B.3 Construction of Lévy processes

1. (a) First note that $e^{\Psi(\gamma)} = \mathbb{E}(e^{\gamma X_1})$ implies that $\mathbb{E}(e^{\gamma X_{1/m}}) = e^{\Psi(\gamma)/m}$ since stationarity and independence of increments implies $\mathbb{E}(e^{\gamma X_{1/m}})^m = e^{\Psi(\gamma)}$, then $\mathbb{E}(e^{\gamma X_q}) = e^{q\Psi(\gamma)}$, and then the right-continuity of sample paths implies that $X_q \to X_t$ almost surely and hence also in distribution, as $q \downarrow t$. Therefore, characteristic functions converge and $\mathbb{E}(e^{\gamma X_q}) = e^{q\Psi(\gamma)} \to e^{t\Psi(\gamma)}$.

Now we use the independence and stationarity of increments to see

$$\mathbb{E}(\exp\{\gamma X_t\}|\mathcal{F}_s) = \exp\{\gamma X_s\}\mathbb{E}(\exp\{\gamma (X_t - X_s)\}) \\ = \exp\{\gamma X_s\}\exp\{(t - s)\Psi(\gamma)\}.$$

- (b) The argument in (a) applies, with $\gamma = i\lambda$ and ψ instead of Ψ as appropriate. Recall that moment generating functions do not exist for all random variables, but characteristic functions always exist (because $x \mapsto e^{i\lambda x}$ is bounded).
- (c) The following argument can more easily be carried out for moment generating functions, but applies more generally if done for characteristic functions. Differentiate $\mathbb{E}(\exp\{i\lambda X_t\}) = e^{-t\psi(\lambda)}$ with respect to λ at $\lambda = 0$ to get $i\mathbb{E}(X_t) = -t\psi'(0)$ (see Grimmett-Stirzaker 5.7 for a statement and reference to the proof). The claim follows since $\mu = \mathbb{E}(X_1)$ must now be the slope of this linear function.

Now, we use the independence and stationarity of increments to see

$$\mathbb{E}(X_t - t\mu|\mathcal{F}_s) = \mathbb{E}(X_s + (X_t - X_s) - t\mu|\mathcal{F}_s) = X_s + (t - s)\mu - t\mu = X_s - s\mu.$$

(d) Differentiate $\mathbb{E}(\exp\{i\lambda X_t\}) = e^{-t\psi(\lambda)}$ twice with respect to λ at $\lambda = 0$ to get $-\mathbb{E}(X_t^2) = -t(\psi''(0) - t(\psi'(0))^2)$, so $\operatorname{Var}(X_t) = t\psi''(0)$, where now $\sigma^2 = \operatorname{Var}(X_1) = \psi''(0)$.

Now we use the independence and stationarity of increments to see

$$\begin{split} \mathbb{E}((X_t - t\mu)^2 | \mathcal{F}_s) &= \mathbb{E}((X_s - s\mu)^2 + 2(X_s - s\mu)(X_t - X_s - (t - s)\mu) \\ &+ (X_t - X_s - (t - s)\mu)^2 | \mathcal{F}_s) \\ &= (X_s - s\mu)^2 + 2(X_s - s\mu)\mathbb{E}(X_t - X_s - (t - s)\mu) \\ &+ \mathrm{Var}(X_t - X_s) \\ &= (X_s - s\mu)^2 + (t - s)\sigma^2. \end{split}$$

2. (a) If $\kappa \in (-1, \infty)$, then

$$\int_0^\infty g(x)dx = \int_0^\infty x^\kappa e^{-x}dx = \Gamma(\kappa+1) < \infty.$$

The Poisson point process is hence of the form of Example 18 and so $(C_t)_{t\geq 0}$ is a compound Poisson process with intensity $\Gamma(\kappa + 1)$ and $\text{Gamma}(\kappa + 1, 1)$ jump distribution with density

$$h(x) = \frac{1}{\Gamma(\kappa+1)} x^{\kappa} e^{-x}, \qquad x > 0.$$

(b) The counting measures associated to $(\Delta_t)_{t>0}$ and $(\Delta_t^{(n)})_{t>0}$ are

$$N((a,b] \times (c,d]) = \#\{t \in (a,b] : \Delta_t \in (c,d] \\ \sim \operatorname{Poi}\left((b-a)\int_c^d g(x)dx\right), \quad 0 \le a < b, 0 < c < d, \\ N_n((a,b] \times (c,d]) = N((a,b] \times ((c,d] \cap (1/n,\infty)) \\ \sim \operatorname{Poi}\left((b-a)\int_c^d g(x)1_{\{x>1/n\}}dx\right), \ 0 \le a < b, 0 < c < d.$$

 N_n inherits the properties of a Poisson counting measure from N. We read off the intensity function $g_n(x) = g(x)$, x > 1/n, $g_n(x) = 0$, $x \le 1/n$. The argument of (a) shows that $C_t^{(n)}$ is a compound Poisson process.

(c) $C_t^{(n)}$ increases as $n \to \infty$. We can study the limit of moment generating functions, whether or not the limit is finite. We get, as $n \to \infty$,

$$\mathbb{E}(e^{\gamma C_t^{(n)}}) = \exp\left\{\int_{1/n}^{\infty} (e^{\gamma x} - 1)g(x)dx\right\} \downarrow \exp\left\{\int_0^{\infty} (e^{\gamma x} - 1)g(x)dx\right\}$$

and because for $\gamma < 0$

$$\int_0^\infty (e^{\gamma x} - 1)g(x)dx < \infty \iff \int_0^\infty (1 \wedge x)g(x)dx < \infty,$$

and by Lemma 21, we need to investigate the right hand condition. We check that

$$\int_{1}^{\infty} g(x)dx < \infty, \quad \text{and} \quad \int_{0}^{1} xg(x)dx < \infty \iff \kappa + 1 > -1,$$

as required.

(d) We can write

$$C_s - C_s^{(n)} = \sum_{r \le s} \Delta_r \mathbb{1}_{\{\Delta_r \le 1/n\}} \le \sum_{r \le t} \Delta_r \mathbb{1}_{\{\Delta_r \le 1/n\}} = C_t - C_t^{(n)},$$

and putting a supremum over $s \leq t$ on the left hand side, we get the required estimate (as an equality because we can take s = t on the left. Now we showed in (c) that $C_t^{(n)} \to C_t$ a.s., and so we deduce here that

$$\sup_{s \le t} |C_s^{(n)} - C_s| \to 0 \qquad \text{as } n \to \infty,$$

i.e. that the convergence is locally uniform.

(e) By Proposition 40(ii), we have for $m \leq n$

$$\begin{split} \mathbb{E}(|C_t^{(n)} - \mathbb{E}(C_t^{(n)}) - (C_t^{(m)} - \mathbb{E}(C_t^{(m)}))|^2) &= \operatorname{Var}(C_t^{(n)} - C_t^{(m)}) \\ &= \int_{1/n}^{1/m} x^2 g(x) dx, \end{split}$$

and this decreases to zero as $n \ge m \to \infty$ if and only if $\int_0^1 x^2 g(x) dx < \infty$, i.e. $\kappa > -3$. In this case, $(C_t^{(n)} - \mathbb{E}(C_t^{(n)}))_{n\ge 1}$ is a Cauchy sequence that converges by completeness of \mathbb{R} (and the associated L^2 space of \mathbb{R} -valued random variables).

The limiting process $(X_t, t \ge 0)$ is a Lévy process, since for $0 \le t_0 < t_1 < \ldots < t_m$, we have that

$$\mathbb{E}\left(\exp\left\{\sum_{j=1}^{m}\gamma_{j}(X_{t_{j}}-X_{t_{j-1}})\right\}\right)$$

= $\lim_{n\to\infty}\mathbb{E}\left(\exp\left\{\sum_{j=1}^{m}\gamma_{j}\left(C_{t_{j}}^{(n)}-C_{t_{j-1}}^{(n)}-(t_{j}-t_{j-1})\mathbb{E}(C_{1}^{(n)})\right)\right\}\right)$
= $\lim_{n\to\infty}\prod_{j=1}^{n}\mathbb{E}\left(\exp\left\{\gamma_{j}\left(C_{t_{j}}^{(n)}-C_{t_{j-1}}^{(n)}-(t_{j}-t_{j-1})\mathbb{E}(C_{1}^{(n)})\right)\right\}\right)$
= $\prod_{j=1}^{m}\mathbb{E}\left(\exp\left\{\gamma_{j}(X_{t_{j}}-X_{t_{j-1}})\right\}\right)$

and so X has (i) independent increments and (ii) the distributions in the third line only depend on $(t_j - t_{j-1})$ and this is preserved in the limit in the fourth line. (iii) Right-continuity and left limits are preserved under uniform convergence.

- 3. (a) Just note that for subordinators $0 \leq X_t < \infty$ a.s., and this implies that $1 \geq e^{-\mu X_t} > 0$ a.s. and then also $1 \geq \mathbb{E}(e^{-\mu X_t}) > 0$ as required. Therefore, Φ_t is well-defined.
 - (b) The first equality follows as in A.3.1(a), first for rational $t \ge 0$ and then, by right-continuity of paths and since a.s. convergence implies convergence in distribution, hence of moment generating functions. The scaling relation for fixed t translates to

$$\Phi_{t/c}(c^{1/\alpha}\mu) = -\ln(\mathbb{E}(\exp\{-\mu c^{1/\alpha}X_{t/c}\})) = -\ln(\mathbb{E}(e^{-\mu X_t})) = \Phi_t(\mu).$$

and therefore, for t = 1, $c = \mu^{-\alpha}$, we deduce the second equality from this and from the first equality

$$\mu^{\alpha}\Phi(1) = \frac{1}{c}\Phi(1) = \Phi_{1/c}(1) = \Phi(\mu).$$

(c) Clearly $\mu \mapsto e^{-\mu X_t}$ is a.s. decreasing and so is hence $\mu \mapsto \mathbb{E}(e^{-\mu X_t})$, strictly decreasing if $X_t > 0$ with positive probability. Now, $\Phi(\mu) = \Phi(1)\mu^{\alpha}$ is clearly differentiable for $\mu > 0$, and so

$$\frac{\partial}{\partial \mu} \mathbb{E}(e^{-\mu X_t}) = \frac{\partial}{\partial \mu} e^{-t\Phi(1)\mu^{\alpha}} = -t\Phi(1)\alpha\mu^{\alpha-1}e^{-t\Phi(1)\mu^{\alpha}}$$

and this is negative only for $\alpha > 0$ (or $\alpha = 0$ but then $\mu \mapsto \mathbb{E}(e^{-\mu X_t})$ is constant). To show that also $\alpha \leq 1$ note that $\mu \mapsto e^{-\mu X_t}$ is also a.s. convex,

and hence so is $\mu \mapsto \mathbb{E}(e^{-\mu X_t})$. Now, $\Phi(\mu)$ is also twice differentiable so that

$$\frac{\partial^2}{\partial\mu^2}\mathbb{E}(e^{-\mu X_t}) = t\Phi(1)\alpha\mu^{\alpha-2}e^{-t\Phi(1)\mu^{\alpha}}(t\Phi(1)\alpha\mu^{\alpha} - (\alpha - 1)),$$

and this is nonnegative for all $\mu > 0$ if and only if $\alpha \leq 1$.

(d) Note that, (by monotone convergence), as $\mu \downarrow 0$,

$$t\Phi(1)\alpha\mu^{\alpha-1}e^{-t\Phi(1)\mu^{\alpha}} = \mathbb{E}(X_t e^{-\mu X_t}) \uparrow \mathbb{E}(X_t),$$

where the left-hand side increases to ∞ for $\alpha \in (0, 1)$.

(e) Note that $\Phi(0) = 0$ implies that the equation holds for $\mu = 0$ no matter what g is. Now differentiate both sides with respect to μ to get

$$\Phi(1)\alpha\mu^{\alpha-1} = \int_0^\infty e^{-\mu x} xg(x) dx$$

Remember that the density of the $\text{Gamma}(1 - \alpha, \mu)$ distribution is $f(x) = (\Gamma(1-\alpha))^{-1}\mu^{1-\alpha}x^{-\alpha}e^{-\mu x}$. Therefore, we can (and have to, by the Uniqueness Theorem for moment generating functions) take

$$g(x) = \frac{\Phi(1)\alpha}{\Gamma(1-\alpha)} x^{-\alpha-1}, \qquad x > 0.$$

(f) For $\alpha \in (0, 1)$, the Construction Theorem for subordinators (Theorem 26) shows that we can construct the stable subordinator from a Poisson point process with intensity function g as specified in (e). Note that g satisfies the integrability condition

$$\int_0^\infty (1 \wedge x) g(x) dx < \infty$$

since $x^{-\alpha-1}$ is integrable at $x = \infty$ and $x^{-\alpha}$ is integrable at x = 0.

For $\alpha = 1$ note that $\Phi_t(\mu) = \Phi(1)t\mu$. The associated subordinator is the deterministic drift $X_t = \Phi(1)t$.

4. (a) Just note that

$$c^{1/\alpha} Z_{t/c} = c^{1/\alpha} X_{t/c} - c^{1/\alpha} Y_{t/c} \sim X_t - Y_t = Z_t$$

for fixed t, and that, as processes in $t \ge 0$, both the left-hand side and the right-hand side are Lévy processes. Therefore, the distributions as processes coincide.

(b) $H \sim -H$ implies

$$\mathbb{E}(\cos(\lambda H)) + i\mathbb{E}(\sin(\lambda H)) = \mathbb{E}(e^{i\lambda H}) = \mathbb{E}(e^{-i\lambda H}) = \mathbb{E}(\cos(\lambda H)) - i\mathbb{E}(\sin(\lambda H))$$

and so the imaginary part $\mathbb{E}(\sin(\lambda H))$ must vanish for all $\lambda \in \mathbb{R}$.

(c) Clearly $Z_t = X_t - Y_t \sim Y_t - X_t = -Z_t$, so Z_t has a symmetric distribution. By (b), its characteristic function $\varphi_t(\lambda) = \mathbb{E}(e^{i\lambda Z_t})$ is real-valued. By the hint, we may assume that φ_t is continuous, and since Z_t is infinitely divisible, that $\varphi_t(\lambda) \neq 0$, so it must stay positive everywhere (note that $\varphi(0) = 1$). Define

$$\psi_t(\lambda) = -\ln(\varphi_t(\lambda)), \qquad \psi(\lambda) = \psi_1(\lambda), \qquad \lambda \in \mathbb{R}.$$

By A.3.1.(b), we have $\psi_t(\lambda) = t\psi(\lambda)$. The scaling relation implies

$$\psi_{t/c}(c^{1/\alpha}\lambda) = -\ln(\mathbb{E}(\exp\{i\lambda c^{1/\alpha}Z_{t/c}\})) = -\ln(\mathbb{E}(e^{i\lambda Z_t})) = \psi_t(\lambda),$$

and as in A.3.3.(b), this implies $\psi(\lambda) = \psi(1)\lambda^{\alpha}$ for all $\lambda \ge 0$. For $\lambda < 0$ note that

$$\psi(\lambda) = -\ln(\mathbb{E}(e^{i\lambda Z_t})) = -\ln(\mathbb{E}(e^{-i\lambda Z_t})) = \psi(-\lambda),$$

so we have $\psi(\lambda) = \psi(1)|\lambda|^{\alpha}$.

(d) Before we start, note that the integral defining $\tilde{\psi}(\lambda)$ converges for $\alpha \in (0, 2)$ since the integrand behaves like $x^{1-\alpha}$ at x = 0 and like $x^{-\alpha-1}$ at $|x| = \infty$. We then check, by change of variables $y = c^{1/\alpha}x$ (hence $x^{-1}dx = y^{-1}dy$), that

$$\widetilde{\psi}(\lambda c^{1/\alpha}) = \int_{-\infty}^{\infty} (\cos(\lambda c^{1/\alpha} x) - 1)\widetilde{b}|x|^{-\alpha - 1} dx$$
$$= \int_{-\infty}^{\infty} (\cos(\lambda y) - 1)\widetilde{b}c|y|^{-\alpha - 1} dy = c\widetilde{\psi}(\lambda)$$

The argument of (c) shows that this implies $\widetilde{\psi}(\lambda) = b|\lambda|^{\alpha}$ for some $b \ge 0$ – the argument did not depend on $\alpha \in (0, 1)$.