

(f) For $\alpha \in(0,1)$, the Construction Theorem for subordinators (Theorem 26) shows that we can construct the stable subordinator from a Poisson point process with intensity function g as specified in (e). Note that g satisfies the integrability condition

$$
\int_{0}^{\infty}(1 \wedge x) g(x) d x<\infty
$$

since $x^{-\alpha-1}$ is integrable at $x=\infty$ and $x^{-\alpha}$ is integrable at $x=0$.
For $\alpha=1$ note that $\Phi_{t}(\mu)=\Phi(1) t \mu$. The associated subordinator is the deterministic drift $X_{t}=\Phi(1) t$.
4. (a) Just note that

$$
c^{1 / \alpha} Z_{t / c}=c^{1 / \alpha} X_{t / c}-c^{1 / \alpha} Y_{t / c} \sim X_{t}-Y_{t}=Z_{t}
$$

for fixed t, and that, as processes in $t \geq 0$, both the left-hand side and the right-hand side are Lévy processes. Therefore, the distributions as processes coincide.
(b) $H \sim-H$ implies

$$
\mathbb{E}(\cos (\lambda H))+i \mathbb{E}(\sin (\lambda H))=\mathbb{E}\left(e^{i \lambda H}\right)=\mathbb{E}\left(e^{-i \lambda H}\right)=\mathbb{E}(\cos (\lambda H))-i \mathbb{E}(\sin (\lambda H))
$$

and so the imaginary part $\mathbb{E}(\sin (\lambda H))$ must vanish for all $\lambda \in \mathbb{R}$.
(c) Clearly $Z_{t}=X_{t}-Y_{t} \sim Y_{t}-X_{t}=-Z_{t}$, so Z_{t} has a symmetric distribution. By (b), its characteristic function $\varphi_{t}(\lambda)=\mathbb{E}\left(e^{i \lambda Z_{t}}\right)$ is real-valued. By the hint, we may assume that φ_{t} is continuous, and since Z_{t} is infinitely divisible, that $\varphi_{t}(\lambda) \neq 0$, so it must stay positive everywhere (note that $\varphi(0)=1$). Define

$$
\psi_{t}(\lambda)=-\ln \left(\varphi_{t}(\lambda)\right), \quad \psi(\lambda)=\psi_{1}(\lambda), \quad \lambda \in \mathbb{R}
$$

By A.3.1.(b), we have $\psi_{t}(\lambda)=t \psi(\lambda)$. The scaling relation implies

$$
\psi_{t / c}\left(c^{1 / \alpha} \lambda\right)=-\ln \left(\mathbb{E}\left(\exp \left\{i \lambda c^{1 / \alpha} Z_{t / c}\right\}\right)\right)=-\ln \left(\mathbb{E}\left(e^{i \lambda Z_{t}}\right)\right)=\psi_{t}(\lambda)
$$

and as in A.3.3.(b), this implies $\psi(\lambda)=\psi(1) \lambda^{\alpha}$ for all $\lambda \geq 0$. For $\lambda<0$ note that

$$
\psi(\lambda)=-\ln \left(\mathbb{E}\left(e^{i \lambda Z_{t}}\right)\right)=-\ln \left(\mathbb{E}\left(e^{-i \lambda Z_{t}}\right)\right)=\psi(-\lambda)
$$

so we have $\psi(\lambda)=\psi(1)|\lambda|^{\alpha}$.
(d) Before we start, note that the integral defining $\widetilde{\psi}(\lambda)$ converges for $\alpha \in(0,2)$ since the integrand behaves like $x^{1-\alpha}$ at $x=0$ and like $x^{-\alpha-1}$ at $|x|=\infty$. We then check, by change of variables $y=c^{1 / \alpha} x$ (hence $x^{-1} d x=y^{-1} d y$), that

$$
\begin{aligned}
\widetilde{\psi}\left(\lambda c^{1 / \alpha}\right) & =\int_{-\infty}^{\infty}\left(\cos \left(\lambda c^{1 / \alpha} x\right)-1\right) \widetilde{b}|x|^{-\alpha-1} d x \\
& =\int_{-\infty}^{\infty}(\cos (\lambda y)-1) \widetilde{b} c|y|^{-\alpha-1} d y=c \widetilde{\psi}(\lambda)
\end{aligned}
$$

The argument of (c) shows that this implies $\widetilde{\psi}(\lambda)=b|\lambda|^{\alpha}$ for some $b \geq 0$ - the argument did not depend on $\alpha \in(0,1)$.

