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B.3 Construction of Lévy processes

1. (a) First note that eΨ(γ) = E(eγX1) implies that E(eγX1/m) = eΨ(γ)/m since sta-
tionarity and independence of increments implies E(eγX1/m)m = eΨ(γ), then
E(eγXq ) = eqΨ(γ), and then the right-continuity of sample paths implies that
Xq → Xt almost surely and hence also in distribution, as q ↓ t. Therefore,
characteristic functions converge and E(eγXq ) = eqΨ(γ) → etΨ(γ).

Now we use the independence and stationarity of increments to see

E(exp{γXt}|Fs) = exp{γXs}E(exp{γ(Xt −Xs)})

= exp{γXs} exp{(t− s)Ψ(γ)}.

(b) The argument in (a) applies, with γ = iλ and ψ instead of Ψ as appropriate.
Recall that moment generating functions do not exist for all random variables,
but characteristic functions always exist (because x 7→ eiλx is bounded).

(c) The following argument can more easily be carried out for moment generating
functions, but applies more generally if done for characteristic functions.

Differentiate E(exp{iλXt}) = e−tψ(λ) with respect to λ at λ = 0 to get
iE(Xt) = −tψ′(0) (see Grimmett-Stirzaker 5.7 for a statement and reference
to the proof). The claim follows since µ = E(X1) must now be the slope of
this linear function.

Now, we use the independence and stationarity of increments to see

E(Xt − tµ|Fs) = E(Xs + (Xt−Xs) − tµ|Fs) = Xs + (t− s)µ− tµ = Xs − sµ.

(d) Differentiate E(exp{iλXt}) = e−tψ(λ) twice with respect to λ at λ = 0 to
get −E(X2

t ) = −t(ψ′′(0) − t(ψ′(0))2), so Var(Xt) = tψ′′(0), where now σ2 =
Var(X1) = ψ′′(0).

Now we use the independence and stationarity of increments to see

E((Xt − tµ)2|Fs) = E((Xs − sµ)2 + 2(Xs − sµ)(Xt −Xs − (t− s)µ)

+(Xt −Xs − (t− s)µ)2|Fs)

= (Xs − sµ)2 + 2(Xs − sµ)E(Xt −Xs − (t− s)µ)

+Var(Xt −Xs)

= (Xs − sµ)2 + (t− s)σ2.

2. (a) If κ ∈ (−1,∞), then

∫ ∞

0

g(x)dx =

∫ ∞

0

xκe−xdx = Γ(κ + 1) <∞.

The Poisson point process is hence of the form of Example 18 and so (Ct)t≥0

is a compound Poisson process with intensity Γ(κ + 1) and Gamma(κ + 1, 1)
jump distribution with density

h(x) =
1

Γ(κ+ 1)
xκe−x, x > 0.
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(b) The counting measures associated to (∆t)t≥0 and (∆
(n)
t )t≥0 are

N((a, b] × (c, d]) = #{t ∈ (a, b] : ∆t ∈ (c, d]

∼ Poi

(
(b− a)

∫ d

c

g(x)dx

)
, 0 ≤ a < b, 0 < c < d,

Nn((a, b] × (c, d]) = N((a, b] × ((c, d] ∩ (1/n,∞))

∼ Poi

(
(b− a)

∫ d

c

g(x)1{x>1/n}dx

)
, 0 ≤ a < b, 0 < c < d.

Nn inherits the properties of a Poisson counting measure from N . We read
off the intensity function gn(x) = g(x), x > 1/n, gn(x) = 0, x ≤ 1/n. The

argument of (a) shows that C
(n)
t is a compound Poisson process.

(c) C
(n)
t increases as n → ∞. We can study the limit of moment generating

functions, whether or not the limit is finite. We get, as n→ ∞,

E(eγC
(n)
t ) = exp

{∫ ∞

1/n

(eγx − 1)g(x)dx

}
↓ exp

{∫ ∞

0

(eγx − 1)g(x)dx

}

and because for γ < 0

∫ ∞

0

(eγx − 1)g(x)dx <∞ ⇐⇒

∫ ∞

0

(1 ∧ x)g(x)dx <∞,

and by Lemma 21, we need to investigate the right hand condition. We check
that

∫ ∞

1

g(x)dx <∞, and

∫ 1

0

xg(x)dx <∞ ⇐⇒ κ+ 1 > −1,

as required.

(d) We can write

Cs − C(n)
s =

∑

r≤s

∆r1{∆r≤1/n} ≤
∑

r≤t

∆r1{∆r≤1/n} = Ct − C
(n)
t ,

and putting a supremum over s ≤ t on the left hand side, we get the required
estimate (as an equality because we can take s = t on the left. Now we showed

in (c) that C
(n)
t → Ct a.s., and so we deduce here that

sup
s≤t

|C(n)
s − Cs| → 0 as n→ ∞,

i.e. that the convergence is locally uniform.

(e) By Proposition 40(ii), we have for m ≤ n

E(|C
(n)
t − E(C

(n)
t ) − (C

(m)
t − E(C

(m)
t ))|2) = Var(C

(n)
t − C

(m)
t )

=

∫ 1/m

1/n

x2g(x)dx,
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and this decreases to zero as n ≥ m → ∞ if and only if
∫ 1

0
x2g(x)dx < ∞,

i.e. κ > −3. In this case, (C
(n)
t − E(C

(n)
t ))n≥1 is a Cauchy sequence that

converges by completeness of R (and the associated L2 space of R-valued
random variables).

The limiting process (Xt, t ≥ 0) is a Lévy process, since for 0 ≤ t0 < t1 <
. . . < tm, we have that

E

(
exp

{
m∑

j=1

γj(Xtj −Xtj−1
)

})

= lim
n→∞

E

(
exp

{
m∑

j=1

γj

(
C

(n)
tj − C

(n)
tj−1

− (tj − tj−1)E(C
(n)
1 )
)})

= lim
n→∞

n∏

j=1

E

(
exp

{
γj

(
C

(n)
tj − C

(n)
tj−1

− (tj − tj−1)E(C
(n)
1 )
)})

=

m∏

j=1

E
(
exp

{
γj(Xtj −Xtj−1

)
})

and so X has (i) independent increments and (ii) the distributions in the
third line only depend on (tj − tj−1) and this is preserved in the limit in the
fourth line. (iii) Right-continuity and left limits are preserved under uniform
convergence.

3. (a) Just note that for subordinators 0 ≤ Xt < ∞ a.s., and this implies that
1 ≥ e−µXt > 0 a.s. and then also 1 ≥ E(e−µXt) > 0 as required. Therefore, Φt

is well-defined.

(b) The first equality follows as in A.3.1(a), first for rational t ≥ 0 and then, by
right-continuity of paths and since a.s. convergence implies convergence in
distribution, hence of moment generating functions. The scaling relation for
fixed t translates to

Φt/c(c
1/αµ) = − ln(E(exp{−µc1/αXt/c})) = − ln(E(e−µXt)) = Φt(µ).

and therefore, for t = 1, c = µ−α, we deduce the second equality from this and
from the first equality

µαΦ(1) =
1

c
Φ(1) = Φ1/c(1) = Φ(µ).

(c) Clearly µ 7→ e−µXt is a.s. decreasing and so is hence µ 7→ E(e−µXt), strictly
decreasing if Xt > 0 with positive probability. Now, Φ(µ) = Φ(1)µα is clearly
differentiable for µ > 0, and so

∂

∂µ
E(e−µXt) =

∂

∂µ
e−tΦ(1)µα

= −tΦ(1)αµα−1e−tΦ(1)µα

and this is negative only for α > 0 (or α = 0 but then µ 7→ E(e−µXt) is
constant). To show that also α ≤ 1 note that µ 7→ e−µXt is also a.s. convex,
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and hence so is µ 7→ E(e−µXt). Now, Φ(µ) is also twice differentiable so that

∂2

∂µ2
E(e−µXt) = tΦ(1)αµα−2e−tΦ(1)µα

(tΦ(1)αµα − (α− 1)),

and this is nonnegative for all µ > 0 if and only if α ≤ 1.

(d) Note that, (by monotone convergence), as µ ↓ 0,

tΦ(1)αµα−1e−tΦ(1)µα

= E(Xte
−µXt) ↑ E(Xt),

where the left-hand side increases to ∞ for α ∈ (0, 1).

(e) Note that Φ(0) = 0 implies that the equation holds for µ = 0 no matter what
g is. Now differentiate both sides with respect to µ to get

Φ(1)αµα−1 =

∫ ∞

0

e−µxxg(x)dx.

Remember that the density of the Gamma(1 − α, µ) distribution is f(x) =
(Γ(1−α))−1µ1−αx−αe−µx. Therefore, we can (and have to, by the Uniqueness
Theorem for moment generating functions) take

g(x) =
Φ(1)α

Γ(1 − α)
x−α−1, x > 0.

(f) For α ∈ (0, 1), the Construction Theorem for subordinators (Theorem 26)
shows that we can construct the stable subordinator from a Poisson point
process with intensity function g as specified in (e). Note that g satisfies the
integrability condition

∫ ∞

0

(1 ∧ x)g(x)dx <∞

since x−α−1 is integrable at x = ∞ and x−α is integrable at x = 0.

For α = 1 note that Φt(µ) = Φ(1)tµ. The associated subordinator is the
deterministic drift Xt = Φ(1)t.

4. (a) Just note that

c1/αZt/c = c1/αXt/c − c1/αYt/c ∼ Xt − Yt = Zt

for fixed t, and that, as processes in t ≥ 0, both the left-hand side and the
right-hand side are Lévy processes. Therefore, the distributions as processes
coincide.

(b) H ∼ −H implies

E(cos(λH))+iE(sin(λH)) = E(eiλH) = E(e−iλH) = E(cos(λH))−iE(sin(λH))

and so the imaginary part E(sin(λH)) must vanish for all λ ∈ R.
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(c) Clearly Zt = Xt − Yt ∼ Yt − Xt = −Zt, so Zt has a symmetric distribution.
By (b), its characteristic function ϕt(λ) = E(eiλZt) is real-valued. By the hint,
we may assume that ϕt is continuous, and since Zt is infinitely divisible, that
ϕt(λ) 6= 0, so it must stay positive everywhere (note that ϕ(0) = 1). Define

ψt(λ) = − ln(ϕt(λ)), ψ(λ) = ψ1(λ), λ ∈ R.

By A.3.1.(b), we have ψt(λ) = tψ(λ). The scaling relation implies

ψt/c(c
1/αλ) = − ln(E(exp{iλc1/αZt/c})) = − ln(E(eiλZt)) = ψt(λ),

and as in A.3.3.(b), this implies ψ(λ) = ψ(1)λα for all λ ≥ 0. For λ < 0 note
that

ψ(λ) = − ln(E(eiλZt)) = − ln(E(e−iλZt)) = ψ(−λ),

so we have ψ(λ) = ψ(1)|λ|α.

(d) Before we start, note that the integral defining ψ̃(λ) converges for α ∈ (0, 2)
since the integrand behaves like x1−α at x = 0 and like x−α−1 at |x| = ∞. We
then check, by change of variables y = c1/αx (hence x−1dx = y−1dy), that

ψ̃(λc1/α) =

∫ ∞

−∞

(cos(λc1/αx) − 1)̃b|x|−α−1dx

=

∫ ∞

−∞

(cos(λy) − 1)̃bc|y|−α−1dy = cψ̃(λ).

The argument of (c) shows that this implies ψ̃(λ) = b|λ|α for some b ≥ 0 – the
argument did not depend on α ∈ (0, 1).


