Appendix B

Solutions

B. 1 Infinite divisibility and limits of random walks

1. (a) Recall that for independent $A_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ and $A_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$ we have $A_{1}+A_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)$. A quick proof can be given using moment generating functions. The Gamma distribution has moment generating function

$$
\mathbb{E}(\exp \{\gamma A\})=\int_{0}^{\infty} e^{\gamma x} \frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x} d x=\frac{\beta^{\alpha}}{(\beta-\gamma)^{\alpha}}, \quad \gamma<\beta
$$

We see that

$$
\mathbb{E}\left(\exp \left\{\gamma\left(A_{1}+A_{2}\right)\right\}\right)=\mathbb{E}\left(\exp \left\{\gamma A_{1}\right\}\right) \mathbb{E}\left(\exp \left\{\gamma A_{2}\right\}\right)=\frac{\beta^{\alpha_{1}+\alpha_{2}}}{(\beta-\gamma)^{\alpha_{1}+\alpha_{2}}}
$$

and recognise the moment generating function of the $\operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)$ distribution. By the Uniqueness Theorem for moment generating functions, $A_{1}+A_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)$.
If we now choose $Y_{n, 1}, \ldots, Y_{n, n} \sim \operatorname{Gamma}(\alpha / n, \beta)$ independent, we obtain, by induction in n, that $Y_{n, 1}+\ldots+Y_{n, n} \sim \operatorname{Gamma}(\alpha, \beta)$. Since this holds for all $n \geq 1$, a random variable $Y \sim \operatorname{Gamma}(\alpha, \beta)$ has an infinitely divisible distribution.
(b) First calculate for $B_{1}, B_{2} \sim \operatorname{geom}(p)$ independent that

$$
\begin{aligned}
\mathbb{P}\left(B_{1}+B_{2}=n\right) & =\sum_{k=0}^{n} \mathbb{P}\left(B_{1}=k, B_{2}=n-k\right)=\sum_{k=0}^{n} p^{k}(1-p) p^{n-k}(1-p) \\
& =(n+1) p^{n}(1-p)^{2}
\end{aligned}
$$

and, e.g. by induction, for $A_{m}=B_{1}+\ldots+B_{m}=A_{m-1}+B_{m}$ a negative binomial distribution. Alternatively, consider independent Bernoulli trials until the m th success, then $\left\{A_{m}=n\right\}$ means there have been n failures and m successes, the $m-1$ first successes chosen from the first $n+m-1$ trials, and we get

$$
\begin{aligned}
\mathbb{P}\left(A_{m}=n\right) & =\binom{n+m-1}{m-1} p^{n}(1-p)^{m}=\frac{(n+m-1)!}{(m-1)!n!} p^{n}(1-p)^{m} \\
& =\frac{\Gamma(n+m)}{\Gamma(m) n!} p^{n}(1-p)^{m}
\end{aligned}
$$

This formula makes sense for $m \in(0, \infty)$, and we refer to this probability mass function as $\mathrm{NB}(m, p)$. Then we calculate the probability generating function for $A \sim \mathrm{NB}(m, p)$

$$
\mathbb{E}\left(s^{A}\right)=\sum_{n \geq 0} \frac{\Gamma(n+m)}{\Gamma(m) n!}(s p)^{n}(1-p)^{m}=\frac{(1-p)^{m}}{(1-s p)^{m}}, \quad s \in[0,1]
$$

and if $B \sim \mathrm{NB}(r, p)$ is independent, we obtain

$$
\mathbb{E}\left(s^{A+B}\right)=\frac{(1-p)^{m+r}}{(1-s p)^{m+r}},
$$

the probability generating function of the $\mathrm{NB}(m+r, p)$ distribution, so we conclude by the Uniqueness Theorem for probability generating functions that $A+B \sim \mathrm{NB}(m+r, p)$.
If we now choose $Y_{n, 1}, \ldots, Y_{n, n} \sim \mathrm{NB}(1 / n, p)$ independent, we obtain, by induction in n, that $Y_{n, 1}+\ldots+Y_{n, n} \sim \mathrm{NB}(1, p)=\operatorname{geom}(p)$. Since this holds for all $n \geq 1$, a random variable $Y \sim \operatorname{geom}(p)$ has an infinitely divisible distribution.
(c)* Assume that a random variable $U \sim \operatorname{Unif}(0,1)$ can be written as $U=Y_{1}+Y_{2}$ for some independent and identically distributed Y_{1} and Y_{2}. Then for $x \in[0,1]$,

$$
1-x=\mathbb{P}(U \geq x) \geq \mathbb{P}\left(Y_{1} \geq x / 2, Y_{2} \geq x / 2\right) \Rightarrow \mathbb{P}\left(Y_{1} \geq x / 2\right) \leq \sqrt{1-x}
$$

and

$$
x=\mathbb{P}(U \leq x) \geq \mathbb{P}\left(Y_{1} \leq x / 2\right)^{2} \Rightarrow \mathbb{P}\left(Y_{1} \leq x / 2\right) \leq \sqrt{x}
$$

For $x=1$ and $x=0$, respectively, we deduce $\mathbb{P}\left(Y_{1} \geq 1 / 2\right)=0=\mathbb{P}\left(Y_{1} \leq 0\right)$. Now for $x \in(0,1 / 2)$

$$
x=\mathbb{P}(U \leq x) \leq \mathbb{P}\left(Y_{1} \leq x, Y_{2} \leq x\right) \Longleftrightarrow \mathbb{P}\left(Y_{1} \leq x\right) \geq \sqrt{x}
$$

and the inequality on the left is an equality if and only if the inequality on the right is an equality. Similarly,

$$
x=\mathbb{P}(U \geq 1-x) \leq \mathbb{P}\left(Y_{1} \geq 1 / 2-x\right)^{2} \Longleftrightarrow \mathbb{P}\left(Y_{1} \geq 1 / 2-x\right) \geq \sqrt{x}
$$

For $x=1 / 4$, we get $\mathbb{P}\left(Y_{1} \leq 1 / 4\right) \geq 1 / 2$ and $\mathbb{P}\left(Y_{1} \geq 1 / 4\right) \geq 1 / 2$. If both inequalities were equalities, we would deduce from the left-hand equalities that $\mathbb{P}\left(Y_{1} \in(1 / 8,3 / 8)\right)=0$ and this is incompatible with $\mathbb{P}(U \in(1 / 4,3 / 8))>0$, so the assumption that $U=Y_{1}+Y_{2}$ must have been wrong.
2. (a) Stationarity of increments means $X_{t}-X_{s} \sim X_{t-s}$, so we check infinite divisibility of X_{t-s}. Note

$$
X_{t-s}=\sum_{j=1}^{m} Y_{j}^{(m)}, \quad \text { where } Y_{j}^{(m)}=X_{j(t-s) / m}-X_{(j-1)(t-s) / m}, j=1, \ldots, m
$$

By independence of increments, $Y_{1}^{(m)}, \ldots, Y_{m}^{(m)}$ are independent. By stationarity of increments, $Y_{j}^{(m)} \sim X_{(t-s) / m}$ for all $j=1, \ldots, m$. Since this holds for all $m \geq 1$, this proves infinite divisibility of the distribution of X_{t-s}.
(b) (i) Independence of increments. By the independence of increments of X and Y and by the independence of X and Y we have for all $0 \leq t_{0}<t_{1}<$ $\ldots<t_{n}$ that the following random variables are all independent:

$$
X_{t_{0}}, X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}} \quad \text { and } \quad Y_{t_{0}}, Y_{t_{1}}-Y_{t_{0}}, \ldots, Y_{t_{n}}-Y_{t_{n-1}}
$$

Since functions of independent random variables are independent, we can add take linear combinations and deduce independence of

$$
a X_{t_{0}}+b Y_{t_{0}}, a\left(X_{t_{1}}-X_{t_{0}}\right)+b\left(Y_{t_{1}}-Y_{t_{0}}\right), \ldots, a\left(X_{t_{n}}-X_{t_{n-1}}\right)+b\left(Y_{t_{n}}-Y_{t_{n-1}}\right)
$$

(ii) Stationarity of increments. We have that $X_{t+s}-X_{t}$ and $Y_{t+s}-Y_{t}$ are independent, and also that X_{s} and Y_{s} are independent. By the stationarity of increments we have that $X_{t+s}-X_{t} \sim X_{s}$ and $Y_{t+s}-Y_{t} \sim Y_{s}$ and so the joint distributions of $\left(X_{t+s}-X_{t}, Y_{t+s}-Y_{t}\right)$ is the same as the joint distribution of $\left(X_{s}, Y_{s}\right)$. If we apply the same linear function to the random vectors, these will also have the same distribution, i.e.

$$
a\left(X_{t+s}-X_{t}\right)+b\left(Y_{t+s}-Y_{t}\right) \sim a X_{s}+b Y_{s}
$$

(iii) Right-continuity and left limits of paths. Linear combinations of such functions still have these properties.
(c) We calculated the moment generating function of the $\operatorname{Gamma}(\alpha, \beta)$ distribution in Exercise 1 as

$$
\mathbb{E}(\exp \{\gamma A\})=\int_{0}^{\infty} e^{\gamma x} \frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x} d x=\frac{\beta^{\alpha}}{(\beta-\gamma)^{\alpha}}, \quad \gamma<\beta
$$

If $C_{1} \sim D_{1} \sim \operatorname{Gamma}(\alpha, \sqrt{2 \mu})$, then $C_{s} \sim D_{s} \sim \operatorname{Gamma}(\alpha s, \sqrt{2 \mu})$. Hence

$$
\mathbb{E}\left(e^{\gamma\left(C_{s}-D_{s}\right.}\right)=\mathbb{E}\left(e^{\gamma C_{s}}\right) \mathbb{E}\left(e^{-\gamma D_{s}}\right)=\frac{\sqrt{2 \mu}^{\alpha s}}{(\sqrt{2 \mu}-\gamma)^{\alpha s}} \frac{\sqrt{2 \mu}{ }^{\alpha s}}{(\sqrt{2 \mu}+\gamma)^{\alpha s}}=\left(\frac{\mu}{\mu-\frac{1}{2} \gamma^{2}}\right)^{\alpha s}
$$

for all $-\sqrt{2 \mu}<\gamma<\sqrt{2 \mu}$.
3. (a) Let $W_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$ with $n p_{n} \rightarrow \lambda$, then $W_{n} \rightarrow \operatorname{Poi}(\lambda)$ in distribution as $n \rightarrow \infty$. To prove this, check

$$
\mathbb{E}\left(s^{W_{n}}\right)=\sum_{k=0}^{n} s^{k}\binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\left(1-\frac{n p_{n}(1-s)}{n}\right)^{n} \rightarrow e^{-\lambda(1-s)}
$$

and this is the probability generating function of $\operatorname{Poi}(\lambda)$. By the Uniqueness Theorem and by the Continuity Theorem for probability generating functions, W_{n} converges in distribution to a $\operatorname{Poi}(\lambda)$ distribution.
(b) Since p_{N} is small, the Poisson limit theorem is appropriate, and since N is large, it will give a reasonably good approximation. As parameter of the Poisson distribution, $N p_{N}$ is appropriate, since $N p_{N} \rightarrow \lambda$ in the limit theorem for a $\operatorname{Poi}(\lambda)$ limit.
(c) Denote by B_{1}, \ldots, B_{N} the Bernoulli random variables so that $B_{j}=1$ if policy holder j makes a claim. Then $S_{N}=B_{1}+\ldots+B_{N} \sim \operatorname{Binomial}\left(N, p_{N}\right)$. We calculate the moment generating function

$$
\begin{aligned}
\mathbb{E}\left(\exp \left\{\gamma T_{N}\right\}\right) & =\mathbb{E}\left(\exp \left\{\gamma \sum_{j=1}^{S_{N}} A_{j}\right\}\right) \\
& =\sum_{k=0}^{N} \mathbb{E}\left(\exp \left\{\gamma \sum_{j=1}^{k} A_{j}\right\}\right)\binom{N}{k} p_{N}^{k}\left(1-p_{N}\right)^{N-k} \\
& =\sum_{k=0}^{N}\left(\mathbb{E}\left(e^{\gamma A_{1}}\right)\right)^{k}\binom{N}{k} p_{N}^{k}\left(1-p_{N}\right)^{N-k} \\
& =\left(1-p_{N}+p_{N} \mathbb{E}\left(e^{\gamma A_{1}}\right)\right)^{N},
\end{aligned}
$$

by the binomial theorem, for all $\gamma \in \mathbb{R}$ for which $\mathbb{E}\left(e^{\gamma A_{1}}\right)<\infty$.
(d) Consider the moment generating functions

$$
\mathbb{E}\left(\exp \left\{\gamma T_{N}\right\}\right)=\left(1-\frac{N p_{N}\left(1-\mathbb{E}\left(e^{\gamma A_{1}}\right)\right)}{N}\right)^{N} \rightarrow \exp \left\{-\lambda\left(1-\mathbb{E}\left(e^{\gamma A_{1}}\right)\right)\right\}
$$

and this is the moment generating function of the compound Poisson distribution, which we calculate as follows

$$
\begin{aligned}
\mathbb{E}\left(\exp \left\{\gamma \sum_{j=1}^{S_{\infty}} A_{j}\right\}\right) & =\sum_{k=0}^{\infty} \mathbb{E}\left(\exp \left\{\gamma \sum_{j=1}^{k} A_{j}\right\}\right) \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& =\sum_{k=0}^{\infty}\left(\mathbb{E}\left(\exp \left\{\gamma A_{1}\right\}\right)\right)^{k} \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& =e^{-\lambda} \exp \left\{\lambda \mathbb{E}\left(e^{\gamma A_{1}}\right)\right\}=\exp \left\{-\lambda\left(1-\mathbb{E}\left(e^{\gamma A_{1}}\right)\right)\right\}
\end{aligned}
$$

4. (a) (i) Note that

$$
\frac{\sum_{k=1}^{n} A_{k}-n \mathbb{E}\left(A_{1}\right)}{\sqrt{n \operatorname{Var}\left(A_{1}\right)}}=\sum_{k=1}^{n} \frac{A_{k}-\mu}{\sigma \sqrt{n}}=\sum_{k=1}^{n} Y_{n, k}=V_{n} .
$$

Thus, the Central Limit Theorem in terms of V_{n} states $V_{n} \rightarrow \operatorname{Normal}(0,1)$ in distribution as $n \rightarrow \infty$.
(ii)* Markov's inequality $\mathbb{P}(|X|>y) \leq \mathbb{E}\left(X^{2}\right) / y^{2}$ yields

$$
\begin{aligned}
\mathbb{P}\left(\left|A_{1}-\mu\right|>\sigma x \sqrt{n}\right) & =\mathbb{P}\left(\left|A_{1}-\mu\right| 1_{\left\{\left|A_{1}-\mu\right| \geq \sigma x \sqrt{n}\right\}}>\sigma x \sqrt{n}\right) \\
& \leq \frac{\mathbb{E}\left(\left|A_{1}-\mu\right|^{2} 1_{\left\{\left|A_{1}-\mu\right| \geq \sigma x \sqrt{n}\right\}}\right)}{\sigma^{2} x^{2} n} .
\end{aligned}
$$

Now note that, as $n \rightarrow \infty$,

$$
\mathbb{E}\left(\left|A_{1}-\mu\right|^{2} 1_{\left\{\left|A_{1}-\mu\right|<\sigma x \sqrt{n}\right\}}\right) \rightarrow \mathbb{E}\left(\left|A_{1}-\mu\right|^{2}\right)=\sigma^{2}
$$

(by monotone convergence) and so

$$
\begin{aligned}
\gamma_{n}(x) & :=\frac{1}{\sigma^{2} x^{2}} \mathbb{E}\left(\left|A_{1}-\mu\right|^{2} 1_{\left\{\left|A_{1}-\mu\right| \geq \sigma x \sqrt{n}\right\}}\right) \\
& =\frac{1}{\sigma^{2} x^{2}}\left(\sigma^{2}-\mathbb{E}\left(\left|A_{1}-\mu\right|^{2} 1_{\left\{\left|A_{1}-\mu\right|<\sigma x \sqrt{n}\right\}}\right)\right) \rightarrow 0
\end{aligned}
$$

(iii) For all $x>0$, calculate using (ii)

$$
\begin{aligned}
\mathbb{P}\left(M_{n} \leq x\right) & =\mathbb{P}\left(\left|Y_{n, 1}\right| \leq x, \ldots,\left|Y_{n, n}\right| \leq x\right)=\left(\mathbb{P}\left(\left|Y_{n, 1}\right| \leq x\right)\right)^{n} \\
& \geq\left(1-\frac{\gamma_{n}(x)}{n}\right)^{n} \rightarrow e^{0}=1
\end{aligned}
$$

This implies that $\mathbb{P}\left(\left|M_{n}\right|>\varepsilon\right)=1-\mathbb{P}\left(\left|M_{n}\right| \leq \varepsilon\right) \rightarrow 0$ for all $\varepsilon>0$, so $M_{n} \rightarrow 0$ in probability.
(b) (i) At stage n there are r red balls and $s+n-1$ black balls in the urn. So

$$
Y_{n, k} \sim \operatorname{Bernoulli}\left(\frac{r}{r+s+n-1}\right) \quad \Rightarrow \quad W_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)
$$

where $p_{n}=r /(r+s+n-1)$. Note that $n p_{n} \rightarrow r$, so that the Poisson limit theorem yields $W_{n} \rightarrow \operatorname{Poi}(r)$.
(ii) Clearly $\mathbb{P}\left(Y_{n, k}=0\right)=1-p_{n}=1-r /(r+s+n-1) \rightarrow 1$, as $n \rightarrow \infty$.
(iii) Now, as $n \rightarrow \infty$,
$\mathbb{P}\left(M_{n}=0\right)=\mathbb{P}\left(Y_{n, 1}=0, \ldots, Y_{n, n}=0\right)=\left(1-p_{n}\right)^{n}=\left(1-\frac{n p_{n}}{n}\right)^{n} \rightarrow e^{-r}$,
If $M_{n} \rightarrow 0$, then $\mathbb{P}\left(\left|M_{n}\right|>\varepsilon\right)=1-\mathbb{P}\left(M_{n}=0\right) \rightarrow 0$ for all $0<\varepsilon<1$, and this is incompatible with the limit above. So, $M_{n} \nrightarrow 0$ in probability.
(c)* (i) Define $S_{k}^{(n)}=Y_{n, 1}+\ldots+Y_{n, k}, k \geq 0, n \geq 1$.

Donsker's theorem says in the setting of (a), where $V_{n}=S_{n}^{(n)}$, that $S_{[n t]}^{(n)} \rightarrow$ B_{t} locally uniformly in distribution for a Brownian motion $\left(B_{t}\right)_{t \geq 0}$.
The process version of the Poisson limit theorem says in the setting of (b), where $W_{n}=S_{n}^{(n)}$, that $S_{[n t]}^{(n)} \rightarrow N_{t}$ in the Skorohod sense in distribution for a Poisson process $\left(N_{t}\right)_{0 \leq t \leq 1}$ with rate r.
(ii) Clearly, the size of the biggest jump of Brownian motion is 0 , and we have $M_{n} \rightarrow 0$ in probability, hence also in distribution.
The number of jumps of $\left(N_{t}\right)_{0 \leq t \leq 1}$ is Poisson distributed with parameter r. The size J of the biggest jump of $\left(N_{t}\right)_{0 \leq t \leq 1}$ is 1 if there is a jump, with probability $\mathbb{P}(J=1)=1-e^{-r}$, and $\mathbb{P}(J=0)=e^{-r}$ is the probability that there is no jump. This is the limit distribution that we wish to establish. We have shown that

$$
\mathbb{P}\left(M_{n}=0\right) \rightarrow e^{-r}=\mathbb{P}(J=0)
$$

and this implies $\mathbb{P}\left(M_{n}=1\right)=1-\mathbb{P}\left(M_{n}=0\right) \rightarrow 1-e^{-r}=\mathbb{P}(J=1)$, as required.

