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B.3 Construction of Lévy processes

1.

(a)

First note that ¥ = E(e*1) implies that E(e?X1/m) = ?0/™ gince sta-
tionarity and independence of increments implies E(e?X1/m)™ = %0 then
E(e7X4) = €% and then the right-continuity of sample paths implies that
X, — X, almost surely and hence also in distribution, as ¢ | ¢. Therefore,
characteristic functions converge and E(e7¥¢) = 1% — %),

Now we use the independence and stationarity of increments to see

E(exp{yX:}|Fs) = exp{vX }E(exp{y(X; — X,)})
= exp{yXs}exp{(t — s)¥()}-

The argument in (a) applies, with v = i\ and 1) instead of ¥ as appropriate.
Recall that moment generating functions do not exist for all random variables,
but characteristic functions always exist (because x — €*® is bounded).

The following argument can more easily be carried out for moment generating
functions, but applies more generally if done for characteristic functions.

Differentiate E(exp{iAX;}) = e ™ with respect to A at A = 0 to get
iE(X;) = —t’'(0) (see Grimmett-Stirzaker 5.7 for a statement and reference
to the proof). The claim follows since p = E(X;) must now be the slope of
this linear function.

Now, we use the independence and stationarity of increments to see
E(X; —tu|Fs) = E(Xs + (Xp—Xs) —tp]Fs) = Xs+ (t — s)u — tu = X5 — sp.

Differentiate E(exp{iAX,;}) = e "™ twice with respect to A at A = 0 to
get —E(X?) = —t(¢"(0) — t(¢/(0))?), so Var(X;) = t1”(0), where now o2 =
Var(X;) = ¢"(0).

Now we use the independence and stationarity of increments to see

E((X; — tp)?|F) = E((Xs = sp)® +2(X, — sp)(Xy — X — (t — s)p)
HX = X, — (= 5)p)?|F)
= (X, —sp)? +2(X, — sp)E(X, — X, — (t — s)p)
+Var(X; — Xs)
= (X, —su)?+ (t—s)o.

If k € (—1,00), then
/ g(x)dr = / e dr =T (k+ 1) < o0.
0 0
The Poisson point process is hence of the form of Example 18 and so (Cy)s>o

is a compound Poisson process with intensity I'(k + 1) and Gamma(x + 1,1)
jump distribution with density
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(b)

(e)

The counting measures associated to (A;);>o and (Aﬁ"))tzo are
N((a,b] x (¢,d]) = #{t € (a,b]: A € (¢,d]

~ Poi<(b—a)/dg(x)d:c), 0<a<b0<e<d,
N, ((a,b] x (¢,d]) = N((a,b] x ((c,cd] N(1/n,00))

~ Poi <(b —a) /dg(x)l{x>1/n}d:c) , 0<a<b0<e<d.
N,, inherits the properties of a Poisson counting measure from N. We read

off the intensity function g,(z) = g(z), x > 1/n, g.(z) = 0, z < 1/n. The
argument of (a) shows that C’t(n) is a compound Poisson process.

Ct(") increases as n — o0o. We can study the limit of moment generating
functions, whether or not the limit is finite. We get, as n — oo,

B(e) e { [ (@ = Dgtoyte b Lo { [T = Dgtoc}

and because for v < 0

/Ooo(ew —Dg(z)dr < 0 <= /000(1 Ax)g(x)dr < 0o,

and by Lemma 21, we need to investigate the right hand condition. We check
that

00 1
/ g(x)dr < oo, and / zg(z)dr < 0o <= K+1> —1,
1 0

as required.
We can write

C,—CM = ZAT’]-{AT.Sl/n} < Z Algar<ijmy = Ci — G,

r<s r<t

and putting a supremum over s < ¢ on the left hand side, we get the required
estimate (as an equality because we can take s = ¢ on the left. Now we showed

in (c) that C™ — C, a.s., and so we deduce here that

sup |C™W — Cy| — 0 as n — 0o,
s<t

i.e. that the convergence is locally uniform.

By Proposition 40(ii), we have for m <n

E(|C" —E(C™) — (G —E(C)Y) = Var(CY — ™)
1/m
_ / g(x)dz,
1

/n
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and this decreases to zero as n > m — oo if and only if fol 22g(z)dr < oo,
ie. k> —3. In this case, (C\™ — E(C™)),»1 is a Cauchy sequence that
converges by completeness of R (and the associated L? space of R-valued
random variables).

The limiting process (X;, ¢ > 0) is a Lévy process, since for 0 < tg < t; <
... < t,, we have that

E (exp {i%’(th - thl)}>

-t (e {350 (7 - i, — - omc)

J=1

n—oo

= lim ﬁE (exp {’yj (Ct(jn) — Ct(;i)l - (tj - tj—l)E(Cfn))) })
j=1

= HE (eXp {%’(th - th,l)})

=1

and so X has (i) independent increments and (ii) the distributions in the
third line only depend on (t; —¢;_1) and this is preserved in the limit in the
fourth line. (iii) Right-continuity and left limits are preserved under uniform
convergence.

Just note that for subordinators 0 < X; < oo a.s., and this implies that
1> e #% >0 as. and then also 1 > E(e %) > 0 as required. Therefore, @,
is well-defined.

The first equality follows as in A.3.1(a), first for rational ¢ > 0 and then, by
right-continuity of paths and since a.s. convergence implies convergence in
distribution, hence of moment generating functions. The scaling relation for
fixed t translates to

/() = — In(Eexp{—puc"*Xy1c})) = = In(E(e ™)) = @(p).

and therefore, for t = 1, ¢ = =, we deduce the second equality from this and
from the first equality

pOR(1) = TB(1) = Bye(1) = B(a).

Clearly p — e ¥t is a.s. decreasing and so is hence p — E(e #Xt), strictly
decreasing if X; > 0 with positive probability. Now, ®(u) = ®(1)u® is clearly
differentiable for > 0, and so

0 3, . §
%E(e—um) _ %e—ﬂb(l)u — —t‘b(l)a,ua_le_tq)(l)“

and this is negative only for a > 0 (or @ = 0 but then u +— E(e #Xt) is
constant). To show that also o < 1 note that p +— e #Xt is also a.s. convex,
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and hence so is p — E(e7#Xt). Now, ®(u) is also twice differentiable so that

2
aa—,qu(e_“Xt) = 1O (1) 2O (1 (1) ap® — (a — 1)),

and this is nonnegative for all ;4 > 0 if and only if o < 1.

Note that, (by monotone convergence), as u | 0,
tO(1)op® te IR — (X, e #5Y) 1 E(X,),

where the left-hand side increases to oo for o € (0, 1).

Note that ®(0) = 0 implies that the equation holds for i = 0 no matter what
g is. Now differentiate both sides with respect to u to get

q)(l)aua_l:/ e Mrg(x)de.
0

Remember that the density of the Gamma(l — a, u) distribution is f(z) =
(T(1 — ) tpt~@z=2e™#®. Therefore, we can (and have to, by the Uniqueness
Theorem for moment generating functions) take

(Do
g(x) = mm : x> 0.

For a € (0,1), the Construction Theorem for subordinators (Theorem 26)
shows that we can construct the stable subordinator from a Poisson point
process with intensity function g as specified in (e). Note that g satisfies the
integrability condition

/000(1 Az)g(x)dr < oo

a—1

since 7“7 is integrable at z = oo and £~ is integrable at x = 0.

For a« = 1 note that ®,(u) = ®(1)tu. The associated subordinator is the
deterministic drift X; = ®(1)t.

Just note that
Mo = M Xype — MYy v Xy = Yo = 7,

for fixed t, and that, as processes in t > 0, both the left-hand side and the
right-hand side are Lévy processes. Therefore, the distributions as processes
coincide.

H ~ —H implies
E(cos(AH))+iE(sin(AH)) = E(e*) = E(e™") = E(cos(\H)) —iE(sin(AH))

and so the imaginary part E(sin(AH)) must vanish for all A € R.
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()

Clearly Z;, = X; — Y, ~ Y, — X; = —Z;, so Z; has a symmetric distribution.
By (b), its characteristic function o,()\) = E(e?*) is real-valued. By the hint,
we may assume that ¢; is continuous, and since Z; is infinitely divisible, that
©i(A) # 0, so it must stay positive everywhere (note that ¢(0) = 1). Define

U(A) = —In(e(N),  »(A)=¢1(d), AeR
By A.3.1.(b), we have ¢4(\) = ty)(A). The scaling relation implies

Use(c/N) = — In(E(exp{ire”*Zy/e})) = — In(E(e7)) = ,(N),

and as in A.3.3.(b), this implies ¢¥(A) = (1)A* for all A > 0. For A < 0 note
that

Y(N) = —In(E(e™?)) = — In(E(e™*)) = (=),

so we have () = ¥(1)|\].

Before we start, note that the integral defining 1(\) converges for a € (0,2)
since the integrand behaves like 217 at x = 0 and like x7*71 at |z| = co. We
then check, by change of variables y = ¢z (hence x~'dx = y~'dy), that

V(A = / h (cos(Ac/?z) — 1)b|z| " dx

—00

- /OO (cos(\y) — D)bely| > 'dy = cvo(N).

—00

The argument of () shows that this implies 1(\) = b|A|* for some b > 0 — the
argument did not depend on « € (0, 1).



