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B.2 Poisson counting measures

1. (a) The distribution of Π is specified in terms of the associated counting measure

N((a, b]) = #Π ∩ (a, b] = {j ≥ 1 : a < Tj ≤ b} = Xb − Xa, 0 ≤ a < b.

Clearly, N satisfies property hom(b) of a Poisson counting measure: N((a, b]) =
Xb − Xa ∼ Poi(λ(b − a)) by the stationarity (ii) and Poisson (iv) properties
for increments of X, and we identify the constant intensity function λ(t) = λ,
t ≥ 0.

N also satisfies (a), since for disjoint intervals (aj, bj ], j = 1, . . . , n, we have
N((aj , bj]) = Xbj

− Xaj
increments of X over disjoint time intervals. By

property (i) of the Poisson process, these are independent, as required.

(b) (i) Let 0 ≤ t0 < t1 < . . . < tn. Since N is a measure, we have N((tj−1, tj ]) =
N([0, tj ]) − N([0, tj−1]) = Xtj − Xtj−1

. Since the sets Aj = (tj−1, tj ],
j = 1, . . . , n, are disjoint, property (a) of the Poisson counting measure
yields the independence of the increments of X.

(ii) Fix r ≥ 0. For an increment Xs+r−Xs = N((s, s+r]), property inhom(b) of
the Poisson counting measure yields a Poisson distribution with parameter
pr(s) =

∫ s+r

s
λ(x)dx. The differentiable function s 7→ pr(s) is constant if

and only if 0 = p′r(s) = λ(s + r) − λ(s) for all s ≥ 0.
Now (Xt)t≥0 has stationary increments if and only if s 7→ pr(s) is constant
for all r ≥ 0 if and only if λ(s) = λ(r + s) for all r ≥ 0, s ≥ 0. This is the
case if and only if x 7→ λ(x) is constant.

(iii) Clearly t 7→ Xt is an increasing function, so all left and right limits ex-
ists. Denote by Π the associated spatial Poisson process, then Π = {t ≥
0 : ∆Xt > 0} = {t ≥ 0 : ∆Xt = 1}. The set Π cannot have accu-
mulation points since λ is locally integrable, so Π = {Tj , j ≥ 1} and
Xt = N([0, t]) = j for t ∈ [Tj, Tj+1) is right-continuous at jump times,
continuous elsewhere.

(iv) Xt −Xs = N((s, t]) = Poi(
∫ t

s
λ(x)dx), by property inhom(b) of the Poisson

counting measure.

(v) P(T1 > s) = P(N([0, s]) = 0) = exp{−
∫ s

0
λ(x)dx} for all s ≥ 0.

(vi) The density of T1 is obtained by differentiating the survival function:

fT1
(s) = λ(s) exp

{

−

∫ s

0

λ(x)dx

}

.

To calculate the joint distribution of (T1, T2 − T1), first calculate the joint
distribution of (T1, T2), from

P(T1 > s, T2 > t) = P(N([0, s]) = 0, N((s, t]) ≤ 1)

= exp

{

−

∫ s

0

λ(x)dx

}(

1 +

∫ t

s

λ(x)dx

)

exp

{

−

∫ t

s

λ(x)dx

}

and differentiation, first with respect to s then with respect to t

fT1,T2
(s, t) = λ(s)λ(t) exp

{

−

∫ t

0

λ(x)dx

}
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and the transformation formula for (T1, T2) 7→ (T1, T2 − T1) gives

fT1,T2−T1
(s, r) = λ(s)λ(s + r) exp

{

−

∫ s+r

0

λ(x)dx

}

and then

fT2−T1|T1=s(r) = λ(s + r) exp

{

−

∫ s+r

s

λ(x)dx

}

⇒ P(T2 − T1 > r|T1 = s) = exp

{

−

∫ s+r

s

λ(x)dx

}

is independent of s for all r ≥ 0 if and only x 7→ λ(x) is constant, by the
argument given in (ii).

2. (a) Fix β > 0. Note that the formula reduces to 0 = 0 for γ = 0. It is therefore
sufficient to show that the γ-derivatives of both sides coincide. To differentiate
the left hand side, note that

∂

∂γ
(eγx − 1)

1

x
e−βx = eγxe−βx ≤ e−βx,

for γ ≤ 0, where x 7→ e−βx is integrable on [0,∞). Therefore, we may in-
terchange γ-differentiation and x-integration and have to show that for all
γ < 0

∫ ∞

0

eγxe−βxdx =
1

1 − γ/β

1

β
,

which clearly is true.

The argument works for γ ≤ γ0 if we choose e−(β−γ0) as integrable upper
bound. Clearly, for every fixed γ < β, any γ0 ∈ (γ, β) will do.

(b) We apply the exponential formula for Poisson point processes and (a) to obtain

E

(

exp

{

γ
∑

s≤t

∆s

})

= exp

{

t

∫ ∞

0

(eγx − 1)αx−1e−βxdx

}

=

(

β

β − γ

)αt

.

We recognise the last expression as the moment generating function of the
Gamma distribution with the required density. By the Uniqueness Theorem
for moment generating functions,

∑

s≤t ∆s has this Gamma distribution.

(c) Fix 0 ≤ t0 < t1 < . . . < tn. Since (∆s)s≥0 is a Poisson point process, the
processes (∆s)tj−1<s≤tj , j = 1, . . . , n, are independent (consider the restrictions
to disjoint domains (tj−1, tj ] × (0,∞) of the Poisson counting measure

N((a, b] × (c, d]) = {a < t ≤ b : ∆t ∈ (c, d]}, 0 ≤ a < b, 0 < c < d),

and so are the sums
∑

tj−1<s≤tj
∆s as functions of independent random vari-

ables. Fix s < t. Then the process (∆s+r)r≥0 has the same distribution as
(∆s)s≥0. In particular,

∑

0≤r≤t ∆s+t ∼
∑

0≤r≤t ∆r. The process t 7→
∑

s≤t ∆s
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is right-continuous with left limits, since it is a random increasing function
where for each jump time T , we have (by monotone convergence)

lim
t↑T

∑

s≤t

∆s =
∑

s<T

∆s and lim
t↓T

∑

s≤t

∆s =
∑

s≤T

∆s.

3. (a) Denote by Tn ∼ Gamma(n, λX) and T ′
m ∼ Gamma(m, λY ) the jump times of

X and Y . These are independent continuously distributed random variables
and so P(Tn = T ′

m) = 0. Therefore, (by subadditivity)

P({Tn, n ≥ 1} ∩ {T ′
m, m ≥ 1} 6= ∅) ≤

∑

m≥1

∑

n≥1

P(Tn = T ′
m) = 0.

(b) Denote the Poisson arrival processes of jumps by RX and RY . Then RX +RY

satisfies the four properties of the Poisson process, since (i) RX
tj
−RX

tj−1
+RY

tj
−

RY
tj−1

, j = 1, . . . , n, are independent as sums of independent random variables,
(ii)/(iv) their distributions are Poi(λX(tj − tj−1) + λY (tj − tj−1) as sum of
two independent Poisson variables only depending on tj − tj−1, (iii) paths are
right-continuous with left limits as sums of two such paths.

(c) We condition on whether T1 < T ′
1 or T ′

1 < T1 and get for the first jump size
JD

1 of D

P(JD
1 ∈ A) = P(T1 < T ′

1)P(JX
1 ∈ A|T1 < T ′

1) + P(T1 > T ′
1)P(−JY

1 ∈ A)

=
λX

λX + λY

P(JX
1 ∈ A) +

λY

λX + λY

P(−JY
1 ∈ A).

This is a mixture of the jump size distributions of X and Y . We deduce that
the density is

hD(x) =
λX

λX + λY

hX(x) +
λY

λX + λY

hY (−x) =

{

λX

λX+λY
hX(x) x > 0

λY

λX+λY
hY (−x) x < 0

4. (a) This is bookwork, see Lecture 3, Example 18. The intensity function is
λXhX(x), x > 0.

(b) By the previous part, we have two Poisson point process ∆X and ∆Y in (0,∞).
It is easy to see that ∆−Y = −∆Y is a Poisson point process in (−∞, 0) with
intensity function λY hY (−x), x < 0. It is easy to see that the associated
Poisson counting measures on [0,∞) × (0,∞) and [0,∞) × (−∞, 0) together
form a Poisson counting measure on [0,∞) × R \ {0} via

N(A × B) = NX(A × (B ∩ (0,∞))) + NY (A × (B ∩ (−∞, 0))).

The intensity function is λXhX(x), x > 0 and λY hY (−x), x < 0.

(c) Since (∆Dt)t≥0 is a Poisson point process with integrable intensity function
∫∞

0
λXhX(x)dx +

∫ 0

−∞
λY hY (−x)dx = λX + λY < ∞, and Dt =

∑

s≤t ∆Ds, D
is a compound Poisson process.
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(d) For every real-valued compound Poisson process C we can define the pro-
cesses X and Y of positive and negative jumps. Since the associated processes
(∆Xt)t≥0 and (∆Yt)t≥0 inherit the properties of Poisson point processes (via
their Poisson counting measures), this provides the required decomposition
into two independent increasing compound Poisson processes. It is unique
because any other decomposition must have more jumps, which must happen
at the same time and cancel each other, but by (a), this is incompatible with
independence.


