Part B Statistical Lifetime-Models

Hilary Term 2015

Matthias Winkel

winkel@stats.ox.ac.uk

Estimated ages at death for 103 tyrannosaurs, from four different species, as reported in Erickson, Currie, Inouye and Winn (2006).

(2000).					
A. sarcophagus	2,4,6,8,9,11,12,13,14,14,15,15,16,17, 17,18,19,19,20,21,23,28				
T roy	2,6,8,9,11,14,15,16,17,18,18,18,18,18,18,19,21,21,2				

	A. sarcophagus	17,18,19,19,20,21,23,28	
_	T. rex	2,6,8,9,11,14,15,16,17,18,18,18,18,18,19,21,21,21 22,22,22,22,22,22,23,23,24,24,28	
_	G. libratus	2,5,5,5,7,9,10,10,11,12,12,12,13,13, 14,14,14,14,14,15,16,16,17,17,17,	

Daspletosaurus

18,18,18,19,19,19,20,20,21,21,21,21,22 3,9,10,17,18,21,21,22,23,24,26,26,26

Exponential model:

$$f(T;\mu) = \mu e^{-\mu T}.$$

 $\sum T_i = 1652,$

 $\bar{T} = 16.03$, $\hat{\mu} = 0.062,$ $SE_{\hat{\mu}} = 0.0061,$ 95% C.I. for $\hat{\mu}$: (0.050, 0.074).

Tyrannosaur data:
$$n=103, \label{eq:n}$$

Comparison of empirical CDF for tyrannosaur data to exponential approximation.

Exponential model:

$$F(T; \mu) = 1 - e^{-\mu x}$$
.

Weibull model:

$$F(T; \beta, \alpha) = 1 - e^{-(\beta x)^{\alpha}}.$$

Obtain MLE numerically:

$$(\hat{\alpha}, \hat{\beta}) = (2.89, 0.056).$$

Comparison of empirical CDF for tyrannosaur data to exponential approximation (red) and Weibull approximation (green).

Age	Observed	Expected (exponential)	Expected (Weibull)
[0, 5)	5	22.7	2.6
[5, 10)	12	21.5	14.9
[10, 15)	22	15.7	28.9
[15, 20)	31	11.5	30.5
[20, 25)	28	8.4	18.6
$[25,\infty)$	5	23.1	7.5

$$X^{2} = \sum_{j=1}^{m} \frac{(O_{j} - E_{j})^{2}}{E_{j}}.$$

For the exponential case, we get $X^2=113.5.$ Comparing to χ^2_4 , we get a p-value around $10^{-20}.$

For the Weibull case, we get $X^2=10.0.$ Comparing to χ^2_3 , we get a p-value of 0.018.