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1. Random walks and continuous-time limits

Definition 1 Let Yk, k ≥ 1, be i.i.d. Then

Sn =
n∑

k=1
Yk, n ∈ N,

is called a random walk. 1680
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Random walks have stationary and independent increments

Yk = Sk − Sk−1, k ≥ 1.

Stationarity means the Yk have identical distribution.

Definition 2 A right-continuous process Xt, t ∈ R+, with

stationary independent increments is called Lévy process.
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What are Sn, n ≥ 0, and Xt, t ≥ 0?

Stochastic processes; mathematical objects, well-defined,

with many nice properties that can be studied.

If you don’t like this, think of a model for a stock price

evolving with time. There are also many other applications.

If you worry about negative values, think of log’s of prices.

What does Definition 2 mean?

Increments Xtk − Xtk−1, k = 1, . . . , n, are independent and

Xtk −Xtk−1 ∼ Xtk−tk−1, k = 1, . . . , n for all 0 = t0 < . . . < tn.

Right-continuity refers to the sample paths (realisations).
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Can we obtain Lévy processes from random walks?

What happens e.g. if we let the time unit tend to zero, i.e.

take a more and more remote look at our random walk?

If we focus at a fixed time, 1 say, and speed up the process

so as to make n steps per time unit, we know what happens,

the answer is given by the Central Limit Theorem:

Theorem 1 (Lindeberg-Lévy) If σ2 = V ar(Y1) <∞, then

Sn − E(Sn)√
n

→ Z ∼ N(0, σ2) in distribution, as n→∞.
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Theorem 2 (Donsker) If σ2=V ar(Y1)<∞, then for t ≥ 0

X
(n)
t =

S[nt] − E(S[nt])√
n

→ Xt ∼ N(0, σ2t) in distribution.

Furthermore, X(n)→ X where X is Brownian motion with

diffusion coefficient σ.
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It can be shown that X has continuous sample paths.
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We had to put the condition V ar(Y1) <∞. If it fails:

Theorem 3 (Doeblin) If α = sup{β ≥ 0 : E(|Y1|β) <∞} ∈

(0,2] and E(Y1) = 0 for α > 1, then (under a weak regu-

larity condition)

Sn

n1/α`(n)
→ Z in distribution, as n→∞.

for a slowly varying `. Z has a so-called stable distribution.

Think ` ≡ 1. The family of stable distributions has three

parameters, α ∈ (0,2], c± ∈ R+, E(|Z|β) < ∞ ⇐⇒ β < α

(or α = 2).
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Theorem 4 If α = sup{β ≥ 0 : E(|Y1|β) < ∞} ∈ (0,2] and

E(Y1) = 0 for α > 1, then (under a weak regularity cond.)

X
(n)
t =

S[nt]

n1/α`(n)
→ Xt in distribution, as n→∞.

Also, X(n)→ X where X is a so-called stable Lévy process.
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One can show that (Xct)t≥0 ∼ (c1/αXt)t≥0 (scaling).
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To get to full generality, we need triangular arrays.

Theorem 5 (Khintchine) Let Y
(n)
k , k = 1, . . . , n, be i.i.d.

with distribution changing with n ≥ 1, and such that

Y
(n)
1 → 0, in probability, as n→∞.

If S(n)
n → Z in distribution,

then Z has a so-called infinitely divisible distribution.

Theorem 6 (Skorohod) In Theorem 5, k ≥ 1, n ≥ 1,

X
(n)
t = S

(n)
[nt]→ Xt in distribution, as n→∞.

Furthermore, X(n)→ X where X is a Lévy process.
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Do we really want to study Lévy processes as limits?

No! Not usually. But a few observations can be made:

Brownian motion is a very important Lévy process.

Jumps seem to be arising naturally (in the stable case).

We seem to be restricting the increment distributions to:

Definition 3 A r.v. Z has an infinitely divisible distribution

if Z=S̃
(n)
n for all n ≥ 1 and suitable random walks S̃(n).

Example for Theorems 5 and 6: B(n, pn) → Poi(λ) for

npn → λ is a special case of Theorem 5 (Y (n)
k ∼ B(1, pn)),

and Theorem 6 turns out to give an approximation of the

Poisson process by Bernoulli random walks.
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2. Examples

Example 1 (Brownian motion) Xt ∼ N(0, t).

Example 2 (Stable process) Xt stable.

Example 3 (Poisson process) Xt ∼ Poi(t/2)

To emphasise the presence of jumps, we remove the verti-

cal lines.
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3. Classification and construction of Lévy proc.

Why restrict to infinitely divisible increment distrib.?

You have restrictions for random walks: n−step increments

Sn must be divisible into n iid increments, for all n ≥ 2.

For a Lévy process, Xt, t > 0, must be divisible into n ≥ 2

iid random variables

Xt =
n∑

k=1
(Xtk/n −Xt(k−1)/n),

since these are successive increments (hence independent)

of equal length (hence identically distrib., by stationarity).
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Approximations are cumbersome. Often nicer direct argu-

ments exist in continuous time, e.g., because the class of

infinitely divisible distributions can be parametrized nicely.

Theorem 7 (Lévy-Khintchine) A r.v. Z is infinitely divis-

ible iff its characteristic function E(eiλZ) is of the form

exp
{
iβλ−

1

2
σ2λ2 +

∫
R∗

(
eiλx − 1− iλx1{|x|≤1}

)
ν(dx)

}

where β ∈ R, σ2 ≥ 0 and ν is a measure on R∗ such that∫
R∗

(1 ∧ x2)ν(dx) <∞, [ν(dx) ≈ f(x)dx.]

‘Only if’ is hard to prove. We give an indication of ‘if’ by

constructing the associated Lévy processes.
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The hidden beauty of this abstract parametrization can

only be appreciated when interpreted for the Lévy process

with given infinitely divisible increment distribution.

Theorem 8 (Lévy-Itô) Let X be a Lévy process, the dis-

tribution of X1 parametrized by (β, σ2, ν). Then X decom-

poses
Xt = βt + σBt + Jt + Mt

where B is a Brownian motion, and ∆Xt = Xt−Xt−, t ≥ 0,

an independent Poisson point process with intensity mea-

sure ν,
Jt =

∑
s≤t

∆Xs1{|∆Xs|>1}

and M is a martingale with jumps ∆Mt = ∆Xt1{|∆Xs|≤1}.
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4. Examples

Z ≥ 0 ⇐⇒ E(e−λZ) = exp
{
−β′λ−

∫
(0,∞)

(
1− e−λx

)
ν(dx)

}

Example 4 (Poisson proc.) β′ = 0, ν(dx) = λδ1(dx).

Example 5 (Gamma process) β′ = 0, ν(x) = f(x)dx with

f(x) = ax−1 exp{−bx}, x > 0. Then Xt ∼ Gamma(at, b).

Example 6 (stable subordinator) β′ = 0, f(x) = cx−3/2
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Example 7 (Compound Poisson process) β = σ2 = 0.

Choose jump distribution, e.g. density g(x), intensity λ > 0,

ν(dx) = λg(x)dx. J in Theorem 8 is compound Poisson.

Example 8 (Brownian motion) β = 0, σ2 > 0, ν ≡ 0.

Example 9 (Cauchy process) β = σ2 = 0, ν(dx) = f(x)dx

with f(x) = x−2, x > 0, f(x) = |x|−2, x < 0.
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5. Poisson point processes and simulation

What does it mean that (∆Xt)t≥0 is a Poisson point pro-

cess with intensity measure ν?

Definition 4 A stochastic process (Ht)t≥0 in a measurable

space E = E∗ ∪ {0} is called a Poisson point process with

intensity measure ν on E∗ if

Nt(A) = # {s ≤ t : Hs ∈ A} , t ≥ 0, A ⊂ E∗ measurable

satisfies

• Nt(A), t ≥ 0, is a Poisson process with intensity ν(A).

• For A1, . . . , An disjoint, the processes Nt(A1), . . . , Nt(An),

t ≥ 0, are independent.
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Nt(A), t ≥ 0, counts the number of points in A, but does

not tell where in A they are. Their distribution on A is ν:

Theorem 9 (Itô) For all measurable A ⊂ E∗ with M =

ν(A) <∞, denote the jump times of Nt(A), t ≥ 0, by

Tn(A) = inf{t ≥ 0 : Nt(A) = n}, n ≥ 1.

Then
Zn(A) = HTn(A), n ≥ 1,

are independent of Nt(A), t ≥ 0, and iid with common

distribution M−1ν(· ∩A).

This is useful to simulate Ht, t ≥ 0.
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Simulation of (∆Xt)t≥0

Time interval [0,5]

ε > 0 small, M = ν((−ε, ε)c) <∞

N ∼ Poi(5ν((−ε, ε)c))

T̃1, . . . , T̃N ∼ U(0,5)

∆XT̃j
∼M−1ν(· ∩ (−ε, ε)c) 543210
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Corrections to improve approximation

First, add independent Brownian motion βt + σBt.

If X symmetric, small ε means small error.

If X not symmetric, we need a drift correction −γt

γ =
∫
A∩[−1,1]

xν(dx), where A = (−ε, ε)c.

Also, one can often add a Normal variance correction τCt

τ2 =
∫
(−ε,ε)

x2ν(dx), C independent Brownian motion

to account for the many small jumps thrown away. This

can be justified by a version of Donsker’s theorem and

E(X1) = β +
∫
[−1,1]c

xν(dx), V ar(X1) = σ2 +
∫
R∗

x2ν(dx).
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Decomposing a general Lévy process X

Start with intervals of jump sizes in sets An with

⋃
n≥1

An = (0,∞), A−n = −An,
⋃

n≤−1
An = (−∞,0)

so that ν(An + A−n) ≥ 1, say. We construct X(n), n ∈ Z∗,
independent Lévy processes with jumps in An according to

ν(· ∩An) (and drift correction −γnt). Now

Xt =
∑

n∈Z
X

(n)
t , where X

(0)
t = βt + σBt.

In practice, you may cut off the series when X
(n)
t is small,

and possibly estimate the remainder by a Brownian motion.
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A spectrally negative Lévy process: ν((0,∞)) = 0

σ2 = 0,

ν(dx) = f(x)dx,

f(x) = |x|−5/2,

x ∈ [−3,0),

β = 0.845

γ1 = 0,

γ0.3 = 1.651,

γ0.1 = 4.325,

γ0.01 = 18,

γε ↑ ∞ as ε ↓ 0.

eps=1

151050

8

4

0

-4

Page 1

eps=0.01

151050

4

0

-4

-8

Page 1

eps=0.3

151050

4

0

-4

-8

Page 1

eps=0.1

151050

4

0

-4

-8

Page 1

24



Another look at the Lévy-Khintchine formula

E(eiλX1) = E
exp

iλ
∑

n∈Z
X

(n)
1


 =

∏
n∈Z

E(eiλX
(n)
1 )

can be calculated explicitly, for n ∈ Z∗ (n = 0 obvious)

E(eiλX
(n)
1 ) = E

exp

iλ

−γn +
N∑

k=1
Zk




= exp
{
−iλ

∫
An∩[−1,1]

xν(dx)
} ∞∑

m=0
P(N = m)

(
E(eiλZ1)

)m

= exp
{∫

An

(
eiλx − 1−iλx1{|x|≤1}

)
ν(dx)

}

to give for E(eiλX1) the Lévy-Khintchine formula

exp
{
iβλ−

1

2
σ2λ2 +

∫
R∗

(
eiλx − 1− iλx1{|x|≤1}

)
ν(dx)

}
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Summary

We’ve defined Lévy processes via stationary independent

increments.

We’ve seen how Brownian motion, stable processes and

Poisson processes arise as limits of random walks, indi-

cated more general results.

We’ve analysed the structure of general Lévy processes and

given representations in terms of compound Poisson pro-

cesses and Brownian motion with drift.

We’ve simulated Lévy processes from their marginal distri-

butions and from their Lévy measure.
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