Appendix B

Solutions

B.1 Infinite divisibility and limits of random walks

1.

(a)

Recall that for independent A; ~ Gamma(ay, 3) and Ay ~ Gamma(ay, 3) we
have A; + Ay ~ Gamma(a; + a9, 5). A quick proof can be given using mo-
ment generating functions. The Gamma distribution has moment generating
function

B 00 wﬁaxa—l e B ﬁa
E(exp{yA}) —/0 67 We B dr = W, Y < 6
We see that
a1+
Blexp{(41 + 40)}) = Elexp{yi) Blexp{rda}) = 52

and recognise the moment generating function of the Gamma(a; + s, 3)
distribution. By the Uniqueness Theorem for moment generating functions,
Ay + Ay ~ Gamma(ay + ag, ).

If we now choose Y,,1,...,Y, , ~ Gamma(a/n, §) independent, we obtain, by
induction in n, that Y,; + ... + Y, ,, ~ Gamma(a, $). Since this holds for
all n > 1, a random variable Y ~ Gamma(«, ) has an infinitely divisible
distribution.

First calculate for By, By ~ geom(p) independent that
P(Bi+By=n) = » P(Bi=kBy=n—k)=> pf(l—pp " (1-p)
k=0 k=0

= (n+1)p"(1-p)
and, e.g. by induction, for A,, = By + ...+ B,, = A,._1 + B,, a negative
binomial distribution. Alternatively, consider independent Bernoulli trials un-
til the mth success, then {A,, = n} means there have been n failures and m
successes, the m — 1 first successes chosen from the first n +m — 1 trials, and
we get

P(Am =n) = (n ;ﬂz; l)p"(l —p)" = %ﬂl(l -p)"
- 7F§?W;Z)p"(l—p)m-
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This formula makes sense for m € (0, 00), and we refer to this probability mass
function as NB(m, p). Then we calculate the probability generating function
for A ~ NB(m,p)

5 = 3 e S O

and if B ~ NB(r,p) is independent, we obtain

E($A+B) _ (1 - p)m+r ’
(1 — sp)mr

the probability generating function of the NB(m + r,p) distribution, so we
conclude by the Uniqueness Theorem for probability generating functions that
A+ B~ NB(m+r,p).
If we now choose Y,,1,...,Y,,, ~ NB(1/n,p) independent, we obtain, by in-
duction in n, that Y, 1 + ... +Y,,, ~ NB(1,p) = geom(p). Since this holds
for all n > 1, a random variable ¥ ~ geom(p) has an infinitely divisible
distribution.

Assume that a random variable U ~ Unif(0, 1) can be written as U = Y] + Y5
for some independent and identically distributed Y; and Y. Then for = € [0, 1],

l—z=PU>2)>PY; >22/2,Y, > 2/2) = P(Y1 > 2/2) <V1-x
and
r=PU <) >P(Y; <2/2)?%=P(Y; <1/2) <.

For x = 1 and = = 0, respectively, we deduce P(Y; > 1/2) =0 = P(Y; < 0).
Now for z € (0,1/2)

t=PU<z)<PM<z,Y,<z) < PYi1<z)>Vx

and the inequality on the left is an equality if and only if the inequality on the
right is an equality. Similarly,

r=PU>1-2)<PY1>1/2-2) <= P(Y1>1/2—12)>Vz

For x = 1/4, we get P(Y; < 1/4) > 1/2 and P(Y; > 1/4) > 1/2. If both
inequalities were equalities, we would deduce from the left-hand equalities that
P(Y; € (1/8,3/8)) = 0 and this is incompatible with P(U € (1/4,3/8)) > 0,
so the assumption that U = Y; 4+ Y5 must have been wrong.

Stationarity of increments means X; — X, ~ X;_,, so we check infinite divisi-
bility of X;_,. Note
_ (m) (m) _ o
X5 = ZYJ ; where Y = X5 /m — X(G-1(-s)/m> J =1,...,m.
j=1
By independence of increments, Yl(m), cee Yn(@m) are independent. By station-
arity of increments, Yj(m) ~ X(—sy/m forall j =1,...,m. Since this holds for

all m > 1, this proves infinite divisibility of the distribution of X;_,.
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(b)

(c)

(i) Independence of increments. By the independence of increments of X and
Y and by the independence of X and Y we have for all 0 < tg < t; <
... < t, that the following random variables are all independent:

and }/;07}/;1_}/;07“‘7}/;71_}/;

n—1

KXig, Xty — Xigy oo, X, — Xt

n—1

Since functions of independent random variables are independent, we can
add take linear combinations and deduce independence of

aXto + bY;m a(th _Xto) + b(Y;fl _Y;o)a cee a(th _thﬂ) + b(Y;fn _}/;nfl)'

(ii) Stationarity of increments. We have that X, — X; and Y, s — Y; are
independent, and also that X, and Y; are independent. By the stationarity
of increments we have that X;,, — X; ~ X, and Y;,, — Y; ~ Y} and so
the joint distributions of (X;ys — Xy, Yiis — Y;) is the same as the joint
distribution of (X, Y;). If we apply the same linear function to the random
vectors, these will also have the same distribution, i.e.

a(Xt+s - Xt) + b(}/;f-i-s - K) ~ CLXS + b}/s
(iii) Right-continuity and left limits of paths. Linear combinations of such

functions still have these properties.

We calculated the moment generating function of the Gamma(c, 3) distribu-
tion in Exercise 1 as

o) a .a—1 [e}

If ¢y ~ Dy ~ Gamma(a, v/2p), then Cg ~ Dg ~ Gamma(as, 1/2u). Hence

Y(Cs—Ds\ _ vCs —yDs\ _ \/ﬂas \/ﬂw _ H -
R i e il e )

for all —2u < v < +/2u.

Let W,, ~ Binomial(n, p,) with np, — A, then W,, — Poi(A) in distribution
as n — 0o. To prove this, check

S S e )

n
k=0

and this is the probability generating function of Poi(\). By the Uniqueness
Theorem and by the Continuity Theorem for probability generating functions,
W, converges in distribution to a Poi(\) distribution.

Since py is small, the Poisson limit theorem is appropriate, and since N is
large, it will give a reasonably good approximation. As parameter of the
Poisson distribution, Npy is appropriate, since Npy — A in the limit theorem
for a Poi(\) limit.
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(c) Denote by By, ..., By the Bernoulli random variables so that B; = 1 if policy
holder j makes a claim. Then Sy = By + ...+ By ~ Binomial(N,py). We
calculate the moment generating function

SN
E(exp{yTy}) = E (eXp {VZA })

= goE(eXp{v; g}>< ) (1= pa)NE

N
k(N _
= > (E(e™)) <k pr(1—=pn)N "

k=
= (1 —px +pyE(E)Y,

o

by the binomial theorem, for all ¥ € R for which E(e?1) < co.

(d) Consider the moment generating functions

e vh) = (1- BTN g aa - me),

and this is the moment generating function of the compound Poisson distri-
bution, which we calculate as follows

) - Bl

0 k

= > Elew A a

= e exp {AE(")} = exp {-A(1 —E(e™))} .

4. (a) (i) Note that

3

> iy Ax — nE(Ay) zn: A —p
nVar(A;)

Thus, the Central Limit Theorem in terms of V}, states V,, — Normal(0, 1)
in distribution as n — oo.

(ii)* Markov’s inequality P(|X| > y) < E(X?)/y? yields

P(|Ar — p| > ozvn) = P(lA1 — pllga, - pzoeymy > 0TVn)

IE(|‘Al :U“| 1{|A1 u|>ax\/_})

<
o2x2n

Now note that, as n — oo,

E (|A1 — 10, —pj<onviy) — E(JAL — pl?) =
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(by monotone convergence) and so

1
VH(I) = 2 QE(|A1 _:U“|21{|A1—,u|20x\/ﬁ})
o°“x
1

= =53 (0 —E( A = 1P lgapcorym)) = 0.

(iii) For all z > 0, calculate using (ii)

P(M, <z) = P(|Yoi| <z,...|[Yon| <z) = (P(|Yo| < 2))"
> <1—%(x)) — e’ =1.
n

This implies that P(|M,| > ¢) =1 —-P(|M,| <¢e) — 0 for all € > 0, so
M, — 0 in probability.

(b) (i) At stage n there are r red balls and s + n — 1 black balls in the urn. So

T

Y, ~ Bernoulli [ ———
’ r+s+n-—1

) = W, ~ Binomial (n,p,),

where p, = r/(r +s+n — 1). Note that np, — r, so that the Poisson
limit theorem yields W,, — Poi(r).
(ii) Clearly P(Y,p=0)=1—p,=1—7r/(r+s+n—1) — 1, as n — oo.
(iii) Now, as n — oo,

P(My = 0) = P(Yi1 = 0,0, Yo = 0) = (L=pa)" = (1= 22)" — e,
If M,, — 0, then P(|M,| >¢)=1-P(M,, =0) - 0forall0 <e <1, and
this is incompatible with the limit above. So, M,, /4 0 in probability.

(¢)* (i) Define S]i") =Y+ . +Y, k>0,n>1
Donsker’s theorem says in the setting of (a), where V,, = S5 that S
B, locally uniformly in distribution for a Brownian motion (B;);>o.
The process version of the Poisson limit theorem says in the setting of (b),

where W,, = S that S[(:t)} — N, in the Skorohod sense in distribution
for a Poisson process (Ny)o<i<1 with rate 7.

(n)
nt] —

(ii) Clearly, the size of the biggest jump of Brownian motion is 0, and we have
M, — 0 in probability, hence also in distribution.
The number of jumps of (Ny)o<i<1 is Poisson distributed with parameter
r. The size J of the biggest jump of (N;)o<i<1 is 1 if there is a jump, with
probability P(J = 1) = 1—e™", and P(J = 0) = e " is the probability that
there is no jump. This is the limit distribution that we wish to establish.
We have shown that

P(M, =0) — e " =P(J = 0)

and this implies P(M,, =1) =1-P(M,, =0) - 1—e"=P(J =1), as
required.



