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Summary of Introduction to Lévy processes

We’ve defined Lévy processes via stationary independent

increments.

We’ve seen how Brownian motion, stable processes and

Poisson processes arise as limits of random walks, indi-

cated more general results.

We’ve analysed the structure of general Lévy processes and

given representations in terms of compound Poisson pro-

cesses and Brownian motion with drift.

We’ve simulated Lévy processes from their marginal distri-

butions and from their Lévy measure.
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6. Poisson point proc. in fluctuation theory

Fluctuation theory studies the extremes of the sample paths:

St = sup
s≤t

Xs and It = inf
s≤t

Xs, t ≥ 0.

This also includes level passages and overshoots

Tx = inf{t ≥ 0 : Xt > x}, Kx = XTx − x,

and the set of times that X spends at its supremum

R = {t ≥ 0 : Xt = St}cl = {Tx : x ≥ 0}cl
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Markov property

Theorem 10 (Bingham) Lévy proc. are strong Markov

processes, i.e. (XT+s−XT)s≥0 ∼ X and is indep. of (Xr)r≤T .

The independence of (XT+s−XT)s≥0 and XT is called spa-

tial homogeneity (in addition to temporal homogeneity).

Proof of simple Markov property: T = t

Choose s > 0, 0 ≤ r ≤ t, then Xt+s−Xt and Xr (and Xt−Xr)
are independent, and similarly for 0 = s0 < . . . < sm,

0 = r0 < . . . < rk ≤ t finite-dimensional subfamilies are in-

dependent. Their distributions determine the distribution

of (Xt+s −Xt)s≥0 and (Xr)r≤t.
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Tx, x ≥ 0, for spectrally negative processes, E(X1) ≥ 0

Theorem 11 (Zolotarev) Tx, x ≥ 0, is a Lévy process.

Proof: X has no positive jumps. Therefore XTx = x a.s.

By the strong Markov property X̃ = (XTx+s− x)s≥0 ∼ X is

independent of (Xr)r≤Tx, in particular of Tx. Also, T̃y ∼ Ty

and Tx + T̃y = Tx+y, i.e. T̃y = Tx+y − Tx.

In particular ∆Tx, x ≥ 0, is a Poisson point process. In

fact, also (XTx−+t − XTx−)0≤t≤∆Tx, x ≥ 0, is a Poisson

point process, a so-called excursion process.

Example: X Brownian motion ⇒ T 1/2-stable.
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Results from fluctuation theory for general X

Theorem 12 For fixed t > 0, (St, Xt − St) ∼ (Xt − It, It).

Theorem 13 (Rogozin) For τ ∼ Exp(q) and all β > 0

E(e−βSτ) = exp
(∫ ∞

0

∫
[0,∞)

(e−βx − 1)t−1e−qtP(Xt ∈ dx)
)
.

Theorem 14 R = {Tx : x ≥ 0}cl = {Us : s ≥ 0}cl is the

range of an increasing Lévy process U , and also (Us, XUs)s≥0

is a bivariate Lévy process, the so-called ladder process.

Theorem 15 (Wiener-Hopf factorisation) If E(eiλX1) =

e−ψ(λ), E(e−αU1−βSU1) = e−κ(α,β), E(e−αV1+βIV1) = e−κ̂(α,β),

q

q+ ψ(λ)
=

κ(q,0)

κ(q,−iλ)
κ̂(q,0)

κ̂(q, iλ)
.
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Subordination and time change

The operation Zt = XAt with a subordinator (increasing

Lévy process) is called subordination, or time change.

Example in fluctuation theory: ladder height process XUt.

Bochner’s subordination, Bochner(57), A independent. Con-

ditional distributions L(A|Z), also more gen. A in W(02b)

Subordination in the wide sense, Huff(59), Monroe(78),

Bertoin (97), Simon(99), W(WIP), A suitably dependent

on X.

Right inverses, Evans(00), W(02a), XAt = t.
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7. Lévy processes and population models

Galton-Watson branching processes: each individual either

doubles or dies at the end of each time unit, independently.

Centered case: populations die out

Note higher fluctuations at higher pop. sizes.
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Continuous limits of Galton-Watson processes

Scaling limits give so-called Feller’s diffusion, which is not

Brownian motion: σ(x) = cx, x population size.
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As for random walk limits, there are generalisations to sta-

ble and infinitely divisible branching mechanisms.
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Genealogy of populations
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Split population into n parts and look at the evolution of

their descendants (here n = 20). Let n → ∞ to get full

genealogy.
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Links to subordination and random trees

At t = 0 infinitely many unrelated ancestors, at large t > 0,

most individuals descendants of a single ancestor. Study

evolution of families, can be expressed by a family of sub-

ordinators S(s,t) with subordination S
(r,s)

S
(s,t)
x

= S
(r,t)
x , 0 ≤

r ≤ s ≤ t, expressing that the descendants of a time-r-

individual at time t are the time-t-descendants of all his

time-s-descendants. Cf. Bertoin-LeGall-LeJan (1997)

Describe continually branching family trees as stochastic

objects. Literature: Aldous, Le Gall, Evans-Winter, Pitman-

W(03), Duquesne-W(WIP).
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8. Lévy processes in mathematical finance

The Black-Scholes model

Two assets: Risk-free bank account At = exp{rt} and a

risky stock at prices

Zt = Z0 exp
{(
µ−

1

2
σ2

)
t+ σBt

}
, t ≥ 0,

where r interest rate, B Brownian motion, σ volatility and

µ drift parameter.

Data: non-Normality, semi-heavy tails, non-constant σ

Therefore: need more flexible models: Lévy-based models
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A trading strategy is a (bounded predictable) process Ut

to signify the number of stock units that we hold at time

t ≥ 0. All money invested is taken from or borrowed on the

bank account. Given an initial wealth W0, this determines

the (random) terminal wealth WT at time T .

Theorem 16 (Predictable representation property) For

every square-integrable T -measurable random variable H,

there is a trading strategy U and a unique 0-measurable

initial wealth W0 s.th. WT = H.

As a consequence, we have a unique price W0 for all con-

tingent claims H, e.g. H = (ZT−q)+ European call option.
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Example: The Predictable representation property is eas-

ier to believe in discrete time, say in a 2-step model

A0 = 10 ↗ A1 = 12 ↗ A2 = 16

Z0 = 10
↗ Z1 = 15

↘ Z1 = 6

↗ Z2 = 22
↘ Z2 = 12
↗ Z2 = 8
↘ Z2 = 5

W0 = 10

U0 = 2

↗ W1 = 18, U1 = 3

↘ W1 = 0, U1 = 0

↗ W2 = 30
↘ W2 = 0
↗ W2 = 0
↘ W2 = 0

(20,−10)
↗ (30,−12)→ (45,−27)

↘ (12,−12)→ (0,0)

↗ (66,−36)
↘ (36,−36)
↗ (0,0)
↘ (0,0)
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Given W2, W0 (and W1) are independent of the transition

probabilities.

Calculations are quite heavy, in many-step or continuous

models.

However, there is a unique probability measure Q, s.th.

the wealth can be calculated as conditional expectations

of H = WT = g(Z), for all H. Q is called a martingale

measure since (A−1
t Wt)0≤t≤T is a martingale under Q. In

particular

A−1
0 W0 = A−1

T EQ(WT).
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Exponential Lévy processes as stock prices

The Predictable representation property fails,

hence no uniqueness of arbitrage free prices,

different ways to choose a martingale measure.

Once martingale measure chosen (changes parameters of

the Lévy process), options can be priced by simulation:

Option described by contingent claim H = g(Z). Price

1

n

n∑
k=1

g(Z(k))→ EQ(g(Z)).

g may depend on the path of Z, not just ZT (barriers etc.).
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Exmpl: Black-Scholes, r = 0, σ = 1, t = 1, H = (Z1−2)+.
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Popular
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Parametric families are useful to facilitate model fitting

Stochastic volatility

Stochastic volatility: Time-change by an integrated sta-

tionary volatility process, e.g. OU processes driven by sub-

ordinators Xt:

Yt = exp{−λt}Y0 +
∫ t
0

exp{−λ(t− s)}dXλs

It =
∫ t
0
Ysds

Zt = BIt

This model is by Barndorff-Nielsen and Shephard. This and

others can be simulated and used for option pricing.
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Summary

We’ve studied the extremes of Lévy processes. Ladder pro-

cesses are two-dimensional Lévy processes.

We’ve studied subordination to construct and relate Lévy

processes.

Limits of branching processes can be studied like limits of

random walks, giving continuous processes. We’ve indi-

cated how their genealogy can be expressed by subordina-

tion. In some sense, the genealogy of branching processes

is an infinite-dimensional Lévy process.

In mathematical finance, stock prices can be modelled us-

ing specific Lévy processes, often constructed by subordi-

nation. This can be used, e.g., for option pricing.
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