A. 4 Simulation

Question A.4.3 is the most relevant on this sheet for MSc MCF students. Since it builds on the others, their statements, particularly A.4.1(e), A.4.2(b)-(c) are also relevant.

1. (a) Let $\left(X_{t}\right)_{t \geq 0}$ be a Gamma process with $X_{t} \sim \operatorname{Gamma}(t, 1)$ for all $t>0$. Consider $A=X_{a}$ and $B=X_{a+b}-X_{a}$ for some $a>0$ and $b>0$. Show that $R=A /(A+B)$ and $S=A+B$ are independent and that $R \sim \operatorname{Beta}(a, b)$, where Gamma and Beta densities are recalled as follows:

$$
f_{S}(s)=\frac{s^{a+b-1} e^{-s}}{\Gamma(a+b)}, s \in(0, \infty), \quad f_{R}(r)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} r^{a-1}(1-r)^{b-1}, r \in(0,1)
$$

Deduce, vice versa, the distribution of $(S R, S(1-R))$ for independent $S \sim$ $\operatorname{Gamma}(c, 1)$ and $R \sim \operatorname{Beta}(c p, c(1-p))$, for some $c>0$ and $p \in(0,1)$.
(b) Let $U \sim \operatorname{Unif}(0,1)$ and $a>0$. Show that $X=U^{1 / a} \sim \operatorname{Beta}(a, 1)$.
(c) Let $U \sim \operatorname{Unif}(0,1)$ and $V \sim \operatorname{Unif}(0,1)$ be independent and $a \in(0,1)$. Calculate for $Y=U^{1 / a}$ and $Z=V^{1 /(1-a)}$

$$
\mathbb{P}\left(\frac{Y}{Y+Z} \leq t, Y+Z \leq 1\right)
$$

and deduce that the conditional distribution of $W=Y /(Y+Z)$ given $Y+Z \leq 1$ is $\operatorname{Beta}(a, 1-a)$. Hint: Write both inequalities as constraints on Z to find the bounds when writing the probability as a double integral.
(d) In the setting of (c), show that the conditional distribution of $T W$ given $Y+Z \leq 1$, for an independent $T \sim \operatorname{Exp}(1)=\operatorname{Gamma}(1,1)$ random variable, is $\operatorname{Gamma}(a, 1)$.
(e) Consider the following procedure due to Johnk. Let $a \in(0,1)$.

1. Generate two independent random numbers $U, V \sim \operatorname{Unif}(0,1)$.
2. Set $Y=U^{1 / a}$ and $Z=V^{1 /(1-a)}$.
3. If $Y+Z \leq 1$ go to 4 ., else go to 1 .
4. Generate an independent $C \sim \operatorname{Unif}(0,1)$ and set $T=-\ln (C)$.
5. Return the number $T Y /(Y+Z)$.

What is this procedure doing? Explain its relevance for simulations.
2. (a) Based on Question A.4.1, explain how to generate a $\operatorname{Beta}(a, b)$ random variable from a sequence of $\operatorname{Unif}(0,1)$ random variables, for any $a>0$ and $b>0$. Hint: Consider $a \in(0,1)$ first and use the additivity of Gamma variables to generate Gamma $(a, 1)$ variables, from which the Beta variable can be constructed.
(b) Set $X_{0}=0$ and generate $X_{1} \sim \operatorname{Gamma}(1,1)$. For $n \geq 0$, having generated $X_{k 2^{-n}}, k=0, \ldots, 2^{n}$, generate $B_{k, n} \sim \operatorname{Beta}\left(2^{-n-1}, 2^{-n-1}\right)$ and set $X_{(2 k-1) 2^{-n-1}}=X_{(k-1) 2^{-n}}+B_{k, n}\left(X_{k 2^{-n}}-X_{(k-1) 2^{-n}}\right), 1 \leq k \leq 2^{n}$. Show that this approximates a Gamma process on the time interval $[0,1]$.
(c) What are the advantages of this method when compared with the plain version of the time discretisation method (Method 1)?
3. Consider a variant of the Variance Gamma process of the form $V_{t}=a t+G_{t}-H_{t}$ where $a \in \mathbb{R}, G_{1} \sim \operatorname{Gamma}\left(\alpha_{+}, \beta_{+}\right)$and $H_{1} \sim \operatorname{Gamma}\left(\alpha_{-}, \beta_{-}\right)$
(a) For what values of $a, \alpha_{ \pm}, \beta_{ \pm}$is V a martingale?
(b) Write out the steps needed to simulate V_{t}

- by Method 1 (using a random walk with increment distribution $\sim V_{\delta}$)
- by Method 1 (applied to G and H separately)
- by the refinement of Method 1 given in A.4.3
- by Method 2 (simulating the Poisson point process of jumps truncated at $\varepsilon)$
(c) Carry out 9 simulations for a range of parameters $\alpha_{+} \in\{1,10,100\}$ and $\alpha_{-} \in$ $\{10,100,1000\}, \beta_{ \pm}=\alpha_{ \pm}^{2} / 2$ and a such that V is a martingale. This part of this question is optional.

Warning: The incomplete Gamma function $\Gamma_{t}(a)=\int_{0}^{t} x^{a-1} e^{-x} d x$ cannot be simplified into closed form (nor expressed in terms of the Gamma function), except for some special values of a such as $a \in \mathbb{N}$. There are, however, numerical procedures to evaluate $\Gamma_{t}(a)$, which we will not address in this course.

If you have not used R, but would like to, you will find the "First steps with R " at
http://www.stats.ox.ac.uk/~myers/stats_materials/R_intro/WA5_R.pdf
useful. Following are brief explanations of the commands used in the sample file
http://www.stats.ox.ac.uk/~winkel/gammavgamma.R

This is a script file, which has to be run in the command window " R Console" to make the new commands available, e.g. select "Run all" in the drop-down menu "Edit".

- runif ($\mathrm{n}, \mathrm{a}, \mathrm{b}$) generates an n-vector of uniform variables on $[a, b]$.
- qgamma (u, a, b) evaluates $F^{-1}(u)$ for the $\operatorname{Gamma}(a, b)$ inverse distribution function F^{-1} at u. If u is a vector, qgamma is applied to each component.
- 1:n generates the vector $(1,2, \ldots, n)$. Multiplication of vectors v by scalars a can be written as $\mathrm{a} * \mathrm{v}$, similarly for addition and subtraction of vectors.
- plot(x,y,pch=".",sub=paste("text")) produces a scatter plot of pairs (x_{i}, y_{i}) for vectors x and y , with. marking the points, and text in the caption.
- psum <- function(vector) $\{\ldots\}$ defines a new command psum that takes a vector vector as an argument. When this line is executed, the command is just made available. To execute the command, type psum(v) for a vector v to get the partial sums of v displayed, or $\mathrm{s}=\mathrm{psum}(\mathrm{v})$ to create a new vector s containing the partial sums of v .

