
Appendix B

Solutions

B.1 Infinite divisibility and limits of random walks

1. (a) Recall that for independent A1 ∼ Gamma(α1, β) and A2 ∼ Gamma(α2, β) we
have A1 + A2 ∼ Gamma(α1 + α2, β). A quick proof can be given using mo-
ment generating functions. The Gamma distribution has moment generating
function

E(exp{γA}) =

∫ ∞

0

eγx βαxα−1

Γ(α)
e−βxdx =

βα

(β − γ)α
, γ < β.

We see that

E(exp{γ(A1 + A2)}) = E(exp{γA1})E(exp{γA2}) =
βα1+α2

(β − γ)α1+α2

and recognise the moment generating function of the Gamma(α1 + α2, β)
distribution. By the Uniqueness Theorem for moment generating functions,
A1 + A2 ∼ Gamma(α1 + α2, β).

If we now choose Yn,1, . . . , Yn,n ∼ Gamma(α/n, β) independent, we obtain, by
induction in n, that Yn,1 + . . . + Yn,n ∼ Gamma(α, β). Since this holds for
all n ≥ 1, a random variable Y ∼ Gamma(α, β) has an infinitely divisible
distribution.

(b) First calculate for B1, B2 ∼ geom(p) independent that

P(B1 + B2 = n) =

n
∑

k=0

P(B1 = k, B2 = n − k) =

n
∑

k=0

pk(1 − p)pn−k(1 − p)

= (n + 1)pn(1 − p)2,

and, e.g. by induction, for Am = B1 + . . . + Bm = Am−1 + Bm a negative
binomial distribution. Alternatively, consider independent Bernoulli trials un-
til the mth success, then {Am = n} means there have been n failures and m
successes, the m− 1 first successes chosen from the first n + m− 1 trials, and
we get

P(Am = n) =

(

n + m − 1

m − 1

)

pn(1 − p)m =
(n + m − 1)!

(m − 1)!n!
pn(1 − p)m

=
Γ(n + m)

Γ(m)n!
pn(1 − p)m.
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This formula makes sense for m ∈ (0,∞), and we refer to this probability mass
function as NB(m, p). Then we calculate the probability generating function
for A ∼ NB(m, p)

E(sA) =
∑

n≥0

Γ(n + m)

Γ(m)n!
(sp)n(1 − p)m =

(1 − p)m

(1 − sp)m
, s ∈ [0, 1],

and if B ∼ NB(r, p) is independent, we obtain

E(sA+B) =
(1 − p)m+r

(1 − sp)m+r
,

the probability generating function of the NB(m + r, p) distribution, so we
conclude by the Uniqueness Theorem for probability generating functions that
A + B ∼ NB(m + r, p).

If we now choose Yn,1, . . . , Yn,n ∼ NB(1/n, p) independent, we obtain, by in-
duction in n, that Yn,1 + . . . + Yn,n ∼ NB(1, p) = geom(p). Since this holds
for all n ≥ 1, a random variable Y ∼ geom(p) has an infinitely divisible
distribution.

(c)∗ Assume that a random variable U ∼ Unif(0, 1) can be written as U = Y1 + Y2

for some independent and identically distributed Y1 and Y2. Then for x ∈ [0, 1],

1 − x = P(U ≥ x) ≥ P(Y1 ≥ x/2, Y2 ≥ x/2) ⇒ P(Y1 ≥ x/2) ≤
√

1 − x

and

x = P(U ≤ x) ≥ P(Y1 ≤ x/2)2 ⇒ P(Y1 ≤ x/2) ≤
√

x.

For x = 1 and x = 0, respectively, we deduce P(Y1 ≥ 1/2) = 0 = P(Y1 ≤ 0).
Now for x ∈ (0, 1/2)

x = P(U ≤ x) ≤ P(Y1 ≤ x, Y2 ≤ x) ⇐⇒ P(Y1 ≤ x) ≥
√

x

and the inequality on the left is an equality if and only if the inequality on the
right is an equality. Similarly,

x = P(U ≥ 1 − x) ≤ P(Y1 ≥ 1/2 − x)2 ⇐⇒ P(Y1 ≥ 1/2 − x) ≥
√

x

For x = 1/4, we get P(Y1 ≤ 1/4) ≥ 1/2 and P(Y1 ≥ 1/4) ≥ 1/2. If both
inequalities were equalities, we would deduce from the left-hand equalities that
P(Y1 ∈ (1/8, 3/8)) = 0 and this is incompatible with P(U ∈ (1/4, 3/8)) > 0,
so the assumption that U = Y1 + Y2 must have been wrong.

2. (a) Stationarity of increments means Xt − Xs ∼ Xt−s, so we check infinite divisi-
bility of Xt−s. Note

Xt−s =
m
∑

j=1

Y
(m)
j , where Y

(m)
j = Xj(t−s)/m − X(j−1)(t−s)/m, j = 1, . . . , m.

By independence of increments, Y
(m)
1 , . . . , Y

(m)
m are independent. By station-

arity of increments, Y
(m)
j ∼ X(t−s)/m for all j = 1, . . . , m. Since this holds for

all m ≥ 1, this proves infinite divisibility of the distribution of Xt−s.
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(b) (i) Independence of increments. By the independence of increments of X and
Y and by the independence of X and Y we have for all 0 ≤ t0 < t1 <
. . . < tn that the following random variables are all independent:

Xt0 , Xt1 − Xt0 , . . . , Xtn − Xtn−1
and Yt0 , Yt1 − Yt0 , . . . , Ytn − Ytn−1

Since functions of independent random variables are independent, we can
add take linear combinations and deduce independence of

aXt0 + bYt0 , a(Xt1−Xt0) + b(Yt1−Yt0), . . . , a(Xtn−Xtn−1
) + b(Ytn−Ytn−1

).

(ii) Stationarity of increments. We have that Xt+s − Xt and Yt+s − Yt are
independent, and also that Xs and Ys are independent. By the stationarity
of increments we have that Xt+s − Xt ∼ Xs and Yt+s − Yt ∼ Ys and so
the joint distributions of (Xt+s − Xt, Yt+s − Yt) is the same as the joint
distribution of (Xs, Ys). If we apply the same linear function to the random
vectors, these will also have the same distribution, i.e.

a(Xt+s − Xt) + b(Yt+s − Yt) ∼ aXs + bYs.

(iii) Right-continuity and left limits of paths. Linear combinations of such
functions still have these properties.

(c) We calculated the moment generating function of the Gamma(α, β) distribu-
tion in Exercise 1 as

E(exp{γA}) =

∫ ∞

0

eγx βαxα−1

Γ(α)
e−βxdx =

βα

(β − γ)α
, γ < β.

If C1 ∼ D1 ∼ Gamma(α,
√

2µ), then Cs ∼ Ds ∼ Gamma(αs,
√

2µ). Hence

E(eγ(Cs−Ds) = E(eγCs)E(e−γDs) =

√
2µ

αs

(
√

2µ − γ)αs

√
2µ

αs

(
√

2µ + γ)αs
=

(

µ

µ − 1
2
γ2

)αs

for all −√
2µ < γ <

√
2µ.

3. (a) Let Wn ∼ Binomial(n, pn) with npn → λ, then Wn → Poi(λ) in distribution
as n → ∞. To prove this, check

E(sWn) =
n
∑

k=0

sk

(

n

k

)

pk
n(1 − pn)n−k =

(

1 − npn(1 − s)

n

)n

→ e−λ(1−s),

and this is the probability generating function of Poi(λ). By the Uniqueness
Theorem and by the Continuity Theorem for probability generating functions,
Wn converges in distribution to a Poi(λ) distribution.

(b) Since pN is small, the Poisson limit theorem is appropriate, and since N is
large, it will give a reasonably good approximation. As parameter of the
Poisson distribution, NpN is appropriate, since NpN → λ in the limit theorem
for a Poi(λ) limit.
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(c) Denote by B1, . . . , BN the Bernoulli random variables so that Bj = 1 if policy
holder j makes a claim. Then SN = B1 + . . . + BN ∼ Binomial(N, pN). We
calculate the moment generating function

E(exp{γTN}) = E

(

exp

{

γ

SN
∑

j=1

Aj

})

=
N
∑

k=0

E

(

exp

{

γ
k
∑

j=1

Aj

})

(

N

k

)

pk
N(1 − pN)N−k

=
N
∑

k=0

(

E
(

eγA1

))k
(

N

k

)

pk
N(1 − pN )N−k

= (1 − pN + pNE(eγA1))N ,

by the binomial theorem, for all γ ∈ R for which E(eγA1) < ∞.

(d) Consider the moment generating functions

E(exp{γTN}) =

(

1 − NpN (1 − E(eγA1))

N

)N

→ exp
{

−λ(1 − E(eγA1))
}

,

and this is the moment generating function of the compound Poisson distri-
bution, which we calculate as follows

E

(

exp

{

γ
S∞
∑

j=1

Aj

})

=
∞
∑

k=0

E

(

exp

{

γ
k
∑

j=1

Aj

})

λk

k!
e−λ

=

∞
∑

k=0

(E (exp {γA1}))k λk

k!
e−λ

= e−λ exp
{

λE(eγA1)
}

= exp
{

−λ(1 − E(eγA1))
}

.

4. (a) (i) Note that

∑n
k=1 Ak − nE(A1)
√

nVar(A1)
=

n
∑

k=1

Ak − µ

σ
√

n
=

n
∑

k=1

Yn,k = Vn.

Thus, the Central Limit Theorem in terms of Vn states Vn → Normal(0, 1)
in distribution as n → ∞.

(ii)∗ Markov’s inequality P(|X| > y) ≤ E(X2)/y2 yields

P(|A1 − µ| > σx
√

n) = P(|A1 − µ|1{|A1−µ|≥σx
√

n} > σx
√

n)

≤
E(|A1 − µ|21{|A1−µ|≥σx

√
n})

σ2x2n
.

Now note that, as n → ∞,

E
(

|A1 − µ|21{|A1−µ|<σx
√

n}
)

→ E(|A1 − µ|2) = σ2,
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(by monotone convergence) and so

γn(x) :=
1

σ2x2
E(|A1 − µ|21{|A1−µ|≥σx

√
n})

=
1

σ2x2

(

σ2 − E(|A1 − µ|21{|A1−µ|<σx
√

n})
)

→ 0.

(iii) For all x > 0, calculate using (ii)

P(Mn ≤ x) = P(|Yn,1| ≤ x, . . . , |Yn,n| ≤ x) = (P(|Yn,1| ≤ x))n

≥
(

1 − γn(x)

n

)n

→ e0 = 1.

This implies that P(|Mn| > ε) = 1 − P(|Mn| ≤ ε) → 0 for all ε > 0, so
Mn → 0 in probability.

(b) (i) At stage n there are r red balls and s + n − 1 black balls in the urn. So

Yn,k ∼ Bernoulli

(

r

r + s + n − 1

)

⇒ Wn ∼ Binomial (n, pn) ,

where pn = r/(r + s + n − 1). Note that npn → r, so that the Poisson
limit theorem yields Wn → Poi(r).

(ii) Clearly P(Yn,k = 0) = 1 − pn = 1 − r/(r + s + n − 1) → 1, as n → ∞.

(iii) Now, as n → ∞,

P(Mn = 0) = P(Yn,1 = 0, . . . , Yn,n = 0) = (1 − pn)
n =

(

1 − npn

n

)n

→ e−r,

If Mn → 0, then P(|Mn| > ε) = 1− P(Mn = 0) → 0 for all 0 < ε < 1, and
this is incompatible with the limit above. So, Mn 6→ 0 in probability.

(c)∗ (i) Define S
(n)
k = Yn,1 + . . . + Yn,k, k ≥ 0, n ≥ 1.

Donsker’s theorem says in the setting of (a), where Vn = S
(n)
n , that S

(n)
[nt] →

Bt locally uniformly in distribution for a Brownian motion (Bt)t≥0.
The process version of the Poisson limit theorem says in the setting of (b),

where Wn = S
(n)
n , that S

(n)
[nt] → Nt in the Skorohod sense in distribution

for a Poisson process (Nt)0≤t≤1 with rate r.

(ii) Clearly, the size of the biggest jump of Brownian motion is 0, and we have
Mn → 0 in probability, hence also in distribution.
The number of jumps of (Nt)0≤t≤1 is Poisson distributed with parameter
r. The size J of the biggest jump of (Nt)0≤t≤1 is 1 if there is a jump, with
probability P(J = 1) = 1−e−r, and P(J = 0) = e−r is the probability that
there is no jump. This is the limit distribution that we wish to establish.
We have shown that

P(Mn = 0) → e−r = P(J = 0)

and this implies P(Mn = 1) = 1 − P(Mn = 0) → 1 − e−r = P(J = 1), as
required.


